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Abstract: The fractional powers of generators for analytic operator semigroups are used for the
proof of the existence and uniqueness of a solution of the Cauchy problem to a first order semilinear
equation in a Banach space. Here, we use an analogous construction of fractional powers Aγ for
an operator A such that −A generates analytic resolving families of operators for a fractional order
equation. Under the condition of local Lipschitz continuity with respect to the graph norm of Aγ

for some γ ∈ (0, 1) of a nonlinear operator, we prove the local unique solvability of the Cauchy
problem to a fractional order quasilinear equation in a Banach space with several Gerasimov–Caputo
fractional derivatives in the nonlinear part. An analogous nonlocal Lipschitz condition is used to
obtain a theorem of the nonlocal unique solvability of the Cauchy problem. Abstract results are
applied to study an initial-boundary value problem for a time-fractional order nonlinear diffusion
equation.
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1. Introduction

Differential equations with fractional derivatives have attracted increasing interest
among researchers over the last few decades, both from a theoretical point of view [1–6]
and because of their importance for the study of many applied problems (see, e.g., [7–11]).
In this paper, we study the quasilinear equation

Dαz(t) + Az(t) = B(t, Dα1 z(t), Dα2 z(t), . . . , Dαn z(t)) (1)

in a Banach space Z with Gerasimov–Caputo fractional derivatives Dβz with β > 0 and
Riemann–Liouville fractional integrals Dβz with β ≤ 0. Here, m− 1 < α ≤ m ∈ N, n ∈ N,
α1 < α2 < · · · < αn < α. A linear closed operator −A in Z belongs to the class Aα(θ0, a0),
which is introduced into the consideration in [12] for the study of linear Equation (1) (with
B ≡ 0) by the methods of the resolving families of operators. The corresponding inho-
mogeneous linear equation (B ≡ f (t)) was researched in [13,14] in the cases of Hölderian
or continuous forms in the graph norm of the operator A function f correspondingly.
Equation (1) with a linear operator B, which is called a multi-term equation, was studied
in [15] for the equation with bounded operators, and in [16] in the case of unbounded
operators at the lower order fractional derivatives. The issues of the unique solvability for a
class of nonlinear equations of the form (1) with an operator −A ∈ Aα(θ0, a0) in the linear
part and with a nonlinear operator B, which is continuous in the graph norm of the operator
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A and Lipschitz continuous with respect to the phase variables, is studied in [17]. Ob-
tained results were used to investigate initial-boundary value problems for some nonlinear
systems of partial differential equations modeling viscoelastic media thermoconvection.

However, the used conditions for the operator B in [17] do not allow general results to
be applied for partial differential equations with spatial derivatives in the nonlinear part.
In the operator semigroup theory [18–20], the consideration of integer order equations with
such nonlinearities in the framework of first order equations in Banach spaces is possible
due to using fractional powers Aγ, γ ∈ (0, 1), of a continuously invertible generator −A of
an analytic resolving semigroup of operators and spaces Zγ as the domains of Aγ with the
corresponding graph norms. If an operator B is locally Lipschitz continuous with respect
to the norm in Zγ, the local existence of a unique solution of the Cauchy problem for a
semilinear first order equation with the operator A in the linear part is proved. In [21],
these results were extended to the case of the Cauchy type problem for Equation (1) with
Riemann–Liouville fractional derivatives. To this end, fractional powers of an operator A,
such that −A ∈ Aα(θ0, a0), were constructed and their properties were investigated. In
this work, we use the results on fractional powers for the study of the Cauchy problem
for semilinear Equation (1) with Gerasimov–Caputo derivatives and with a Lipschitz
continuous with respect to the norm in Zγ operator B, γ ∈ (0, 1). We use the abstract
results to prove the existence of a unique solution of an initial-boundary value problem
for a partial differential equation with a nonlinear part, which contains partial derivatives
with respect to spatial variables.

Let us note the works [22–25], in which other approaches are used in the study of
initial problems for nonlinear equations with fractional derivatives in Banach spaces.

The structure of this work is as follows. Section 2 contains preliminaries on sectorial op-
erators and complex powers Aγ for such operators. Note that the auxiliary results obtained
in [21] and listed here, including some estimates on the operators of resolving families and
fractional powers of the operator generating them, are similar to the corresponding results
of the theory of semigroups of operators but much more complicated in technical terms. In
Section 3, the proof of the local unique solvability of the Cauchy problem to Equation (1)
with a nonlinear operator B, which is locally Lipschitz continuous with respect to the norm
in Zγ, is obtained. Section 4 contains an analogous result on the nonlocal existence of a
unique solution for the Cauchy problem to Equation (1) with a Lipschitzian with respect to
the norm in the Zγ nonlinear operator. Abstract results are applied for the consideration of
an initial boundary value problem for a time-fractional order nonlinear diffusion equation.

2. Complex Powers of a Fractional Sectorial Operator

Let Z be a Banach space. For t0 ∈ R, h : (t0, ∞)→ Z, the Riemann–Liouville integral
of order β > 0 is

D−βh(t) := Jβh :=
1

Γ(β)

t∫
t0

(t− s)β−1h(s)ds, t > t0,

J0h(t) := h(t). For m ∈ N, β ∈ (m− 1, m] the Gerasimov–Caputo derivative of the order β
has the form

Dβh(t) := Dm Jm−β

(
h(t)−

m−1

∑
k=0

Dkh(t0)
(t− t0)

k

k!

)
, t > t0.

