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Abstract: The skin effect in modeling an induction motor can be described by fractional differential
equations. The existing methods for identifying the parameters of an induction motor with a rotor
skin effect suggest the presence of errors only in the output. The presence of errors in measuring
currents and voltages leads to errors in both input and output signals. Applying standard methods,
such as the ordinary least squares method, leads to biased estimates in these types of problems. The
study proposes a new method for identifying the parameters of an induction motor in the presence
of a skin effect. Estimates of parameters were determined based on generalized total least squares.
The simulation results obtained showed the high accuracy of the obtained estimates. The results
of this research can be applied in the development of predictive diagnostic systems. This study
shows that ordinary least squares parameter estimates can lead to incorrect operation of the fault
diagnosis system.

Keywords: induction motor; additive noise; skin effect; total least squares; errors-in-variables;
fractional derivative

1. Introduction

Today, methods for identifying the parameters of induction motors based on equivalent
circuits are being actively developed. There are a great number of methods for identifying
the parameters of induction motor models. An overview of these identification methods is
presented in [1,2].

Estimation of induction motor parameters based on ordinary least squares (OLS) and
its recursive modifications is considered in [3–6]. The application of the total least squares
(TLS) technique and its recursive versions was proposed in articles [7–12].

The use of integer-order dynamical models leads to significant errors between the
measured signals and the results obtained from simulations [13]. The greatest discrepancies
are high-power squirrel cage induction machines, in which there is a skin effect in the rotor
cage bars and in induction and synchronous machines with a solid rotor [14].

Using high integer-order models that more accurately account for the skin effect in
the solid rotor of induction motors leads to a great increase in the number of equivalent
circuit elements; however, parameter identification of the high integer-order models is
very difficult [15].

Another approach to increase the accuracy of the model is to use the fractional order
of the models. Such models cannot be described by traditional electrical circuits. The
description of such models requires the use of fractional derivatives.

Fractional-order derivatives are widely used to describe various processes and phe-
nomena. Fractional-order differentiation constitutes a valuable instrument for modeling
real-world processes. Fractional calculations are widely used for the synthesis of fractional
controllers for various electric motors including, among others, induction motors [16–19],
direct current (DC) motors [20], and permanent magnet synchronous motors (PMSMs) [21].

Fractal Fract. 2023, 7, 485. https://doi.org/10.3390/fractalfract7060485 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7060485
https://doi.org/10.3390/fractalfract7060485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-5021-5259
https://doi.org/10.3390/fractalfract7060485
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7060485?type=check_update&version=2


Fractal Fract. 2023, 7, 485 2 of 15

The aforementioned research on the topic always assumed that induction motor models
were of an integer order.

There are far fewer articles devoted to modeling and identification of induction motors
by fractional-order models. In [14,22–24], the researchers represented the skin effect in
a solid rotor by means of resistance and inductance with fixed values and fractional-order
inductance, depending on the frequency of induced eddy currents.

The authors of [25] proposed a frequency method for identifying models with fractional-
order inductance. Identification of models with fractional-order inductance based on the
output error (OE) model was considered in [26].

By monitoring the parameters of an induction motor, faults can be diagnosed. The
authors of [27] proposed diagnosing a short circuit in a stator winding by reducing stator re-
sistance and proposed determining broken rotor bars by increasing rotor resistance. Similar
diagnostic methods can be applied to fractional-order models. The accuracy of diagnostics
depends on the accuracy of the estimated parameters. This makes the development of
methods for identifying fractional-order models relevant.

This study is the first to consider the identification of fractional models of induction
motors with errors in variables. Previously, either fractional output error models [26] or
integer models with errors in variables [7–11] were considered. Currents and voltages are
always measured with errors, which leads to the fact that it is necessary to identify a system
with noise in the input and output signals. Applying standard methods, such as OLS, lead
to biased estimates in these types of problems.

For the first time in one article, three fractional orders of an induction motor model
with errors in variables were compared for noise immunity.

It was shown that in the presence of current and voltage measurement errors, gen-
eralized total least squares allow one to obtain more accurate parameter estimates than
ordinary least squares. This study shows that OLS parameter estimates can lead to incorrect
operation of the fault diagnosis system.

