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Abstract: Some well-known authors have extensively used orthogonal polynomials in the framework
of geometric function theory. We are motivated by the previous research that has been conducted and,
in this study, we solve the Fekete–Szegö problem as well as give bound estimates for the coefficients
and an upper bound estimate for the second Hankel determinant for functions in the class GΣ(v, σ)

of analytical and bi-univalent functions, implicating the Euler polynomials.
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1. Introduction

Let the collection of all functions f be expressed by A and has the following form
of series.

f (ξ) = ξ +
∞

∑
l=2

slξ
l = ξ + s2ξ2 + s3ξ3 + · · ·+ slξ

l + · · · , sl ∈ C, (1)

which are holomorphic in U where

U = {ξ ∈ C : |ξ| < 1}

in the complex plane. If a function never yields the same value twice, it is said to be
univalent in U . Mathematically

ξ1 6= ξ2 for all points ξ1 and ξ2 in U implies f (ξ1) 6= f (ξ2).

Let S represent the family of all univalent functions in A as well. As the families of starlike
and convex functions of order φ, respectively, the sets S∗(φ) and C(φ) are some of the
significant and well-researched subclasses of S , therefore, have been added here as follows
(see [1,2]).

S∗(φ) =
{

f ∈ S : <
(

ξ f ′(ξ)
f (ξ)

)
> φ, φ ∈ [0, 1), ξ ∈ U

}
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and

C(φ) =
{

f ∈ S : <
(

1 +
ξ f ′′(ξ)

f ′(ξ)

)
> φ, φ ∈ [0, 1), ξ ∈ U

}
.

Remark 1. It is easy to seen that

S∗(0) = S∗ and C(0) = C,

where S∗ and C are the well-known function classes of starlike and convex functions, respectively.

Suppose g and f be analytical functions in U . For an analytic function w with

|ω(ξ)| < 1 and ω(0) = 0 (ξ ∈ U ),

The function f is considered to be subordinate to g if the relation below holds, that is

g(ω(ξ)) = f (ξ).

In addition to that, if the function g ∈ S , then the following equivalency exists:

f (ξ) ≺ g(ξ) if g(0) = f (0)

and
f (U ) ⊂ g(U ).

For details, see [1]. The inverse function for every f ∈ S , is defined by

F ( f (ξ)) = ξ, f (F (w)) = w,
(
|w| < r0( f ), r0( f ) ≥ 1

4

)
and (ξ, w ∈ U ),

where
F (w) = w− s2w2 + (2s2

2 − s3)w3 + (−5s3
2 + 5s2s3 − s4)w4 + · · · . (2)

A function f which is analytic is said to be bi-univalent in U if both f and f−1 are univalent
in U . The classes of all such function is denoted by Σ.

The housebreaking research of Srivastava et al. [3] in fact, in the past decades, revital-
ized the examination of bi-univalent functions. Following the study of Srivastava et al. [3],
numerous unique subclasses of the class Σ were presented and similarly explored by numer-
ous authors. The function classes HΣ(γ, ε, µ.ς; α) and HΣ(γ, ε, µ.ς; β) as an illustration, were
defined and Srivastava et al. [4] produced estimates for the Taylor–Maclaurin coefficients
|a2| and |a3|. Many authors were motivated by the work of Srivastava and have defined a
number of other subclasses of analytic and bi-univalent functions, and for their defined
functions classes different types of results were obtained. In this paper, motivated by the
work of Srivastava, we define certain new classes of bi-univalent functions and obtain some
remarkable results for our defined function’s classes, including, for example, the initial
bonds for the coefficients, the Fekete–Szegö problem and the second Hankel determinant.

The theory of special functions, originating from their numerous applications, is a very
old branch of analysis. The long existing interest in them has recently grown due to their
new applications and further generalizations. The contemporary intensive development
of this theory touches various unexpected areas of applications and is based on the tools
of numerical analysis and computer algebra system, used for analytical evolutions and
graphical representations of special functions. Additionally, in Computer Science, special
functions are used as activation functions, which play a significant role in this area. Particu-
larly, orthogonal polynomials are an important and intriguing class of special functions.
Many branches of the natural sciences contain them, including discrete mathematics, theta
functions, continuous fractions, Eulerian series, elliptic functions, etc.; see [5,6], also [7–9].
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In pure mathematics, the functions mentioned above have numerous uses. A lot of
researchers have started working in a variety of fields as a result of the widespread use of
these functionalities. Modern geometric function theory research focuses on the geometric
features of special functions, including hypergeometric functions, Bessel functions, and
certain other related functions. We refer to [10,11] and any relevant references in relation to
some of the geometric characteristics of these functions. In this paper, we develop a new
class of bi-univalent functions and use a particular special function, the Euler polynomial.