Let h : R+ → Z , ω ∈ R, H : {µ ∈ C : Reµ > ω} → Z . We denote the Laplace
transform by L[h] and the inverse Laplace transform by L−1[H]. For β > 0 it is known that
(see, e.g., [1])

L[Jβh](µ) = µ−βL[h](µ), L[Dβh](µ) = µβL[h](µ)−
m−1

∑
k=0

µβ−1−kDkh(0).
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Denote by C l(Z) the set of all linear closed operators in a Banach space Z , which
are densely defined in Z . Let A ∈ C l(Z), denote by DA the domain of A, which is
endowed by the graph norm ‖ · ‖DA = ‖ · ‖Z + ‖A · ‖Z ; ρ(A) := {µ ∈ C : Rµ(A) :=
(µI − A)−1 ∈ L(Z)}, σ(A) := C \ ρ(A), Sθ0,a0 := {λ ∈ C : | arg(λ− a0)| < θ0, λ 6= a0},
Σϕ := {τ ∈ C : | arg τ| < ϕ, τ 6= 0}.

For some α > 0, θ0 ∈ (π/2, π), a0 ≥ 0 denote by Aα(θ0, a0) a set of all operators
A ∈ C l(Z), such that the following hold:

(i) For all λ ∈ Sθ0,a0 we have λα ∈ ρ(A);
(ii) For every θ ∈ (π/2, θ0), a ≥ a0 there exists K = K(θ, a) > 0, such that

∀λ ∈ Sθ,a ‖Rλα(A)‖L(Z) ≤
K(θ, a)

|λα−1(λ− a)| .

Hereafter, for a power function, its main branch is taken.
Ii is known [12] that operators from Aα(θ0, a0) with α > 2 are bounded. If α ∈ (0, 2),

an operator A ∈ Aα(θ0, a0) is often called sectorial, and it generates an analytic in a sector
Σθ0−π/2 resolving the family of operators for the equation Dαz(t) = Az(t) [12].

Let α ∈ (0, 2), −A ∈ Aα(θ0, 0) and 0 ∈ ρ(A); then, ρ(−A) contains a neighborhood of
zero cut along the negative semi-axis in which Rλα(−A) is bounded. Hence, for a small
a > 0 and θ ∈ (π/2, θ0),

∃r1 > 0 ∃K1 > 0 ∀λ ∈ Sθ,a ∪ {µ ∈ C : |µ| < r1} ‖Rλα(−A)‖L(Z) ≤
K1

1 + |λ|α .

For a sufficiently small ε > 0 and for ω ∈ (π−θ0
α , π

2α ) denote a contour C := C+ ∪ C0 ∪ C−,
which goes from top to bottom, where C± := {z = re±iαω : r ∈ (αε, ∞)}, C0 := {z = αεeiϕ :
ϕ ∈ [−αω, αω]}, and operators

A−γ :=
1

2πi

∫
C

z−γ(zI − A)−1dz, Reγ > 0. (2)

Since at some K2 > 0 for all z ∈ C

‖z−γ(zI − A)−1‖L(Z) ≤
K2

|z|1+Reγ
,

the integral (2) converges in the operator norm.

Lemma 1 ([21]). Let α > 0, −A ∈ Aα(θ0, 0), 0 ∈ ρ(A). Then, for Reγ > 0, the operator A−γ

is bounded and injective.

For Reγ > 0, define the operator Aγ := (A−γ)−1 with the domain DAγ = imA−γ :=
{y = A−γx : x ∈ Z}. We also define the operator A0 := I.

For Reγ = 0, define Aγ := Aγ−β Aβ with DAγ := DAβ for some β > 0. The indepen-
dence of β > 0 of this definition can be proved easily (see [21]).

Theorem 1 ([21]). Let α > 0, −A ∈ Aα(θ0, 0), 0 ∈ ρ(A). Then, the following hold:

(i) The family {A−γ : Reγ > 0} forms an analytic semigroup, while for any θ ∈ (0, π/2),
z ∈ Z , we have the equality lim

γ→0
| arg γ|≤θ

A−γz = z;

(ii) For γ ∈ C Aγ is a closed operator;
(iii) If Reγ > Reβ ≥ 0, then DAγ ⊂ DAβ ;
(iv) DAγ = Z for every Reγ ≥ 0;
(v) If γ, β ∈ C, then Aγ+βz = Aγ Aβz for every z ∈ DAγ ∩ DAβ ∩ DAγ+β ;
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(vi) If 0 < Reγ < 1, z ∈ DA, then

Aγz =
sin πγ

π

∞∫
0

tγ−1 A(tI + A)−1zdt.

If α > 0, −A ∈ Aα(θ0, a0), Γ := Γ+ ∪ Γ− ∪ Γ0, Γ± := {µ ∈ C : µ = a + re±iθ , r ∈
[δ, ∞)}, Γ0 := {µ ∈ C : µ = a + δeiϕ, ϕ ∈ (−θ, θ)} for δ > 0, a > a0, θ ∈ (π/2, θ0), then
the operators

Zβ(t) :=
1

2πi

∫
Γ

µα−1+βRµα(−A)eµtdµ, t ∈ R+, β ∈ R,

are defined [26]. These satisfy the inequalities for every a > a0 (see [26]):

‖Zβ(t)‖L(Z) ≤ Cβ(θ, a)eat(t−1 + a)β, t > 0, β ≥ 0, (3)

‖Zβ(t)‖L(Z) ≤ Cβ(θ, a)eatt−β, t > 0, β < 0. (4)

Theorem 2 ([21]). Let α > 0, −A ∈ Aα(θ0, a0). Then, for all β < 1, δ < 1, s, t > 0

Zβ(s)Zδ(t) = −
1
α

Zβ+δ(s + t) +
t−δ

2πi

∫
Γ

µα−1+βRµα(−A)Eα,1−δ(µ
αtα)eµsdµ+

+
s−β

2πi

∫
Γ

µα−1+δRµα(−A)Eα,1−β(µ
αsα)eµtdµ.