2. Materials and Methods
2.1. Problem Statement

T-form circuit models are more complex than necessary. They can be transformed into
simpler models with no loss of information or accuracy [28]. This configuration has been
denoted as the Г form, from the structure of its two inductances. Modeling a Γ-equivalent
circuit will make a locked rotor for Ω = 0.

The equivalent circuit shown in Figure 1 does not describe the skin effects typical of
real induction motors. To simulate skin effects, models with non-integer-order derivatives
can be presented. Let us replace the resistor Rr and the inductance Lr with the complex
resistance Zr. The equivalent circuit is shown in Figure 2.
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Figure 2. Γ-equivalent circuit model of an induction motor with fractional impedance.

The equivalent impedance of an induction motor is defined as:

Z(s) = Rs +
sLmZr(s)

sLm + Zr(s)
, (1)

Various models with derivatives of non-integer order are known. Zr(s) is the one-
derivative black box mode [23]:

Zr(s) =
a0 + sα

b0
, (2)

or the two-derivative model [24]:

Zr(s) =
a0 + sαa1 + sα+0.5

s0 + sαb1
, (3)

Furthermore, there is a three-parameter model [14]:

Zr(s) = Rr + sLr + sαar, (4)

The relationship between stator current and stator voltage is defined as:

I(s) =
U(s)
Z(s)

, (5)

where U(s) is the stator voltage and I(s) is the stator current.
In real conditions, currents and voltages are always measured with noise:

ĩ(t) = i(t) + ei(t),ũ(t) = u(t) + eu(t), (6)

where ei(t) and eu(t) are additive zero-mean white Gaussian noises corrupting the voltage
signal and the current signal, and they are assumed not to be correlated with the voltage
signal and the current signal.

The problem with identifying an induction motor is the estimation of the vector of
unknown parameters θ from the measured values of the stator current ĩ(t) and stator
voltage ũ(t). The parameter vector of impedance Z(s) (1) for the model Zr(s) (2) is:

θ =
(

Rs Lm a0 b0 α
)T , (7)

For the model Zr(s) (3), the parameter vector of impedance Z(s) is:

θ =
(

Rs Lm a0 a1 b0 b1 α
)T , (8)
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For the model Zr(s) (4), the parameter vector of impedance Z(s) is:

θ =
(

Rs Lm Rr Lr ar α
)T . (9)

2.2. GTLS Algorithm for Identification of Induction Motor

Let us express the value of the impedance in terms of the physical parameters of the
equivalent circuits. The impedance value Z(s) (1) for model Zr(s) (2) is:

Z(s) =
Lms1+α + (Lma0 + LmRsb0)s + Rssα + Rsa0

Lmb0s + sα + a0
, (10)

The impedance value Z(s) (1) for model Zr(s) (3) is:

Z(s) =
Lms1.5+α + (Lma1 + LmRsb1)s1+α + Rss0.5+α + (Lma0 + LmRsb0)s + Rsa1sα + Rsa0

Lmb1s1+α + s0.5+α + Lmb0s + a1sα + a0
, (11)

The impedance value Z(s) (1) for model Zr(s) (4) is:

Z(s) =
LmLrs2 + Lmars1+α + (LmRr + LmRs + LrRs)s + Rsa1sα + RsRr

(Lm + Lr)s + arsα + Rr
. (12)

Equation (5) in the time domain for impedances (2)–(4) is defined as:

LmD1+αi(t) + (Lma0 + LmRsb0)Di(t) + RsDαi(t) + Rsa0i(t) = Lmb0Du(t) + Dαu(t) + a0u(t), (13)

LmD1.5+αi(t) + (Lma1 + LmRsb1)D1+αi(t) + RsD0.5+αi(t) + (Lma0 + LmRsb0)Di(t) + Rsa1Dαi(t)+
+Rsa0i(t) = D0.5+αu(t) + Lmb1D1+αu(t) + Lmb0Du(t) + a1Dαu(t) + a0u(t),

(14)

Lm Lr D2i(t) + Lmar D1+αi(t) + (LmRr + LmRs + Lr Rs)Di(t) + Rsa1Dαi(t) + RsRr i(t) =
= (Lm + Lr)Du(t) + ar Dαu(t) + Rru(t).