Using the generating function, the Eulers polynomials Em(v) are frequently defined
(see, e.g., [12,13]):

L(v, t) =
2etv

et + 1
=

∞

∑
m=0
Em(v)

tm

m!
, |t| < π (3)

An explicit formula for Em(v) is given by

En(v) =
n

∑
m=0

1
2m

m

∑
k=0

(−1)k
(

m
k

)
(v + k)n

Now Em(v) in terms of Ek can be obtained from the equation above as:

Em(v) =
m

∑
k=0

(
m
k

)
Ek

2k

(
v− 1

2

)m−k
. (4)

The initial Euler polynomials are:

E0(v) = 1

E1(v) =
2v− 1

2
E2(v) = v2 − v (5)

E3(v) =
4v3 − 6v2 + 1

4
E4(v) = v4 − 2v3 + v.

Geometric function theory continues to struggle with the subject of determining
bounds on the coefficients. The size of their coefficients can have an impact on a variety
of aspects of analytic functions, including univalency, rate of growth, and distortion. The
Fekete–Szegö problem, Hankel determinants, and many other formulations of efficient
problems include an estimate of general or lth coefficient bounds. The coefficient concerns
discussed above were addressed by several researchers using various approaches. Here,
the functional of Fekete–Szegö for a function f (ξ) ∈ S is quite significant, and is denoted
by Lβ( f ) = |s3 − βs2

2|. By giving this functional, Fekete and Szegö [14] invalidated the
Littlewood and Parley’s claim that the modulus of coefficients of odd functions f ∈ S are
less than or equal to 1. Much attention has been paid to the functional, especially in several
subfamilies of univalent functions (see [15,16]).

Pommerenke [17] investigated and defined below the lth-Hankel determinant, denoted
by Hs(l)(s, l ∈ N = {1, 2, 3, · · · }), for any function f ∈ S in geometric function theory:

Hs(l) =

∣∣∣∣∣∣∣∣∣∣∣

jl jl+1 . . . jl+s−1
jl+1 jl+2 . . . jl+s
jl+2 jl+3 . . . jl+s+1

...
... . . .

...
jl+s−1 jl+s . . . jl+2(s−1)

∣∣∣∣∣∣∣∣∣∣∣
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For certain s and l values,

H2(1) =
∣∣∣∣ j1 j2

j2 j3

∣∣∣∣ = |j3 − j22 | and H2(2) =
∣∣∣∣ j2 j3

j3 j4

∣∣∣∣ = |j2 j4 − j23 |. (6)

We see that the determinant |H2(1)| corresponds with the L1( f ), implying that Lβ( f )
is a generalization of |H2(1)|. Following that, many additional subclasses of univalent
functions paid close attention to the problem of determining bounds on coefficients. Recent
research in this area includes the papers in [18,19].

In this study, we define the new subclass introduced and studied in the present paper,
denoted by GΣ(v, σ), consisting of bi-univalent functions satisfying a certain subordination
involving Eulers polynomials. We solve the Fekete–Szegö problem for functions in the class
GΣ(v, σ) and in the special instances, as well as provide bound estimates for the coefficients.

Definition 1. For f ∈ GΣ(v, σ), suppose the following subordination is true:

(1− σ)
ξ f ′(ξ)

f (ξ)
+ σ

(
f ′(ξ) + ξ f ′′(ξ)

f ′(ξ)

)
≺ L(v, ξ) =

∞

∑
m=0
Em(v)

ξm

m!
(7)

and

(1− σ)
wF ′(w)

F (w)
+ σ

(
F ′(w) + wF ′′(w)

F ′(w)

)
≺ L(v, w) =

∞

∑
m=0
Em(v)

wm

m!
, (8)

where σ ≥ 0, v ∈ ( 1
2 , 1], ξ, w ∈ U , L(v, w) is given by (3), and F = f−1 is given by (2). It

could be seen that both the functions f and and its inverse F = f−1 are univalent in U , so we can
conclude that the function f is bi-univalent belonging to the function class GΣ(v, σ).

Remark 2. Setting σ = 0 in Definition 1, we have bi-starlike function class f ∈ S∗Σ(v), which
fulfilled the following conditions:

ξ f ′(ξ)
f (ξ)

≺ L(v, ξ) =
∞

∑
m=0
Em(v)

ξm

m!
(9)

and

wF ′(w)

F (w)
≺ L(v, w) =

∞

∑
m=0
Em(v)

wm

m!
, (10)

where ξ, w ∈ U , L(v, w) is given by (3), and F = f−1 is given by (2).

Remark 3. Setting σ = 1 in Definition 1, we have bi-convex function class f ∈ CΣ(v), which
fulfilled the following conditions:

f ′(ξ) + ξ f ′′(ξ)
f ′(ξ)

≺ L(v, ξ) =
∞

∑
m=0
Em(v)

ξm

m!
(11)

and
F ′(w) + wF ′′(w)

F ′(w)
≺ L(v, w) =

∞

∑
m=0
Em(v)

wm

m!
, (12)

where L(v, w) is given by (3), and F = f−1 is given by (2).

Next, let P represent the class including those functions, analytic in U , and having
series form given below as:

α(ξ) = 1 +
∞

∑
l=1

αlξ
l , (13)
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such that
<{α(ξ)} > 0 (∀ ξ ∈ U ).

Lemma 1. [1] Let α ∈ P be given by

α(ξ) = 1 + α1ξ + α2ξ2 + · · · (ξ ∈ U ) (14)

then
|αl | ≤ 2 (l ∈ {1, 2, 3, · · · }). (15)

Lemma 2. [20] Let α ∈ P be given by (14), then

2α2 = α2
1 + x(4− α2

1) (16)

and
4α3 = α3

1 + 2α1(4− α2
1)x− α1(4− α2

1)x2 + 2(4− α2
1)(1− |x|2)ξ (17)

for some x, ξ, |x| ≤ 1, and |ξ| ≤ 1.