It is known that for α = 1, {Z0(t) ∈ L(Z) : t ∈ R+} is an analytic semigroup of
operators [18–20,27,28]. Consider Theorem 2 α = 1, β = δ = 0 and obtain the semigroup
property Z0(t)Z0(s) = Z0(t + s), t, s > 0. Thus, Theorem 2 gives some generalization of
the semigroup property for resolving families of operators, which are generated by an
operator from the class Aα(θ0, a0).

Theorem 3 ([21]). Let α > 0, −A ∈ Aα(θ0, 0), 0 ∈ ρ(A). Then, the following hold:

(i) Zβ(t) : Z → D(Aγ) for all β ∈ R, Reγ ∈ [0, 1), t > 0;
(ii) Zβ(t)Aγz = AγZβ(t)z for β ∈ R, γ ∈ C, z ∈ D(Aγ);
(iii) For β ∈ R, Reγ < 1, t > 0 the operator AγZβ(t) is bounded;
(iv) For β < 1, Reγ ∈ (0, 1)

A−γ =
α sin πγ

sin(π(α + γβ))Γ(αγ + β)

∞∫
0

tαγ+β−1Zβ(t)dt;

(v) For β ∈ R, t > 0 ‖AZβ(t)‖L(Z) ≤ Ct−α−β;
(vi) For β ∈ (−αReγ, 1), Reγ ∈ (0, 1), t > 0 ‖AγZβ(t)‖L(Z) ≤ Cγt−αReγ−β;
(vii) For β < 1, Reγ ∈ (0, 1), z ∈ D(Aγ)

‖D−βZβ(t)z− z‖Z ≤ CγtαReγ‖Aγz‖Z .

3. Local Solvability of Quasilinear Equation

Consider the Cauchy problem

Dkz(t0) = zk, k = 0, 1, . . . , m− 1, (5)
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for a quasilinear equation

Dαz(t) + Az(t) = B(t, Dα1 z(t), Dα2 z(t), . . . , Dαn z(t)), (6)

where m − 1 < α ≤ m ∈ N, n ∈ N, α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ Z,
l = 1, 2, . . . , n. Some of αl may be negative.

Let γ ∈ (0, 1), Zγ := DAγ is a normed space with the norm ‖ · ‖γ := ‖Aγ · ‖Z . It is
a Banach space, since Aγ is a continuously invertible closed operator. Let U be an open
subset of R×Zn

γ , a mapping B : U → Z is given; for every point (t, x1, x2, . . . , xn) ∈ U,
there exists its neighborhood V ⊂ U and constants C > 0, δ ∈ (0, 1] such that for all
(s, y1, y2, . . . , yn), (t, v1, v2, . . . , vn) ∈ V

‖B(s, y1, y2, . . . , yn)− B(t, v1, v2, . . . , vn)‖Z ≤ C

(
|s− t|δ +

n

∑
l=1
‖yl − vl‖γ

)
. (7)

A function z ∈ C((t0, t1]; DA), such that z ∈ Cm−1([t0, t1];Z), Dαz ∈ C((t0, t1];Z),
Dα1 z, Dα2 z, . . . , Dαn z ∈ C([t0, t1];Z), is called a solution of the Cauchy problem (5), (6) on a
segment [t0, t1], if it satisfies conditions (5) for all t ∈ [t0, t1] (Dα1 z(t), Dα2 z(t), . . . , Dαn z(t)) ∈
U and for all t ∈ (t0, t1] equality (6) holds.

The next theorem on the unique solvability of the Cauchy problem for an inhomo-
geneous linear equation was proved in [13] for a Hölderian function f ∈ Cν([t0, T];Z),
ν ∈ (0, 1], and for the case f ∈ C([t0, T];Z1) in [14].

Theorem 4 ([13,14]). Let α > 0, −A ∈ Aα(θ0, a0), f ∈ C([t0, T];Z1) ∪ Cν([t0, T];Z), ν ∈
(0, 1]. Then for all z0, z1, . . . , zm−1 ∈ DA the function

z(t) =
m−1

∑
k=0

Z−k(t− t0)zk +

t∫
t0

Z1−α(t− s) f (s)ds, t > t0,

is a unique solution of Cauchy problem (5) for the equation Dαz(t) + Az(t) = f (t).

Lemma 2 ([29]). Let p− 1 < β ≤ p ∈ N. Then

∃C > 0 ∀h ∈ Cp([t0, t1];Z) ‖Dβh‖C([t0,t1];Z) ≤ C‖h‖Cp([t0,t1];Z).

For t1 > t0, α1 < α2 < · · · < αn < α, define the space

Cm−1,{αl}([t0, t1];Z) := {z ∈ Cm−1([t0, t1];Z) : Dαl z ∈ C([t0, t1];Z), l = 1, 2, . . . , n}

and endow it by the norm

‖z‖Cm−1,{αl}([t0,t1];Z)
= ‖z‖Cm−1([t0,t1];Z) +

n

∑
l=1
‖Dαl z‖C([t0,t1];Z).

Denote lm−1 := min{l ∈ {1, 2, . . . , n} : αl > m − 1}, if the set {l ∈ {1, 2, . . . , n} : αl >
m− 1} is not empty, otherwise, lm−1 := n+ 1. Due to Lemma 2 the norm ‖z‖Cm−1,{αl}([t0,t1];Z)
is equivalent to

‖z‖Cm−1([t0,t1];Z) +
n

∑
l=lm−1

‖Dαl z‖C([t0,t1];Z).

Hence, Cm−1,{αl}([t0, t1];Z) = Cm−1([t0, t1];Z), if and only if αn ≤ m− 1.

Lemma 3. The normed space Cm−1,{αl}([t0, t1];Z) is complete.
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Proof. Take a fundamental sequence {xp} from the space Cm−1,{αl}([t0, t1];Z); then, there
exist limits x ∈ Cm−1([t0, t1];Z) for {xp} in the space Cm−1([t0, t1];Z), yl for the sequences
{Dαl xp} in C([t0, t1];Z), l = 1, 2, . . . , n. Hence, for t ∈ [t0, t1] we have

Jαl yl(t) = lim
p→∞

Jαl Dαl xp(t) = lim
p→∞

(
xp(t)−

ml−1

∑
j=0

Djxp(t0)
(t− t0)

j

j!