(15)

where Dαi(t) is the Grünwald–Letnikov fractional operator, Dαi(t) = lim
h→0

1
hα

[t/h]
∑

k=0
(−1)k

(
α

k

)
i(t− kh),

h is the sampling period, and
(

α
k

)
is Newton’s binomial generalized to fractional orders.

Equations (13)–(15) in matrix form are described as:

i(t) = ϕ(t)θ, (16)

Equation (13) is described as:
ϕi(t) =

(
−D1+αi(t) −Di(t) −Dαi(t)

)T , ϕu(t) =
(

Du(t) Dαu(t) u(t)
)
,

θ = 1
Rsa0

(
θi θu

)T , θi =
(

Lm Lma0 + LmRsb0 Rs
)
, θu =

(
Lmb0 1 a0

)
.

Equation (14) is described as:
ϕ(t) =

(
−D1.5+αi(t) −D1+αi(t) −D0.5+αi(t) −Di(t) −Dαi(t)

)
,

ϕu(t) =
(

D1+αu(t) D0.5+αu(t) Du(t) Dαu(t) u(t)
)
, θ = 1

Rsa0

(
θi θu

)T ,
θi =

(
Lm Lma1 + LmRsb1 Rs Lma0 + LmRsb0 Rsa1

)
, θu =

(
1 Lmb1 Lmb0 a1 a0

)
,

Equation (15) is described as:
ϕi(t) =

(
−D2i(t) −D1+αi(t) −Di(t) −Dαi(t)

)T, ϕu(t) =
(
Du(t) Dαu(t) u(t)

)
, θ =

1
RsRr

(
θi θu

)T, θi =
(
LmLr Lmar LmRr + LmRs + LrRs Rsar

)
, θu =

(
Lm + Lr ar Rr

)
.

For noisy current ĩ(t) and voltage ũ(t), Equation (16) is described as:

ĩ(t) = ϕ̃(t)θ+ ε(t), (17)

where
ε(t) = ei(t) + ϕe(t)θ and ϕe(t) = ϕ̃(t)− ϕ(t).
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Calculating the fractional derivative from noisy data is a serious problem in identifying
a fractional system and leads to large errors. Therefore, the signals must be processed by the
state variable filter (SVF) proposed in [29]. The SVF is defined by the following equation:

L(s) =
(

ω

s + ω

)η

, (18)

where the order η is an integer chosen such that η > 1.5 + α and ω denote the filter cut-off
frequency. The choice of the number η is a compromise between filter complexity and
filtering quality. However, increasing the order for large η produces a very slight increase
in the filtering quality.

The filtered input and output signals i f (t) and u f (t) are determined as follows:

i f (t) = L(s)ĩ(t), u f (t) = L(s)ũ(t). (19)

Using the filtered input and output signals, Equation (17) can be reformulated as:

i f (t) = ϕ f (t)θ+ ε f (t). (20)

Equation (20), in discrete time, is described as:

i f (tk) = ϕ f (tk)θ+ ε f (tk). (21)

It is assumed that the fractional order is already known; our goal is to estimate only
the fractional differential equation coefficients. We will use generalized total least squares
for this. The solving of generalized total least squares is reduced to finding the minimum
of the objective function:

min
θ

∥∥∥Φ fθ− I f

∥∥∥2

σ2
I + θ

TWθ
T , (22)

where I f =

i f (t1)
...

i f (tn)

, Φ f =

 ϕ f (t1)
...

ϕ f (tN)

, ‖·‖ = ‖·‖2 is the Euclidian norm, W is the

diagonal matrix of noise variances, and σ2
i = 1

N−1

N
∑

i=1

(
i f (ti)− i f

)2

, where i f =
1
N

N
∑

i=1
i f (ti).