2. Coefficients Bounds for the Functions of Class GΣ(v, σ)

Theorem 1. Let f ∈ GΣ(v, σ). Then:

|s2| ≤
√

Ω1(σ, v),

|s3| ≤
(2v− 1)2

4(1 + σ)2 +
2v− 1

4(1 + 2σ)

and

|s4| ≤
(1 + 4σ)(2v− 1)3

12(1 + 2σ)(1 + σ)3 +
(15 + 45σ)(2v− 1)2

48(1 + σ)(1 + 2σ)2 +
4v3 − 6v2 + 1

72(1 + 2σ)

where

Ω1(σ, v) =
(2v− 1)3

|2(σ + 1)(2σ + 2(σ− 1)v2 − 2(3σ + 1)v + 1)| . (18)

Proof. Let f ∈ Σ given by (1) be in the class GΣ(v, σ). Then

(1− σ)
ξ f ′(ξ)

f (ξ)
+ σ

(
f ′(ξ) + ξ f ′′(ξ)

f ′(ξ)

)
= L(v, a(ξ)) (19)

and

(1− σ)
wF ′(w)

F (w)
+ σ

(
F ′(ξ) + wF ′′(w)

F ′(w)

)
= L(v, b(w)) (20)

We define α, δ ∈ P as follows:

α(ξ) =
1 + a(ξ)
1− a(ξ)

= 1 + α1ξ + α2ξ2 + α3ξ3 + · · ·

⇒ a(ξ) =
α(ξ)− 1
α(ξ) + 1

(ξ ∈ U ) (21)

and

δ(w) =
1 + b(w)

1− b(w)
= 1 + δ1w + δ2w2 + δ3w3 + · · ·

⇒ b(w) =
δ(w)− 1
δ(w) + 1

(w ∈ U ). (22)
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From (21) and (22), we obtain

a(ξ) =
α1

2
ξ +

(
α2

2
−

α2
1

4

)
ξ2 +

(
α3

2
− α1α2

2
+

α3
1

8

)
ξ3 + · · · (23)

and

b(w) =
δ1

2
w +

(
δ2

2
−

δ2
1
4

)
w2 +

(
δ3

2
− δ1δ2

2
+

δ3
1
8

)
w3 + · · · . (24)

Taking it from (23) and (24), we have:

L(v, a(ξ)) = E0(v) +
E1(v)

2
α1ξ +

[
E1(v)

2

(
α2 −

α2
1

2

)
+
E2(v)

8
α2

1

]
ξ2

+

[
E1(v)

2

(
α3 − α1α2 +

α3
1

4

)
+
E2(v)

4
α1

(
α2 −

α2
1

2

)
+
E3(v)

48
α3

1

]
ξ3 + · · · (25)

and

L(v, b(w)) = E0(v) +
E1(v)

2
δ1w +

[
E1(v)

2

(
δ2 −

δ2
1
2

)
+
E2(v)

8
δ2

1

]
w2

+

[
E1(v)

2

(
δ3 − δ1δ2 +

δ3
1
4

)
+
E2(v)

4
δ1

(
δ2 −

δ2
1
2

)
+
E3(v)

48
δ3

1

]
w3 + · · · . (26)

It follows from (19), (20), (25) and (26) that we have:

(1 + σ)s2 =
E1(v)

2
α1 (27)

−(1 + 3σ)s2
2 + 2(1 + 2σ)s3 =

E1(v)
2

(
α2 −

α2
1

2

)
+
E2(v)

8
α2

1 (28)

(1 + 7σ)s3
2 − 3(1 + 5σ)s2s3 + 3(1 + 3σ)s4 =

E1(v)
2

(
α3 − α1α2 +

α3
1

4

)

+
E2(v)

4
α1

(
α2 −

α2
1

2

)
+
E3(v)

48
α3

1 (29)

−(1 + σ)s2 =
E1(v)

2
δ1 (30)

(3 + 5σ)s2
2 − 2(1 + 2σ)s3 =

E1(v)
2

(
δ2 −

δ2
1
2

)
+
E2(v)

8
δ2

1 (31)

−3(1 + 3σ)s4 + (12 + 30σ)s2s3 − (10 + 22σ)s3
2 =
E1(v)

2

(
δ3 − δ1δ2 +

δ3
1
4

)

+
E2(v)

4
δ1

(
δ2 −

δ2
1
2

)
+
E3(v)

48
δ3

1 . (32)

Adding (27) and (30) and further simplification, we have

α1 = −δ1, α2
1 = δ2

1 and α3
1 = −δ3

1 . (33)
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When (27) and (30) are squared and added, the following result is obtained:

2(1 + σ)2s2
2 =
E2

1 (v)(α
2
1 + δ2

1)

4
(34)

⇒ s2
2 =
E2

1 (v)(α
2
1 + δ2

1)

8(1 + σ)2 . (35)

Additionally, adding (28) and (31) gives

2(1 + σ)s2
2 =

2E1(v)(α2 + δ2) + α2
1(E2(v)− 2E1(v))

4

8(1 + σ)s2
2 = 2E1(v)(α2 + δ2) + α2

1(E2(v)− 2E1(v)). (36)

Applying (33) in (34)

α2
1 =

4(1 + σ)2

E2
1 (v)

s2
2. (37)

In (36), replacing α2
1 with the following results:

|s2|2 ≤
2E3

1 (v)(|α2|+ |δ2|)
2|2(1 + σ)E2

1 (v)− (1 + σ)2[E2(v)− 2E1(v)]|
. (38)

Applying Lemma 1 and (5), we obtain:

|s2| ≤
√

Ω1(σ, v)

where Ω1(σ, v) is given by (18).