)
=

= x(t)−
ml−1

∑
j=0

Djx(t0)
(t− t0)

j

j!
, yl = Dαl x ∈ C([t0, t1];Z), l = 1, 2, . . . , n.

Thus, Cm−1,{αl}([t0, t1];Z) is a Banach space.

Lemma 4. Let β ∈ (0, 1), h, Dβh ∈ C([t0, t1];Z). Then h ∈ Cβ([t0, t1]Z), moreover, there exists
C > 0, such that for all t, τ ∈ [t0, t1]

‖h(t)− h(τ)‖ ≤
‖Dβh‖C([t0,t1];Z)

Γ(β + 1)
|t− τ|β.

Proof. For t0 ≤ τ < t ≤ t1,

‖h(t)− h(τ)‖Z = ‖JβDβh(t)− JβDβh(τ)‖Z ≤

≤ (t− t0)
β − (τ − t0)

β

Γ(β + 1)
‖Dβh‖C([t0,t1];Z) ≤

(t− τ)β

Γ(β + 1)
‖Dβh‖C([t0,t1];Z).

Here, we use the decreasing function

(t− t0)
β − (τ − t0)

β

(t− τ)β

of τ ∈ [t0, t) for β ∈ (0, 1).

Denote

z̃(t) := z0 + (t− t0)z1 + · · ·+
(t− t0)

m−1

(m− 1)!
zm−1, z̃l := Dαl z̃(t0), l = 1, 2, . . . , n.

If αl = ml = k ∈ {0, 1, . . . , m− 1}, then z̃l = zk, otherwise, z̃l = 0, l = 1, 2, . . . , n.

Theorem 5. Let α ∈ (1, 2], α1 < α2 < · · · < αn < α, −A ∈ Aα(θ0, 0), 0 ∈ ρ(A), a mapping
B : U → Z satisfies condition (7) with γ ∈ (0, 1), z0, z1 ∈ Z1+γ, (t0, z̃1, z̃2, . . . , z̃n) ∈ U. Then,
for some t1 > t0, there exists a unique solution of problems (5) and (6) on [t0, t1].

Proof. For (t0, z̃1, z̃2, . . . , z̃n) ∈ U choose t1 > t0 and ε > 0, such that on the set

V := {(t, x1, x2, . . . , xn) ∈ R×Zn
γ : t ∈ [t0, t1], ‖xl − z̃l‖γ ≤ ε, l = 1, 2, . . . , n}

inequality (7) holds with some C > 0, δ > 0.
By the construction of C1,{αl}([t0, t1];Z), we have ‖Dαl x‖C([t0,t1];Z) ≤ C‖x‖C1,{αl}([t0,t1];Z)

,
l = 1, 2, . . . , n. Therefore, a subset

St1 := {x ∈ C1,{αl}([t0, t1];Z) : Dαl x(t0) = Aγ z̃l , ‖Dαl x(t)− Aγ z̃l‖Z ≤ ε, l = 1, 2, . . . , n}
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of the Banach space C1,{αl}([t0, t1];Z) is closed. Hence, St1 is a complete metric space with
the metric d(x, y) = ‖x− y‖C1,{αl}([t0,t1];Z)

. For x ∈ St1 , define a mapping

Fx(t) :=
1

∑
k=0

Z−k(t− t0)Aγzk +

t∫
t0

AγZ1−α(t− s)Bx(s)ds,

where Bx(s) := B(s, A−γDα1 x(s), A−γDα2 x(s), . . . , A−γDαn x(s)).
In the proof of Theorem 4, it was shown that for k = 0, 1 DkZ1−α(0) = 0; hence,

for x ∈ St1 , DkFx(t0) = Aγzk, for l = 1, 2, . . . , n,

Dαl Fx(t) =
ml−1

∑
k=0

Zαl−k−α(t− t0)Aγ+1zk +
1

∑
k=ml

Zαl−k(t− t0)Aγzk+

+

t∫
t0

AγZ1−α+αl (t− s)Bx(s)ds.

Therefore, for αl ≥ 0

Dαl Fx(t0) = Zαl−ml (0)Aγzk +

t∫
t0

AγZ1−α+αl (t− s)Bx(s)ds|t=t0 = Aγ z̃l ,

since αl − k− α < 0, αl − k ≤ 0 for k = ml , 1, Zαl−ml (0) = 0 for αl < ml , Zαl−ml (0) = I for
αl = ml . If αl < 0, then Dαl Fx(t0) = 0 = Aγ z̃l . Theorem 3 (vi) implies that∥∥∥∥∥∥

t∫
t0

AγZ1−α+αl (t− s)Bx(s)ds

∥∥∥∥∥∥
Z

=

∥∥∥∥∥∥
t∫

t0

A−δl Aγ+δl Z1−α+αl (t− s)(Bx(s)− B̃(s))ds

∥∥∥∥∥∥
Z

+

+

∥∥∥∥∥∥
t∫

t0

A−δl Aγ+δl Z1−α+αl (t− s)B̃(s)ds

∥∥∥∥∥∥
Z

≤

≤ C1(Cεn + C2)

t∫
t0

(t− s)α(1−γ−δl)−αl−1ds = C3(t1 − t0)
α(1−γ−δl)−αl ,

where δl ∈ (1− γ− αl+1
α , 1− γ− αl

α ) is chosen, since the mapping B is continuous, B̃(s) :=
B(s, z̃1, z̃2, . . . , z̃n), ‖B̃(s)‖Z ≤ C2 for s ∈ [t0, t1]. Thus, for every x ∈ St1 , we have Fx ∈ St1 ,
if t1 is close enough to t0. Note that we can choose t1 regardless of x.