Total least squares regression assumes that the noise variance is the same in all columns
and in the right side. This assumption is not satisfied for Equation (22). Calculating the
exact value of the noise variances of each column is a very difficult task. We will assume that
the use of the SVF filter makes it possible to achieve an approximately equal signal-to-noise
ratio in each column. Then, normalization will make it possible to obtain approximately
equal noise variances in each column. The standard deviations for each column can be
defined as:

σ
(j)
f =

1
N − 1

√√√√ N

∑
k=1

(
ϕ
(j)
f (tk)− ϕ

(j)
f

)2

, (23)

where ϕ
(j)
f = 1

N

N
∑

k=1
ϕ
(j)
f (tk), ϕ

(j)
f is j-th column of the matrix Φ f .

The generalized total least squares problem (22) can be reduced to the total least
squares problem [30]:

min
θn

∥∥∥Φ f nθn − I f

∥∥∥2

1 +
∥∥θn

∥∥2 , (24)
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where Φ(j)
f n = Φ(j)

f
σI

σ
(j)
ϕ

θn =
σ
(j)
ϕ

σI
θ.

The minimum of function (24) can be found as a solution to the biased normal system
of equations [31]: (

ΦT
f nΦ f n − σ2E

)
θ̂n = ΦT

f n I f . (25)

θ̂n =
(

ΦT
f nΦ f n − σ2E

)−1
ΦT

f n I f , (26)

where σ is the minimal singular values of matrices
(

Φ f n, E f

)
and E is the identity matrix.

An augmented symmetric system of equations used to solve total least squares (16) [32]
can be expressed as follows:(

σE Φ f n
ΦT

f n σE

)(
σ−1ε f n
θn

)
=

(
I f
0

)
. (27)

An inverse change of variable can be performed as follows: θ̂ =
σI

σ
(j)
ϕ

θ̂n.

Let us determine the parameter estimates θ̂ from the estimates θ̂. For impedance
model (2), this would be carried out as follows:

R̂s =
1

θ̂6
, b̂0 =

θ̂4

θ̂1

, â0 =
θ̂2

θ̂1

− R̂s b̂0, L̂m = θ̂1R̂s b̂0, (28)

For impedance model (3), this would be carried out as follows:

R̂s =
1

θ̂10

, b̂0 =
θ̂8

θ̂1

, â0 =
1

θ̂6R̂s
, â1 = θ̂5 â0, L̂m =

θ̂8R̂s â0

b̂0
, b̂1 =

R̂s â0 − L̂m â1

L̂mR̂s
. (29)

For impedance model (4), this would be carried out as follows:

R̂s =
1

θ̂7
, L̂m =

θ̂2

θ̂6
, L̂r =

1(
θ̂5/θ̂2 − 1/L̂m

) , R̂r =
L̂m + L̂r(
θ̂5R̂s

) , L̂d =
θ̂2R̂sR̂r

L̂m
. (30)

If the order of differentiation is unknown, as is often the case in practice, order esti-
mation must be considered along with transfer function coefficient estimation. The use of
generalized total least squares is possible when the fractional order is known a priori. This
section describes an algorithm for extending the identification method presented above for
the case when the order of differentiation is unknown. The algorithm is based on a combi-
nation of a generalized least squares method for estimating coefficients and a nonlinear
algorithm for optimizing the order of differentiation. The parameter identification problem
is presented as a functional minimization. Therefore, the main goal of this approach is to
reduce the residual error with respect to α.

J(α) = min
α

I f −
σI

σ
(j)
ϕ

Φ f n(α)
(

ΦT
f n(α)Φ f n(α)− σ2E

)−1
ΦT

f n(α)I f

2

. (31)

The objective function (31) depends on one parameter. From a priori knowledge, it
follows that α ∈

[
0.7 0.9

]
for the impedance model (2) and α ∈

[
0.4 0.6

]
for models

(2) and (3). The minimum of a function can be found by one of the standard methods for
optimizing a function of one variable.
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3. Simulation Results

MATLAB was used for simulation. Test cases were compared to the normalized
root-mean-square error (NRMSE) of parameter estimation, defined as:

δθ̂i =

√√√√√(
θ̂i − θi

)2

θ
2
i

·100%, (32)

δθ̂i =

√√√√(
θ̂i − θi

)2

θ2
i

·100%. (33)

The parameter estimates obtained on the basis of GTLS from objective functions (22)
and (31) were compared with LS estimates defined as:

θ̂LS =
(

ΦT
f Φ f

)−1
ΦT

f I f , (34)

JLS(α) = min
α

(
I f −Φ f (α)

(
ΦT

f (α)Φ f (α)
)−1

ΦT
f (α)I f

)2
. (35)

The FOMCON toolbox [33] was used to model the fractional order of the transfer
functions. The sample period was set at h = 0.0002 s. The number of data points N in each
simulation was 10,000.