Subtracting (31) and (28) and with some computation, we have

s3 = s2
2 +
E1(v)(α2 − δ2)

8(1 + 2σ)
(39)

s3 =
E2

1 (v)α
2
1

4(1 + σ)2 +
E1(v)(α2 − δ2)

8(1 + 2σ)
(40)

Applying Lemma 1 and (5), we obtain:

|s3| ≤
(2v− 1)2

4(1 + σ)2 +
2v− 1

4(1 + 2σ)
(41)

By removing (32) from (29), we arrive at:

s4 =
(1 + 4σ)E3

1 (v)
12(1 + 3σ)(1 + σ)3 α3

1 +
(15 + 45σ)E2

1 (v)(α2 − δ2)

96(1 + σ)(1 + 2σ)(1 + 3σ)
α1 +

E1(v)(α3 − δ3)

12(1 + 3σ)

+
[E2(v)− 2E1(v)](α2 + δ2)

24(1 + 3σ)
α1 +

[6E1(v)− 6E2(v) + E3(v)]
144(1 + 3σ)

α3
1. (42)

Applying Lemma 1 and (5), we obtain:

|s4| ≤
(1 + 4σ)(2v− 1)3

12(1 + 3σ)(1 + σ)3 +
(15 + 45σ)(2v− 1)2

48(1 + σ)(1 + 2σ)(1 + 3σ)
+

4v3 − 6v2 + 1
72(1 + 3σ)

.
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If we put σ = 0 in Theorem 1, then we have the next corollary.

Corollary 1. Let f ∈ S∗Σ(v). Then:

|s2| ≤

√
(2v− 1)3

|2(2v2 + 2v− 1)| ,

|s3| ≤
v(2v− 1)

2
and

|s4| ≤
(2v− 1)3

12
+

15(2v− 1)2

48
+

4v3 − 6v2 + 1
72

For σ = 1, we arrive at the next corollary of Theorem 1.

Corollary 2. Let f ∈ CΣ(v). Then:

|s2| ≤

√
(2v− 1)3

|4(3− 8v)| ,

|s3| ≤
(2v− 1)(6v + 13)

192
,

and

|s4| ≤
5(2v− 1)3

384
+

5(2v− 1)2

96
+

4v3 − 6v2 + 1
288

.

3. Fekete–Szegö Inequalities for the Functions of Class GΣ(v, σ)

Theorem 2. Let f ∈ GΣ(v, σ). Then, for some µ ∈ R,

∣∣∣s3 − µs2
2

∣∣∣ ≤


2|1− µ|Ω1(σ, v)
(
|1− µ|Ω1(σ, v) ≥ 2v−1

4(1+2σ)

)
2v−1

2(1+2σ)

(
|1− µ|Ω1(σ, v) < 2v−1

4(1+2σ)

)
,

where Ω1(σ, v) is given by (18).

Proof. From (39), we obtain:

s3 − µs2
2 = s2

2 +
E1(v)(α2 − δ2)

8(1 + 2σ)
− µs2

2

Applying the popular triangular inequality, we obtain:

|s3 − µs2
2| ≤

2v− 1
4(1 + 2σ)

+ |1− µ|Ω1(σ, v)

If:
|1− µ|Ω1(σ, v) ≥ 2v− 1

4(1 + 2σ)

Furthermore, we obtain
|s3 − µs2

2| ≤ 2|1− µ|Ω1(σ, v)

where
|1− µ| ≥ 2v− 1

4(1 + 2σ)Ω1(σ, v)
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and if:
|1− µ|Ω1(σ, v) ≤ 2v− 1

4(1 + 2σ)

then, we obtain:

|s3 − µs2
2| ≤

2v− 1
2(1 + 2σ)

where
|1− µ| ≤ 2v− 1

4(1 + 2σ)Ω1(σ, v)

and Ω1(σ, v) is given in (18).

By putting σ = 0 in the above Theorem 2, we obtain the following result.

Corollary 3. Let f ∈ S∗Σ(v). Then, for some µ ∈ R,

∣∣∣a3 − µa2
2

∣∣∣ ≤


2|1− µ|Ω1(σ, v)
(
|1− µ|Ω1(σ, v) ≥ 2v−1

4

)
2v−1

2

(
|1− µ|Ω1(σ, v) ≤ 2v−1

4

)
,

where

Ω1(v) =
(2v− 1)3

|2(2v2 + 2v− 1)| . (43)

Letting σ = 1 in Theorem 2, we can obtain the next result.