For x, y ∈ St1 , t ∈ (t0, t1], δ2n+1 ∈ (1− γ− 1
α , 1− γ), δ2n+2 ∈ (1− γ− 2

α , 1− γ− 1
α )

‖Fx(t)− Fy(t)‖Z ≤
t∫

t0

‖A−δ2n+1 Aγ+δ2n+1 Z1−α(t− s)‖L(Z)‖Bx(s)− By(s)‖Zds ≤

≤ C1(t1 − t0)
α(1−γ−δ2n+1)d(x, y) ≤ 1

6
d(x, y),

‖D1Fx(t)− D1Fy(t)‖Z ≤
t∫

t0

‖A−δ2n+2 Aγ+δ2n+2 Z2−α(t− s)‖L(Z)‖Bx(s)− By(s)‖Zds ≤

≤ C1(t1 − t0)
α(1−γ−δ2n+2)−1d(x, y) ≤ 1

6
d(x, y),
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‖Dαl Fx(t)− Dαl Fy(t)‖Z ≤
t∫

t0

‖A−δl Aγ+δl Z1−α+αl (t− s)‖L(Z)‖Bx(s)− By(s)‖Zds ≤

≤ C1(t1 − t0)
α(1−γ−δl)−αl d(x, y) ≤ 1

6n
d(x, y), l = 1, 2, . . . , n.

Hence, d(Fx, Fy) ≤ 1
2 d(x, y) and by the Banach theorem, there exists a unique y ∈ S, such

that y(t) = Fy(t), t ∈ [t0, t1].
Besides, for t0 ≤ τ < t ≤ t1, αl ≥ 0

‖Dαl y(t)− Dαl y(τ)‖Z = ‖Dαl Fy(t)− Dαl Fy(τ)‖Z ≤

≤
ml−1

∑
k=0
‖Zαl−k−α(t− t0)Aγ+1zk − Zαl−k−α(τ − t0)Aγ+1zk‖Z+

+
1

∑
k=ml

‖JαDαZαl−k(t− t0)Aγzk − JαDαZαl−k(τ − t0)Aγzk‖Z+

+

∥∥∥∥∥∥
t∫

t0

AγZ1−α+αl (t− s)By(s)ds−
τ∫

0

AγZ1−α+αl (τ − s)By(s)ds

∥∥∥∥∥∥
Z

≤

≤
1

∑
k=0

max
t∈[t0,t1]

‖D
α−αl

2 Zαl−k−α(t− t0)Aγ+1zk‖Z |t− τ|
α−αl

2 +

+ max
t∈[t0,t1]

∥∥∥∥∥∥D
α−αl

2

t∫
t0

AγZ1−α+αl (t− s)By(s)ds

∥∥∥∥∥∥
Z

|t− τ|
α−αl

2 ≤

≤
1

∑
k=0

max
t∈[t0,t1]

‖Z−k− α−αl
2
(t− t0)Aγ+1zk‖Z |t− τ|

α−αl
2 +

+ max
t∈[t0,t1]

∥∥∥∥∥∥
t∫

t0

A−δn+l Aγ+δn+l Z
1− α−αl

2
(t− s)By(s)ds

∥∥∥∥∥∥
Z

|t− τ|
α−αl

2 ≤

≤ C1|t− τ|
α−αl

2 + C2(t1 − t0)
α(1−2γ−2δn+l )−αl

2 |t− τ|
α−αl

2 ≤ C3|t− τ|
α−αl

2 ,

if we take δn+l ∈
(

1− αl
α

2 − 1
α − γ, 1− αl

α
2 − γ

)
. Here, we used the Lagrange formula, inequal-

ities (4) and Lemma 4. Partially,

‖Zαl−α(t− t0)− Zαl−α(τ − t0)‖L(Z) ≤ max
t∈[t0,t1]

‖D
α−αl

2 Zαl−α(t− t0)‖L(Z)|t− τ|
α−αl

2 =

= max
t∈[t0,t1]

‖Z αl−α
2
(t− t0)‖L(Z)|t− τ|

α−αl
2 ≤ C1(t1 − t0)

α−αl
2 |t− τ|

α−αl
2 ≤ C2|t− τ|

α−αl
2 .

If αl < 0, take βl = min{1,−αl} and δn+l ∈
(

1− 1+αl+βl
α − γ, 1− αl+βl

α − γ
)

, then

‖Dαl y(t)− Dαl y(τ)‖Z = ‖Dαl Fy(t)− Dαl Fy(τ)‖Z ≤

≤
1

∑
k=0
‖Zαl−k(t− t0)Aγzk − Zαl−k(τ − t0)Aγzk‖Z+

+

∥∥∥∥∥∥
t∫

t0

AγZ1−α+αl (t− s)By(s)ds−
τ∫

0

AγZ1−α+αl (τ − s)By(s)ds

∥∥∥∥∥∥
Z

≤
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≤
1

∑
k=0

max
t∈[t0,t1]

‖Dβl Zαl−k(t− t0)Aγzk‖Z |t− τ|βl+

+ max
t∈[t0,t1]

∥∥∥∥∥∥Dβl

t∫
t0

AγZ1−α+αl (t− s)By(s)ds

∥∥∥∥∥∥
Z

|t− τ|βl ≤

≤
1

∑
k=0

max
t∈[t0,t1]

‖Zαl+βl−k(t− t0)Aγ+1zk‖Z |t− τ|βl+

+ max
t∈[t0,t1]

∥∥∥∥∥∥
t∫

t0

A−δn+l Aγ+δn+l Z1−α+αl+βl (t− s)By(s)ds

∥∥∥∥∥∥
Z

|t− τ|βl ≤

≤ C1|t− τ|βl + C2(t1 − t0)
α(1−γ−δn+l)−αl−βl |t− τ|βl ≤ C3|t− τ|βl .