Example 1. The impedance model Zr(s) is described by Equation (2). The true parameter vector is:

θ =
(
9.52 0.53 57.04 17.04 0.8

)T , (36)

The conductivity function Y(s), is defined as:

Y(s) =
1

Z(s)
=

9.0312s + s0.8 + 57.03
0.53s1.8 + 116.2029s + 9.52s0.8 + 542.9256

, (37)

The ratio of standard deviations “signal-noise ratio” is SNR = σu/σeu = σi/σei = 102.

Figure 3 shows the Bode diagram of the system defined by (37).
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Selection of the SVF filters are chosen as:

L(s) =
(

97
s + 97

)4
, (38)

Figure 4 shows the objective function (35) of the system (37).

Fractal Fract. 2023, 7, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 3. The bode diagrams of the system (37). 

Selection of the SVF filters are chosen as: 

( )L s
s

4
97

,
97

 
=  

+ 
 (38) 

Figure 4 shows the objective function (35) of the system (37). 

 

Figure 4. ( )LS
J   function of the system (37). 

Figure 5 shows the objective function (31) of the system (37). 

   

   

   

   

   

   

 
  

  
  
  

  
  

 

                 
   

   

   

 

 
  

  
  
  

  

            

                  

Figure 4. JLS(α) function of the system (37).

Figure 5 shows the objective function (31) of the system (37).

Fractal Fract. 2023, 7, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 5. ( )J   function of the system (37). 

Table 1 shows parameter estimates 
ˆ
  and NRMSE (SNR = 100). 

Table 1. The parameter estimates 
ˆ
  and NRMSE (SNR = 100). 

  
LS

̂  
LS

ˆ ,% 
GTLS
̂  

GTLS

ˆ ,% 

49.7619 10−  49.0069 10−  7.7348 49.9152 10−  1.5701 

0.2140 0.2111 1.3780 0.2207 3.1084 

0,0175 0.0183 4.4481 41.7890 10−  98.9797 

0.0166 0.0162 2.5177 0.173 3.8664 

0.0018 0.0021 16.6910 43.0271 10−  83.5653 

0.1050 0.1047 0.3104 0.1047 0.3398 

Table 2 shows parameter estimates ̂  and NRMSE (SNR = 100). 

Table 2. The parameter estimates ̂  and NRMSE (SNR = 100). 

   LS
̂  

LS
ˆ ,% 

GTLS
̂  

GTLS
ˆ ,% 

s
R  9.52 9.5496 0.3114 9.5525 0.3409 

m
L  0.53 0.5368 1.2863 0.5316 0.2928 

a
0
 57.03 62.4117 9.4336 56.1215 1.5930 

b
0
 17.04 5.6653 28.4394 17.4248 2.2584 

  0.8 0.8134 1.6750 0.8012 0.150 

Figure 5. J(α) function of the system (37).

Table 1 shows parameter estimates θ̂ and NRMSE (SNR = 100).



Fractal Fract. 2023, 7, 485 9 of 15

Table 1. The parameter estimates θ̂ and NRMSE (SNR = 100).

θ θ̂LS δθ̂LS,% θ̂GTLS δθ̂GTLS,%

9.7619× 10−4 9.0069× 10−4 7.7348 9.9152× 10−4 1.5701
0.2140 0.2111 1.3780 0.2207 3.1084
0,0175 0.0183 4.4481 1.7890× 10−4 98.9797
0.0166 0.0162 2.5177 0.173 3.8664
0.0018 0.0021 16.6910 3.0271× 10−4 83.5653
0.1050 0.1047 0.3104 0.1047 0.3398

Table 2 shows parameter estimates θ̂ and NRMSE (SNR = 100).