Corollary 4. Let f ∈ CΣ(v). Then, for some µ ∈ R,

∣∣∣a3 − µa2
2

∣∣∣ ≤


2|1− µ|Ω1(v)
(
|1− µ|Ω1(v) ≥ 2v−1

12

)
2v−1

6

(
|1− µ|Ω1(v) ≤ 2v−1

12

)
,

where

Ω1(v) =
(2v− 1)3

|4(3− 8v)| . (44)

4. Second Hankel Determinant for the Class GΣ(v, σ)

Theorem 3. Let the function f (ξ) be in the class GΣ(v, σ). Then:

H2(2) =
∣∣∣s2s4 − s2

3

∣∣∣ ≤



T(2, v) (B1 ≥ 0 and B2 ≥ 0)

max
{(

2v−1
4(1+2σ)

)2
, T(2, v)

}
(B1 > 0 and B2 < 0)

(
2v−1

4(1+2σ)

)2
(B1 ≤ 0 and B2 ≤ 0)

max{T(g0, v), T(2, v)} (B1 < 0 and B2 > 0).

where

T(2, v) =
2(1 + 4σ)E4

1 (v)
3(1 + 3σ)(1 + σ)4 +

E1(v)E3(v)
18(1 + σ)(1 + 3σ)

+
E4

1 (v)
(1 + σ)4

T(g0, t) =
E2

1 (v)
4(1 + 2σ)2 +

9B4
2(1 + σ)4

4(1 + 2σ)2(1 + 3σ)B3
1
+

3B3
2(1 + σ)2

4(1 + 2σ)2(1 + 3σ)B2
1

.
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B1 = E1(v)

[
24E3

1 (v)(1 + 4σ)(1 + 2σ)2 + 2(6E1(v)− 6E2(v) + E3(v))(1 + σ)3(1 + 2σ)2

+ 36E3
1 (v)(1 + 3σ)(1 + 2σ)2 − 24E1(v)(1 + σ)3(1 + 2σ)2 + 9E1(v)(1 + σ)4(1 + 3σ)− 9E2

1 (v)

(1 + σ)2(1 + 3σ)(1 + 2σ)

]
r4

B2 = E1(v)

[
3(1 + 2σ)(1 + 3σ)E2

1 (v) + 4E1(v)(1 + σ)(1 + 2σ)2 + 4(E2(v)− 2E1(v))

(1 + σ)(1 + 2σ)2 + 8E1(v)(1 + σ)(1 + 2σ)2 − 6E1(v)(1 + σ)2(1 + 3σ)

]
r2.

Proof. From (27) and (42), we have

s2s4 =
(1 + 4σ)E4

1 (v)
24(1 + 3σ)(1 + σ)4 α4

1 +
(15 + 45σ)E3

1 (v)(α2 − δ2)

192(1 + σ)2(1 + 2σ)(1 + 3σ)
α2

1 +
E2

1 (v)(α3 − δ3)

24(1 + σ)(1 + 3σ)
α1

+
E1(v)[E2(v)− 2E1(v)](α2 + δ2)

48(1 + σ)(1 + 3σ)
α2

1 +
E1(v)[6E1(v)− 6E2(v) + E3(v)]

288(1 + σ)(1 + 3σ)
α4

1

With some calculations, we have

s2s4 − s2
3 =

(1 + 4σ)E4
1 (v)

24(1 + 3σ)(1 + σ)4 α4
1 +

E3
1 (v)(α2 − δ2)

64(1 + σ)2(1 + 2σ)
α2

1 +
E2

1 (v)(α3 − δ3)

24(1 + σ)(1 + 3σ)
α1

+
E1(v)[E2(v)− 2E1(v)](α2 + δ2)

48(1 + σ)(1 + 3σ)
α2

1 +
E1(v)[6E1(v)− 6E2(v) + E3(v)]

288(1 + σ)(1 + 3σ)
α4

1

−
E4

1 (v)
16(1 + σ)4 α4

1 −
E2

1 (v)(α2 − δ2)
2

64(1 + 2σ)2

By using Lemma 2,

α2 − δ2 =
(4− α2

1)(x− u)
2

(45)

α2 + δ2 = α2
1 +

(4− α2
1)(x + u)
2

(46)

and

α3 − δ3 =
α3

1
2

+
4− α2

1
2

α1(x + u)−
4− α2

1
4

α1(x2 + u2)

+
4− α2

1
2

[
(1− |x|2ξ)− (1− |u|2)w

]
(47)

for some x, u, ξ, w with |x| ≤ 1, |u| ≤ 1, |ξ| ≤ 1, |w| ≤ 1, |α1| ∈ [0, 2] and substituting
(α2 + δ2), (α2 − δ2) and (α3 − δ3), and after some straightforward simplifications, we have
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s2s4 − s2
3 =

(1 + 4σ)E4
1 (v)

24(1 + 3σ)(1 + σ)4 α4
1 +
E3

1 (v)(4− α2
1)(x− u)

128(1 + σ)2(1 + 2σ)
α2

1 +
E2

1 (v)
48(1 + σ)(1 + 3σ)

α4
1

+
E2

1 (v)(4− α2
1)(x + u)

48(1 + σ)(1 + 3σ)
α2

1 −
E2

1 (v)(4− α2
1)(x2 + u2)