Therefore, for the fixed point y of the mapping F, we have By ∈ Cν([t0, t1];Z) for some
ν ∈ (0, δ) due to condition (7).

Theorem 4 implies that a solution of (5), (6) is a function z ∈ C1,{αl}([t0, t1];Z),
such that

z(t) =
m−1

∑
k=0

Z−k(t− t0)zk +

t∫
t0

Z1−α(t− s)Bz(s)ds = A−γFAγz(t) = A−γy(t), (8)

where y is a fixed point of F. Inversely, if a function z ∈ C1,{αl}([t0, t1];Z) satisfies
Equation (8), then BAγz(s) = By(s) = BFy(s) satisfies the Hölder condition, and due to
Theorem 4. z is a solution of (5) and (6). Thus, a function z ∈ C1,{αl}([t0, t1];Z) is a solution
of (5) and (6), if and only if y = Aγz is a fixed point of F, the existence and uniqueness of
which is proved above.

Theorem 6. Let α ∈ (0, 1], α1 < α2 < · · · < αn < α, −A ∈ Aα(θ0, 0), 0 ∈ ρ(A), a mapping
B : U → Z satisfy condition (7) with γ ∈ (0, 1), z0 ∈ Z1+γ, (t0, z̃1, z̃2, . . . , z̃n) ∈ U. Then, for
some t1 > t0, there exists a unique solution of problems (5) and (6) on [t0, t1].

Proof. Take t1 > t0 and ε > 0, such that on

V := {(t, x1, x2, . . . , xn) ∈ R×Zn
γ : t ∈ [t0, t1], ‖xl − z̃l‖γ ≤ ε, l = 1, 2, . . . , n}

inequality (7) with some C > 0, δ > 0 is satisfied. The set

St1 := {x ∈ C0,{αl}([t0, t1];Z) : Dαl x(t0) = Aγ z̃l , ‖Dαl x(t)− Aγ z̃l‖Z ≤ ε, l = 1, 2, . . . , n}

is a complete metric space with the metric d(x, y) = ‖x − y‖C0,{αl}([t0,t1];Z)
. For x ∈ St1 ,

define a mapping

Fx(t) := Z0(t− t0)Aγz0 +

t∫
t0

AγZ1−α(t− s)Bx(s)ds

with Bx(s) := B(s, A−γDα1 x(s), A−γDα2 x(s), . . . , A−γDαn x(s)). It is obvious that for x ∈
St1 Fx(t0) = Aγz0. For l = 1, 2, . . . , n, in the case of αl > 0 we have

Dαl Fx(t) = Zαl−α(t− t0)Aγ+1z0 +

t∫
t0

AγZ1−α+αl (t− s)Bx(s)ds,
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Dαl Fx(t0) = Zαl−α(0)Aγz0 = 0 = Aγ z̃l , since αl − α < 0. Otherwise,

Dαl Fx(t) = Zαl (t− t0)Aγz0 +

t∫
t0

AγZ1−α+αl (t− s)Bx(s)ds,

αl = 0 and Dαl Fx(t0) = Aγz0 = Aγ z̃l , or αl < 0 and Dαl Fx(t0) = 0 = Aγ z̃l . By
Theorem 3 (vi) for t ∈ (t0, t1], x ∈ St1 we have∥∥∥∥∥∥

t∫
t0

AγZ1−α+αl (t− s)Bx(s)ds

∥∥∥∥∥∥
Z

=

∥∥∥∥∥∥
t∫

t0

A−δl Aγ+δl Z1−α+αl (t− s)Bx(s)ds

∥∥∥∥∥∥
Z

≤

≤ C1(t1 − t0)
α(1−γ−δl)−αl ,

where δl ∈ (1− γ− αl+1
α , 1− γ− αl

α ). Thus, Fx ∈ St1 for every x ∈ St1 , if t1 is sufficiently
close to t0.

If x, y ∈ St1 , t ∈ (t0, t1], δ2n+1 ∈ (1− γ− 1
α , 1− γ), then

‖Fx(t)− Fy(t)‖Z ≤
t∫

t0

‖AγZ1−α(t− s)‖L(Z)‖Bx(s)− By(s)‖Zds ≤

≤ C1(t1 − t0)
α(1−γ−δ2n+1)d(x, y) ≤ 1

4
d(x, y),

‖Dαl Fx(t)− Dαl Fy(t)‖Z ≤
t∫

t0

‖AγZ1−α+αl (t− s)‖L(Z)‖Bx(s)− By(s)‖Zds ≤

≤ C1(t1 − t0)
α(1−γ−δl)−αl d(x, y) ≤ 1

4n
d(x, y), l = 1, 2, . . . , n.

Therefore, d(Fx, Fy) ≤ 1
2 d(x, y), and there exists a unique y ∈ S such that y(t) = Fy(t) for

all t ∈ [t0, t1].
Further, for t0 ≤ τ < t ≤ t1, αl ≥ 0

‖Dαl y(t)− Dαl y(τ)‖Z = ‖Dαl Fy(t)− Dαl Fy(τ)‖Z ≤

≤ ‖Zαl−α(t− t0)Aγ+1z0 − Zαl−α(τ − t0)Aγ+1z0‖Z+

+

∥∥∥∥∥∥
t∫

t0

AγZ1−α+αl (t− s)By(s)ds−
τ∫

0

AγZ1−α+αl (τ − s)By(s)ds

∥∥∥∥∥∥
Z

≤

≤ max
t∈[t0,t1]

‖D
α−αl

2 Zαl−α(t− t0)Aγ+1z0‖Z |t− τ|
α−αl

2 +

+ max
t∈[t0,t1]