Table 2. The parameter estimates θ̂ and NRMSE (SNR = 100).

θ θ̂LS δθ̂LS,% θ̂GTLS δθ̂GTLS,%

Rs 9.52 9.5496 0.3114 9.5525 0.3409
Lm 0.53 0.5368 1.2863 0.5316 0.2928
a0 57.03 62.4117 9.4336 56.1215 1.5930
b0 17.04 5.6653 28.4394 17.4248 2.2584
α 0.8 0.8134 1.6750 0.8012 0.150

Example 2. The impedance model Zr(s) is described by Equation (3). The true parameter vector is

θ =
(
9.52 0.53 57.04 9.11 17.04 0.12 0.45

)T , (39)

The conductivity function Y(s) is defined as

Y(s) =
1

Z(s)
=

s1.45 + 9.0312s0.95 + 0.0636s + 9.11s0.45 + 57.03
0.53s1.95 + 5.4338s1.45 + 9.52s0.95 + 116.2s + 86.727ss0.45 + 542.9256

, (40)

The ratio of standard deviations “signal-noise ratio” is SNR = σu/σeu = σi/σei = 5× 104.

Figure 6 shows the Bode diagram of the system defined by (40).
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Selection of the SVF filters are chosen as:

L(s) =
(

510
s + 510

)4
, (41)

Table 3 shows parameter estimates θ̂ and NRMSE (SNR = 5× 104).

Table 3. The parameter estimates θ̂ and NRMSE (SNR = 5 · 104 ).

θ θ̂LS δθ̂LS θ̂GTLS δθ̂GTLS

9.762× 10−4 9.457× 10−4 3.1195 9.769× 10−4 0.0708
0.0100 9.996× 10−3 0.4765 0.0100 0.0238
0.0175 0.0151 13.8781 0.0164 6.4449
0.2140 0.2151 0.5211 0.2151 0.4967
0.1597 0.1590 0.4185 0.1601 0.2315

1.841× 10−3 1.791× 10−3 2.7572 1.843× 10−3 0.7486
1.171× 10−4 −9.357× 10−4 898.76 3.695× 10−4 68.453

0.0166 0.0176 5.6452 0.0167 0.4351
0.0168 0.0167 0.2109 0.0168 0.02053
0.1050 0.1051 6.497× 10−3 0.1050 1.2708× 10−3

Figure 7 shows the objective function (35) of the system (40).
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Figure 8. J(α) function of the system (40).

Example 3. The impedance model Zr(s) is described by Equation (3). The true parameter vector is

θ =
(
9.52 0.53 0.85 0.0012 1.303 0.45

)T , (42)

The conductivity function Y(s) is defined as

Y(s) =
1

Z(s)
=

0.5312s + 1.303s1.45 + 0.85
6.36 · 104s2 + 0.6906s1.45 + 5.5075s + 12.405s0.45 + 8.092

, (43)

The ratio of standard deviations “signal-noise ratio” is SNR = σu/σeu = σi/σei = 103.

Figure 9 shows the Bode diagram of the system defined by (43).

Fractal Fract. 2023, 7, x FOR PEER REVIEW 13 of 17 
 

 

( )
( )

s s
Y s

Z s s s s s

1.45

4 2 1.45 0.45

1 0.5312 1.303 0.85
,

6.36 10 0.6906 5.5075 12.405 8.092

+ +
= =

 + + + +
 (43) 

The ratio of standard deviations “signal-noise ratio” is 
u eu i ei

SNR 310 .   = = =  

Figure 9shows the Bode diagram of the system defined by (43). 

 

Figure 9. The bode diagrams of the system (43). 

Selection of the SVF filters are chosen as: 

( )L s
s

4
30.7

,
30.7

 
=  

+ 
 (44) 

Figure 10 shows the objective function (35) of the system (43). 

   

   

   

   

   

   

 
 
 
 
   

 
 
  
 
 
 

                 
   

   

 

 
 
 
 
 
  
 
 
 
 

            

                  

Figure 9. The bode diagrams of the system (43).