96(1 + σ)(1 + 3σ)
α2

1

+
E2

1 (v)(4− α2
1)[(1− |x|2ξ)− (1− |y|2)w]

48(1 + σ)(1 + 3σ)
+
E1(v)[E2(v)− 2E1(v)]

48(1 + σ)(1 + 3σ)
α4

1

+
E1(v)[E2(v)− 2E1(v)](4− α2

1)(x + u)
96(1 + σ)(1 + 3σ)

α2
1 +
E1(v)[6E1(v)− 6E2(v) + E3(v)]

288(1 + σ)(1 + 3σ)
α4

1

−
E4

1 (v)
16(1 + σ)4 α4

1 −
E2

1 (v)(4− α2
1)

2(x− u)2

256(1 + 2σ)2

Let r = α1, assume without any restriction that r ∈ [0, 2], η1 = |x| ≤ 1, η2 = |u| ≤ 1 and
applying triangular inequality, we have

|s2s4 − s2
3| ≤

{
(1 + 4σ)E4

1 (v)
24(1 + 3σ)(1 + σ)4 r4 +

E2
1 (v)

48(1 + σ)(1 + 3σ)
r4 +

E2
1 (v)(4− r2)

24(1 + σ)(1 + 3σ)
r

+
E1(v)[E2(v)− 2E1(v)]

48(1 + σ)(1 + 3σ)
r4 +

E1(v)[6E1(v)− 6E2(v) + E3(v)]
288(1 + σ)(1 + 3σ)

r4 +
E4

1 (v)
16(1 + σ)4 r4

}

+

{
E3

1 (v)(4− r2)

128(1 + σ)2(1 + 2σ)
r2 +

E2
1 (v)(4− r2)

48(1 + σ)(1 + 3σ)
r2

+
E1(v)[E2(v)− 2E1(v)](4− r2)

96(1 + σ)(1 + 3σ)
r2

}
(η1 + η2) +

{
E2

1 (v)(4− r2)

96(1 + σ)(1 + 3σ)
r2

−
E2

1 (v)(4− r2)

48(1 + σ)(1 + 3σ)
r

}
(η2

1 + η2
2) +

E2
1 (v)(4− α2

1)
2

256(1 + 2σ)2 (η1 + η2)
2

and equivalently, we have

|s2s4 − s2
3| ≤ Y1(v, r) + Y2(v, r)(η1 + η2) + Y3(v, r)(η2

1 + η2
2) + Y4(v, r)(η1 + η2)

2 (48)

= J(η1, η2)

where

Y1(v, r) =

{
(1 + 4σ)E4

1 (v)
24(1 + 3σ)(1 + σ)4 r4 +

E2
1 (v)

48(1 + σ)(1 + 3σ)
r4 +

E2
1 (v)(4− r2)

24(1 + σ)(1 + 3σ)
r

+
E1(v)[E2(v)− 2E1(v)]

48(1 + σ)(1 + 3σ)
r4 +

E1(v)[6E1(v)− 6E2(v) + E3(v)]
288(1 + σ)(1 + 3σ)

r4

+
E4

1 (v)
16(1 + σ)4 r4

}
≥ 0

Y2(v, r) =

{
E3

1 (v)(4− r2)

128(1 + σ)2(1 + 2σ)
r2 +

E2
1 (v)(4− r2)

48(1 + σ)(1 + 3σ)
r2

+
E1(v)[E2(v)− 2E1(v)](4− r2)

96(1 + σ)(1 + 3σ)
r2

}
≥ 0

Y3(v, r) =

{
E2

1 (v)(4− r2)

96(1 + σ)(1 + 3σ)
r2 −

E2
1 (v)(4− r2)

48(1 + σ)(1 + 3σ)
r

}
≤ 0
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Y4(v, r) =
E2

1 (v)(4− α2
1)

2

256(1 + 2σ)2 ≥ 0

where 0 ≤ r ≤ 2. We now maximize the function J(η1, η2) in the closed square

Ψ = {(η1, η2) : η1 ∈ [0, 1], η2 ∈ [0, 1]} f or r ∈ [0, 2].

The maximum of J(η1, η2) with reference to r must be explored, taking into considera-
tion the cases where r = 0, r = 2, and r ∈ (0, 2). Given a fixed value of r, the coefficients of
the function J(η1, η2) in (48) are dependent on m.
The First Case

When r = 0,

J(η1, η2) = Y4(v, 0) =
E2

1 (v)
16(1 + 2σ)2 (η1 + η2)

2.

Clearly the function J(η1, η2) attains its maximum at (η1, η2) and

max{J(η1, η2) : η1, η2 ∈ [0, 1]} = J(1, 1) =
E2

1 (v)
4(1 + 2σ)2 . (49)

The Second Case
In the case of r = 2, J(η1, η2) is represented as a constant function with regard to m,
giving us

J(η1, η2) = Y1(v, 2) =

{
2(1 + 4σ)E4

1 (v)
3(1 + 2σ)(1 + σ)4 +

E1(v)E3(v)
18(1 + σ)(1 + 2σ)

+
E4

1 (v)
(1 + σ)4

}
.