∥∥∥∥∥∥D
α−αl

2

t∫
t0

AγZ1−α+αl (t− s)By(s)ds

∥∥∥∥∥∥
Z

|t− τ|
α−αl

2 ≤

≤ max
t∈[t0,t1]

‖Z− α−αl
2
(t− t0)Aγ+1z0‖Z |t− τ|

α−αl
2 +

+ max
t∈[t0,t1]

∥∥∥∥∥∥
t∫

t0

A−δl Aγ+δl Z
1− α−αl

2
(t− s)By(s)ds

∥∥∥∥∥∥
Z

|t− τ|
α−αl

2 ≤

≤ C1|t− τ|
α−αl

2 + C2(t1 − t0)
α(1−2γ−2δn+l )−αl

2 |t− τ|
α−αl

2 ≤ C3|t− τ|
α−αl

2
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with δn+l ∈
(

1− αl
α

2 − 1
α − γ, 1− αl

α
2 − γ

)
. If αl < 0, then for βl = min{1,−αl} and δn+l ∈(

1− 1+αl+βl
α − γ, 1− αl+βl

α − γ
)

‖Dαl y(t)− Dαl y(τ)‖Z = ‖Dαl Fy(t)− Dαl Fy(τ)‖Z ≤

≤ ‖Zαl (t− t0)Aγz0 − Zαl (τ − t0)Aγz0‖Z+

+

∥∥∥∥∥∥
t∫

t0

AγZ1−α+αl (t− s)By(s)ds−
τ∫

0

AγZ1−α+αl (τ − s)By(s)ds

∥∥∥∥∥∥
Z

≤

≤ max
t∈[t0,t1]

‖Dβl Zαl (t− t0)Aγz0‖Z |t− τ|βl+

+ max
t∈[t0,t1]

∥∥∥∥∥∥Dβl

t∫
t0

AγZ1−α+αl (t− s)By(s)ds

∥∥∥∥∥∥
Z

|t− τ|βl ≤

≤ max
t∈[t0,t1]

‖Zαl+βl (t− t0)Aγz0‖Z |t− τ|βl+

+ max
t∈[t0,t1]

∥∥∥∥∥∥
t∫

t0

A−δl Aγ+δl Z1−α+αl+βl (t− s)By(s)ds

∥∥∥∥∥∥
Z

|t− τ|βl ≤

≤ C1|t− τ|βl + C2(t1 − t0)
α(1−γ−δn+l)−αl−βl |t− τ|βl ≤ C3|t− τ|βl

Hence, Dαl y ∈ Cν([t0, t1];Z) for all l = 1, 2, . . . , n and due to (7) By ∈ Cν([t0, t1];Z) for
some ν ∈ (0, δ].

Arguing as in the end of the proof of Theorem 5, we can obtain that z ∈ C0,{αl}(t0, t1;Z)
is a solution of (5) and (6), if and only if y = Aγz is a fixed point of F.

4. Nonlocal Solvability of Quasilinear Equation

Now, consider the Cauchy problem

Dkz(t0) = zk, k = 0, 1, . . . , m− 1, (9)

for the quasilinear equation

Dαz(t) + Az(t) = B(t, Dα1 z(t), Dα2 z(t), . . . , Dαn z(t)) (10)

on a given segment [t0, T]. Here, as before, m− 1 < α ≤ m ∈ N, n ∈ N, α1 < α2 < · · · <
αn < α, ml − 1 < αl ≤ ml ∈ Z, l = 1, 2, . . . , n. Some of αl may be negative.

Let the mapping B : [t0, T]× Zn
γ → Z be given; thus, there exist constants C > 0,

δ ∈ (0, 1], such that for all (s, x1, x2, . . . , xn), (t, y1, y2, . . . , yn) ∈ [t0, T]×Zn
γ

‖B(s, x1, x2, . . . , xn)− B(t, y1, y2, . . . , yn)‖Z ≤ C

(
|s− t|δ +

n

∑
l=1
‖xl − yl‖γ

)
. (11)

Theorem 7. Let α ∈ (1, 2], α1 < α2 < · · · < αn < α, −A ∈ Aα(θ0, 0), 0 ∈ ρ(A), a mapping
B : [t0, T]×Zn

γ → Z satisfies condition (11) with γ ∈ (0, 1), z0, z1 ∈ Z1+γ. Then, there exists a
unique solution of problems (9) and (10) on [t0, T].

Proof. Consider a mapping

Fx(t) :=
1

∑
k=0

Z−k(t− t0)Aγzk +

t∫
t0

AγZ1−α(t− s)Bx(s)ds,
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with Bx(s) := B(s, A−γDα1 x(s), A−γDα2 x(s), . . . , A−γDαn x(s)). As in Theorem 5, it is not
difficult to show that Fx ∈ C1,{αl}([t0, t1];Z) for every x ∈ C1,{αl}([t0, t1];Z).

For x, y ∈ C1,{αl}([t0, t];Z), δ2n+1 ∈ (1− γ− 1
α , 1− γ), δ2n+2 ∈ (1− γ− 2

α , 1− γ− 1
α )

and for all t ∈ (t0, T],

‖Fx(t)− Fy(t)‖Z ≤
t∫

t0

‖A−δ2n+1 Aγ+δ2n+1 Z1−α(t− s)‖L(Z)‖Bx(s)− By(s)‖Zds ≤

≤ C1(t− t0)
α(1−γ−δ2n+1)‖x− y‖C1,{αl}([t0,t];Z),

‖D1Fx(t)− D1Fy(t)‖Z ≤
t∫

t0

‖A−δ2n+2 Aγ+δ2n+2 Z2−α(t− s)‖L(Z)‖Bx(s)− By(s)‖Zds ≤

≤ C1(t− t0)
α(1−γ−δ2n+2)−1‖x− y‖C1,{αl}([t0,t];Z),

‖Dαl Fx(t)− Dαl Fy(t)‖Z ≤
t∫

t0

‖A−δl Aγ+δl Z1−α+αl (t− s)‖L(Z)‖Bx(s)− By(s)‖Zds ≤

≤ C1(t− t0)
α(1−γ−δl)−αl‖x− y‖C1,{αl}([t0,t];Z), l = 1, 2, . . . , n.