Fractal Fract. 2023, 7, 485 12 of 15

Selection of the SVF filters are chosen as:

L(s) =
(

30.7
s + 30.7

)4
, (44)

Figure 10 shows the objective function (35) of the system (43).

Fractal Fract. 2023, 7, x FOR PEER REVIEW 14 of 17 
 

 

 

Figure 10. ( )LS
J   function of the system (43).. 

Figure 11 shows the objective function (31) of the system (43).. 

 

Figure 11. ( )J   function of the system (43).. 

Table 5 shows parameter estimates 
ˆ
  and NRMSE (SNR = 1000). 

Figure 10. JLS(α) function of the system (43).

Figure 11 shows the objective function (31) of the system (43).

Fractal Fract. 2023, 7, x FOR PEER REVIEW 14 of 17 
 

 

 

Figure 10. ( )LS
J   function of the system (43).. 

Figure 11 shows the objective function (31) of the system (43).. 

 

Figure 11. ( )J   function of the system (43).. 

Table 5 shows parameter estimates 
ˆ
  and NRMSE (SNR = 1000). 

Figure 11. J(α) function of the system (43).

Table 5 shows parameter estimates θ̂ and NRMSE (SNR = 1000).



Fractal Fract. 2023, 7, 485 13 of 15

Table 5. The parameter estimates θ̂ and NRMSE (SNR = 1000).

θ θ̂LS δθ̂LS,% θ̂GTLS δθ̂GTLS,%

7.859× 10−5 2.358× 10−4 200.02 7.7041× 10−5 1.9783
0.0853 0.0890 4.2894 0.0851 0.2677
0.6806 0.710 4.3891 0.6810 0.0539
1.5329 1.7989 17.3489 1.5425 0.6201
0.0656 0.0669 1.9870 0.0655 0.1878
0.1610 0.1904 18.2696 0.1622 0.7486
0.1050 0.1044 0.5747 0.1049 0.1136

Table 6 shows parameter estimates θ̂ and NRMSE (SNR = 1000).

Table 6. The parameter estimates θ̂ and NRMSE (SNR = 1000).

θ θ̂LS δθ̂LS,% θ̂GTLS δθ̂GTLS,%

Rs 9.52 9.5206 0.3584 9.5308 0.1137
Lm 0.53 0.4281 19.2259 0.5247 1.0108
Rr 0.85 1.2154 42.3944 0.8506 0.0744
Lr 0.0012 0.0015 28.4394 0.0012 0.9381
ar 1.3030 1.5407 18.2424 1.3152 1.7956
α 0.45 0.442 1.1778 0.451 0.222

The results shown in Examples 1–3 show that the ordinary least squares method has
more inaccurate estimates than the proposed modification of GTLS. Examples 1 and 3
illustrate how the presence of noise affects the appearance of a false fault. In example 1, the
true resistance of the rotor and its estimates are Rr = a0/b0 = 3.347, R̂r_ls = 11.007, and
R̂r_gtls = 3.221. In example 3, the resistance of the rotor and its estimates are Rr = 0.85,
R̂r_ls = 1.215, and R̂r_gtls = 08506. The OLS ratings are highly inflated, which can be
misinterpreted as broken rotor bars.

4. Discussion

The simulation results show that model (1) allows the identification of parameters at
the lowest signal-to-noise ratio. The disadvantage of this model is poor accuracy at high
frequencies. Model (2) is the most accurate of those considered in this study. However,
it is very sensitive to noise. It should be noted that due to the presence of the first-order
derivative and the derivative of the order 0.5 + α ≈ 1 in the regression vector, the problem
is ill-conditioned. Model (3) occupies an intermediate position between model (1) and
model (2); it is less resistant to noise than (1), but it has an accuracy comparable to (2). For
construction, the experimental model (3) is the most preferable.

5. Conclusions

This article is the first to consider the identification of three fractional-order models of
an induction motor in the presence of errors in variables. Fractional-order models allow
one to simulate the skin effect. Further development of identification methods can include
the construction of algorithms based on regularized total least squares [34,35] and the use
of implicit models of transfer functions [36,37].
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