The Third Case
When r ∈ (0, 2), let η1 + η2 = d and η1 · η2 = Y in this case, then (48) can be of the form

J(η1, η2) = Y1(v, r) + Y2(v, r)d + (Y3(v, r) + Y4(v, r))d2 − 2Y3(v, r)l = Y(d, q) (50)

where, d ∈ [0, 2] ald q ∈ [0, 1]. Now, we need to investigate the maximum of

Y(d, q) ∈ Θ = {(d, q) : d ∈ [0, 2], q ∈ [0, 1]}. (51)

By differentiating Y(d, q) partially, we have

∂Y
∂c

= Y2(v, r) + 2(Y3(v, r) + Y4(v, r))d = 0

∂Y
∂l

= −2Y3(v, r) = 0.

These findings demonstrate that Y(d, r) has no critical point in the square Ψ, and, conse-
quently, J(η1, η2)has no critical point in the same region.
Because of this, the function J(η1, η2) is unable to reach its maximum value inside of Ψ.
The maximum of J(η1, η2) on the square’s Ψ boundary will then be examined.
For η1 = 0, η2 ∈ [0, 1] (also, for η2 = 0, η1 ∈ [0, 1]) and

J(0, η2) = Y1(v, r) + Y2η2 + (Y3(v, r) + Y4(v, r))η2
2 = D(η2). (52)

Now, since Y3(v, r) + Y4(v, r) ≥ 0, then we have

D′(η2) = Y2(v, r) + 2[Y3(v, r) + Y4(v, r)]η2 > 0

which implies that D(η2) is an increasing function. Therefore, for a fixed r ∈ [0, 2) and
v ∈ (1/2, 1], the maximum occurs at η2 = 1. Thus, from (52),
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max{r(0, η2) : η2 ∈ [0, 1]} = J(0, 1)

= Y1(v, r) + Y2(v, r) + Y3(v, r) + Y4(v, r). (53)

For η1 = 1, η2 ∈ [0, 1] (also, for η2 = 1 , η1 ∈ [0, 1]) and

J(1, η2) = Y1(v, r) + Y2(v, r) + Y3(v, r) + Y4(v, r) + [Y2(v, r)

+2Y4(v, r)]η2 + [Y3(v, r) + Y4(v, r)]η2
2 = N(η2) (54)

N′(η2) = [Y2(v) + 2Y4(v)] + 2[Y3(v) + Y4(v)]η2. (55)

We know that Y3(v) + Y4(v) ≥ 0, then

N′(η2) = [Y2(v) + 2Y4(v)] + 2[Y3(v) + Y4(v)]η2 > 0.

Therefore, the function N(η2) is an increasing function and the maximum occurs at η2 = 1.
From (54), we have

max{J(1, η2) : η2 ∈ [0, 1]} = J(1, 1)

= Y1(v, r) + 2[Y2(v, r) + Y3(v, r)] + 4Y4(v, r). (56)

Hence, for every r ∈ (0, 2), taking it from (53) and (56), we have

Y1(v, r) + 2[Y2(v, r) + Y3(v, r)] + 4Y4(v, r)

> Y1(v, r) + Y2(v, r) + Y3(v, r) + Y4(v, r).

Therefore,

max{J(η1, η2) : η1 ∈ [0, 1], η2 ∈ [0, 1]}
= Y1(v, r) + 2[Y2(v, r) + Y3(v, r)] + 4Y4(v, r).

Since,
D(1) ≤ N(1) f or r ∈ [0, 2] and v ∈ [1, 1],

then
max{J(η1, η2)} = J(1, 1)

occurs on the boundary of square Ψ.
Let T : (0, 2)→ R defined by

T(v, r) = max{J(η1, η2)} = J(1, 1) = Y1(v, r) + 2Y2(v, r) + 2Y3(v, r) + 4Y4(v, r). (57)

Now, inserting the values of Y1(v, r), Y2(v, r), Y3(v, r) and Y4(v, r) into (57) and with some
calculations, we have

T(v, r) =
E2

1 (v)
4(1 + 2σ)2 +

B1

576(1 + σ)4(1 + 2σ)2(1 + 3σ)
r4 +

B2

48(1 + σ)2(1 + 2σ)2(1 + 3σ)
r2,

where
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B1 = E1(v)

[
24E3

1 (v)(1 + 4σ)(1 + 2σ)2 + 2(6E1(v)− 6E2(v) + E3(v))(1 + σ)3(1 + 2σ)2

+ 36E3
1 (v)(1 + 3σ)(1 + 2σ)2 − 24E1(v)(1 + σ)3(1 + 2σ)2 + 9E1(v)(1 + σ)4(1 + 3σ)− 9E2

1 (v)

(1 + σ)2(1 + 3σ)(1 + 2σ)

]
r4

B2 = E1(v)

[
3(1 + 2σ)(1 + 3σ)E2

1 (v) + 4E1(v)(1 + σ)(1 + 2σ)2 + 4(E2(v)− 2E1(v))

(1 + σ)(1 + 2σ)2 + 8E1(v)(1 + σ)(1 + 2σ)2 − 6E1(v)(1 + σ)2(1 + 3σ)

]
r2.