Here, δl ∈ (1− γ − αl+1
α , 1− γ − αl

α ), as before. Take χ = min{α(1− γ − δ2n+1), α(1−
γ− δ2n+2)− 1, α(1− γ− δ1)− α1, . . . , α(1− γ− δn)− αn}, then ‖Fx− Fy‖C1,{αl}([t0,t];Z) ≤
C2(t− t0)

χ‖x− y‖C1,{αl}([t0,t];Z) and

‖F2x(t)− F2y(t)‖Z ≤
t∫

t0

‖A−δ1 Aγ+δ1 Z1−α(t− s)‖L(Z)‖BFx(s)− BFy(s)‖Zds ≤

≤ C1(t− t0)
α(1−γ−δ1)‖Fx− Fy‖C1,{αl}([t0,t];Z) ≤ C1C2

(t− t0)
2χ

χ + 1
‖x− y‖C1,{αl}([t0,t];Z),

‖D1Fx(t)− D1Fy(t)‖Z ≤ C1C2
(t− t0)

2χ

χ + 1
‖x− y‖C1,{αl}([t0,t];Z),

‖Dαl Fx(t)− Dαl Fy(t)‖Z ≤ C1C2
(t− t0)

2χ

χ + 1
‖x− y‖C1,{αl}([t0,t];Z),

‖F2x − F2y‖C1,{αl}([t0,t];Z) ≤ C2
2
(t−t0)

2χ

χ+1 ‖x − y‖C1,{αl}([t0,t];Z). Analogously we can get the
inequalities

‖F3x− F3y‖C1,{αl}([t0,t];Z) ≤ C3
2

(t− t0)
3χ

(χ + 1)(2χ + 1)
‖x− y‖C1,{αl}([t0,t];Z) ≤

≤ C3
2
(t− t0)

3χ

χ22!
‖x− y‖C1,{αl}([t0,t];Z), . . . ,

‖Fpx− Fpy‖C1,{αl}([t0,T];Z) ≤ Cp
2

(T − t0)
pχ

χp−1(p− 1)!
‖x− y‖C1,{αl}([t0,T];Z), p ∈ N.

Therefore, for a large enough p ∈ N, the operator Fp is a contraction, and there exists
a unique y ∈ C1,{αl}([t0, t];Z) such that y(t) = Fy(t), t ∈ [t0, T]. As in the previous
section, we can prove that By ∈ Cν([t0, t1];Z), ν ∈ (0, δ], due to condition (11), and that
z ∈ C1,{αl}(t0, t1;Z) is a solution of (9) and (10), if and only if y = Aγz is a fixed point of
F.
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Theorem 8. Let α ∈ (0, 1], α1 < α2 < · · · < αn < α, −A ∈ Aα(θ0, 0), 0 ∈ ρ(A), a mapping
B : [t0, T]×Zn

γ → Z satisfies condition (11) with γ ∈ (0, 1), z0 ∈ Z1+γ. Then, there exists a
unique solution of problems (9) and (10) on [t0, T].

Proof. As in Theorem 6 and Theorem 7, we can prove that the mapping

Fx(t) := Z0(t− t0)Aγz0 +

t∫
t0

AγZ1−α(t− s)B
(
s, A−γDα1 x(s), . . . , A−γDαn x(s)

)
ds

has a unique fixed point y in the space C0,{αl}([t0, T];Z) and a function z is a solution of
problems (9) and (10), if and only if z = A−γy.

5. Application

In a bounded region Ω ⊂ R3 with a smooth boundary ∂Ω, consider a problem with
initial conditions

v(ξ, t0) = v0(ξ), D1
t v(ξ, t0) = v1(ξ), ξ ∈ Ω, (12)

for α ∈ (1, 2], or with a unique initial condition

v(ξ, t0) = v0(ξ), ξ ∈ Ω, (13)

in the case α ∈ (0, 1], and with a boundary condition

v(ξ, t) = 0, ξ ∈ ∂Ω, t > t0, (14)

for an equation

Dα
t v(ξ, t) = ∆v(ξ, t) +

n

∑
l=1

Dαl
t v(ξ, t)

3

∑
i=1

∂

∂ξi
Dαl

t v(ξ, t), ξ ∈ Ω, t > t0, (15)

where α1 < α2 < · · · < αn < α, Dαl
t v are partial Gerasimov–Caputo fractional deriva-

tives for αl > 0, or Riemann–Liouville fractional integrals for αl ≤ 0 with respect to t.
Take Z = L2(Ω), A = −∆, DA = H2(Ω) ∩ H1

0(Ω), then −A ∈ Aα(θ0, 0) at α ∈ (0, 2),
θ0 ∈ (π/2, π) (see Theorem 4 in [30] for n = 0, P0 ≡ 1, p = 1, Q1(λ) = λ). Reasoning as in
Theorem 8.3.5 ([19]), we can obtain that the nonlinear operator of the form

f (v1, v2, . . . , vn) =
n

∑
l=1

vl

3

∑
i=1

∂

∂ξi
vl

satisfies the conditions of Theorem 6 and Theorem 5 at γ > 3/4. Therefore, for all v0 ∈
DA1+γ , or v0, v1 ∈ DA1+γ , there exists a unique solution of problems (13)–(15) in the case of
α ∈ (0, 1], or problems (12), (14) and (15), if α ∈ (1, 2), in Ω× [t0, t1] with some t1 > t0.
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