If T(v, r) achieves a maximum value inside of r ∈ [0, 2] and by using some basic mathemat-
ics, we have

T′(v, r) =
B1

144(1 + σ)4(1 + 2σ)2(1 + 3σ)
r3 +

B2

24(1 + σ)2(1 + 2σ)2(1 + 3σ)
r.

In virtue of the signs of B1 and B2, we must now investigate the sign of the function T′(v, r).
1st result:
Suppose B1 ≥ 0 and B2 ≥ 0 then,

T′(v, r) ≥ 0. This shows that T(v, r) is an increasing function on the boundary of
r ∈ [0, 2] that is r = 2. Therefore,

max{T(v, r) : r ∈ (0, 2)} =
2(1 + 4σ)E4

1 (v)
3(1 + 3σ)(1 + σ)4 +

E1(v)E3(v)
18(1 + σ)(1 + 3σ)

+
E4

1 (v)
(1 + σ)4

2nd result:
If B1 > 0 and B2 < 0 then,

T′(v, r) =
B1r3 + 6B2r(1 + σ)2

144(1 + σ)4(1 + 2σ)2(1 + 3σ)
= 0 (58)

at critical point

r0 =

√
−6B2(1 + σ)2

B1
(59)

is a critical point of the function T(v, r). Now,

T′′(r0) =
−B2

8(1 + σ)2(1 + 2σ)2(1 + 3σ)
+

B2

24(1 + σ)2(1 + 2σ)2(1 + 3σ)
> 0.

Therefore, r0 is the minimum point of the function T(v, r). Hence, T(v, r) can not have a
maximum.
3rd result:
If B1 ≤ 0 and B2 ≤ 0 then,

T′(v, r) ≤ 0.

Therefore, T(v, r) is a decreasing function on the interval (0, 2). Consequently,

max{T(v, r) : r ∈ (0, 2)} = T(0) =
E2

1 (v)
4(1 + 2σ)2 . (60)
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4th result:
If B1 < 0 and B2 > 0

T′′(v0, r) =
−B2

12(1 + σ)2(1 + 2σ)2(1 + 3σ)
< 0.

Therefore, T′′(v, r) < 0. Hence, g0 is the maximum point of the function T(v, r) and r = g0
is the maximum value. Likewise

max{T(v, r) : r ∈ (0, 2)} = T(g0, s)

T(g0, t) =
E2

1 (v)
4(1 + 2σ)2 +

9B4
2(1 + σ)4

4(1 + 2σ)2(1 + 3σ)B3
1
+

3B3
2(1 + σ)2

4(1 + 2σ)2(1 + 3σ)B2
1

.

Taking σ = 0 in Theorem 3, we have the next corollary.

Corollary 5. Let the function f (ξ) given by (1) be in the class S∗Σ(v). Then:

H2(2) =
∣∣∣a2a4 − a2

3

∣∣∣ ≤



T(2, v) (B1 ≥ 0 and B2 ≥ 0)

max
{

(2v−1)2

16 , T(2, v)
}

(B1 > 0 and B2 < 0)

(2v−1)2

16 (B1 ≤ 0 and B2 ≤ 0)

max{T(g0, v), T(2, v)} (B1 < 0 and B2 > 0).

where

T(2, v) =
5E4

1 (v)
3

+
E1(v)E3(v)

18

T(g0, v) =
E2

1 (v)
4

+
3B4

2(3B2 + B1)

4B3
1

.

B1 = E1(v)[60E3
1 (v) + 2(E3(v)− 6E2(v))− 3E1(v)− 9E2

1 (v)]r
4

B2 = E1(v)[3E2
1 (v)− 2(2E2(v)− E1(v))]r2.

Taking σ = 1 in Theorem 3, we have the next corollary.

Corollary 6. Let the function f (ξ) given by (1) be in the class CΣ(v). Then:

H2(2) =
∣∣∣a2a4 − a2

3

∣∣∣ ≤



T(2, v) (B1 ≥ 0 and B2 ≥ 0)

max
{

(2v−1)2

144 , T(2, v)
}

(B1 > 0 and B2 < 0)

(2v−1)2

144 (B1 ≤ 0 and B2 ≤ 0)

max{T(g0, v), T(2, v)} (B1 < 0 and B2 > 0).

where

T(2, v) =
11E4

1 (v)
96

+
E1(v)E3(v)

144

T(g0, v) =
E2

1 (v)
36

+
B4

2
B3

1
+

B2
2

12B2
1

.
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B1 = E1(v)[2376E3
1 (v) + 144(E3(v)− 6E2(v))− 288E1(v)− 432E2

1 (v)]r
4

B2 = E1(v)[36E2
1 (v)− 24(E1(v)− 3E2(v))]r2.

5. Conclusions

The many well-known mathematicians have been studied the special functions, as
well as polynomials in the recent years, due to the fact that they are used in a wide variety
of mathematical and other scientific fields as indicated in the introduction section. The
subject of this paper is a novel subclass of analytical and univalent functions which have
been defined by using Euler polynomial. We solved the Fekete–Szegö problem, as well as
provided bound estimates for the coefficients and an upper bound estimate for the second
Hankel determinant for functions in the class GΣ(v, σ). One can extend the above results
for a class of certain q-Starlike functions, as mentioned in [21–27].
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