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Abstract: This work examines a new subclass of generalized bi-subordinate functions of complex
order γ connected to the q-difference operator. We obtain the upper bounds ρm for generalized
bi-subordinate functions of complex order γ using the Faber polynomial expansion technique. Ad-
ditionally, we find coefficient bounds |ρ2| and Feke–Sezgo problems

∣∣ρ3 − ρ2
2
∣∣ for the functions in

the newly defined class, subject to gap series conditions. Using the Faber polynomial expansion
method, we show some results that illustrate diverse uses of the Ruschewey q differential operator.
The findings in this paper generalize those from previous efforts by a number of prior researchers.
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1. Introduction and Definitions

The set of all analytic functions h(z) in the open unit disc E = {z : |z| < 1} is denoted
by the symbol A and every h ∈ A is normalized by

h(0) = 0 and h′(0) = 1.

Thus, every function h ∈ A can be expressed in the following form:

h(z) = z +
∞

∑
m=2

amzm. (1)

Furthermore, S ⊂ A and every h ∈ S is univalent in E. For h1, h2 ∈ A, and h1
subordinate to h2 in E, denoted by

h1(z) ≺ h2(z), z ∈ E,

if there exists a function w0, such that w0 ∈ A, with w0(0) = 0, and |w0(z)| < 1, satisfying

h1(z) = h2(w0(z)), z ∈ E.

Let S∗ represent the class of starlike functions and every h ∈ S∗, if

Re

(
zh
′
(z)

h(z)

)
> 0, z ∈ E
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and C represents the class of convex functions and every h ∈ C, if

1 + Re

(
zh
′′
(z)

h′(z)

)
> 0, z ∈ E.

In terms of subordination, these conditions are equivalent as follows:

S∗ =
{

h ∈ A :
zh
′
(z)

h(z)
≺ 1 + z

1− z

}

and

C =
{

h ∈ A : 1 +
zh
′′
(z)

h′(z)
≺ 1 + z

1− z

}
.

Ma and Minda [1] stated that the aforementioned two classes can be generalized as
follows:

S∗(ϕ) =

{
h ∈ A :

zh
′
(z)

h(z)
≺ ϕ(z)

}
and

C(ϕ) =

{
h ∈ A : 1 +

zh
′′
(z)

h′(z)
≺ ϕ(z)

}
.

where ϕ(z) is a positive real part function and is normalized by the condition

ϕ(0) = 1, ϕ
′
(0) > 0

and ϕ maps E onto a region that is starlike with respect to 1 and symmetric with respect
to the real axis. Ravichandran et al. [2] gave the extension of above two classes in the
following way:

S∗(γ, ϕ) =

{
h ∈ A : 1 +

1
γ

(
zh
′
(z)

h(z)
− 1

)
≺ ϕ(z); γ ∈ C\{0}

}

and

C(γ, ϕ) =

{
h ∈ A : 1 +

1
γ

(
zh
′′
(z)

h′(z)

)
≺ ϕ(z); γ ∈ C\{0}

}
.

These types of functions are referred to as Ma–Minda starlike and convex functions of
γ, (γ ∈ C\{0}), respectively.

The Koebe one-quarter theorem (see [3]) states that the image of E under every h ∈ S
contains a disk of radius one-quarter centered at the origin. Thus, every function h ∈ S has
an inverse h−1 = g,

g(h(z)) = z, z ∈ E

and
h(g(w)) = w, |w| < r0(h), r0(h) ≥

1
4

.

The series of the inverse function g is given by

g(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + . . . . (2)

A function h ∈ A is called bi-univalent in E if both h and h−1 are univalent in E and
we denote the class of all bi-univalent functions by Σ.

Lewin [4] developed the idea of class Σ and established that |a2| < 1.51 for every h ∈ Σ.
Styer and Wright [5] demonstrated the existence of h ∈ Σ for which |a2| > 4

3 . Since the
creation of the class Σ, several researchers have been trying to determine how the geometric
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properties of the functions in the class and the coefficient bounds are related. Indeed,
a strong foundation for the study of bi-univalent functions was laid by authors such as
Lewin [4], Brannan and Taha [6], and Srivastava et al. [7]. Only non-sharp estimates of the
initial coefficients were produced in these recent works. Coefficient estimates for general
subclasses of analytic bi-univalent functions were also obtained in [8]. More recently,
in [9], coefficient estimates for general subclasses of analytic bi-univalent functions were
also obtained using the integral operator based upon Lucas polynomials, while Oros and
Cotirla [10] defined a new subclass of v-fold bi-univalent functions and obtained coefficient
estimates and the Fekete–Szego problem. However, the problem of a sharp coefficient
bound for |am|, (m = 3, 4, 5, . . . ) is still open.

Recently, Hamidi and Jahangiri [11,12] started to apply the Faber polynomial expan-
sion method to find coefficient bounds |am| for m ≥ 3. The Faber polynomial method was
introduced by Faber in [13] and its importance was discussed by Gong [14]. A number of
new subclasses of bi-univalent functions have been introduced and studied by considering
and involving the Faber polynomial expansion method. In the following article [15] Bult
defined some new subclasses of bi-univalent functions and used the Faber polynomial
technique to find general coefficient bounds |am| for m ≥ 3, and also discussed the unpre-
dictable behavior of initial coefficient bounds. The general coefficient bounds |am| m ≥ 3
of analytic bi-univalent functions were also obtained recently, by using the subordination
properties and Faber polynomial expansion method [16], and also using the same technique
that Altinkaya and Yalcin [17] discussed concerning the interesting behavior of coefficient
bounds for new subclasses of bi-univalent functions. Furthermore, many authors have
applied the technique of Faber polynomials and determined some interesting results for
bi-univalent functions.

Jackson [18] presented the idea of the q-calculus operator and defined Dq, while Ismail
et al. [19] were the first to use the q-difference operator (Dq) to define a class of q-starlike
functions. After that, many researchers introduced several subclasses of analytic functions
related to q-calculus, (see, for details, [20–22]). The following articles on differential operators
shall be used for the study of the applications of operators: [23–26].

In order to create some new subclasses of analytic and bi-univalent functions, the core
definitions and ideas of q-calculus need to be discussed.

Definition 1. For η, q ∈ C, the q-shifted factorial (η, q)m is defined by

(η, q)m =

{
1 if m = 0,

(1− η)(1− ηq) . . .
(
1− ηqn−1) if (m ∈ N). (3)

If η 6= q−l , (l ∈ N0), then it can be written as:

(η, q)∞ =
∞

∏
m=0

(1− ηqm), (η ∈ C and |q| < 1), (4)

when η 6= 0 and q ≥ 1, (η, q)∞ diverges. Therefore, whenever we use (η, q)∞ then |q| < 1 will be
assumed.

Remark 1. It is noted that when q→ 1− in (η, q)m, then (19) reduces to the Pochhammer symbol
(η)m defined by

(η)m = η(η + 1) . . . (η + m− 1) if m ∈ N.

If m = 0, then (η)m = 1.

Definition 2. The (η, q)m in (19) is precise with respect to the q-Gamma function, which is given
below

zq(η) =
(1− q)1−η(q, q)∞

(qη , q)∞
, (0 < q < 1),
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or

(qη , q)m =
(1− q)mzq(η + m)

zq(η)
, (m ∈ N)

and q-factorial [m]q! is defined by:

[m]q! =
m

∏
k=1

[k]q, if (m ∈ N) (5)

= 1 if m = 0.

It is important to note that ordinary calculus is a limiting case of quantum calculus. It
is expected that a study of quantum difference operators will be crucial to the growth of
q-function theory, which is essential for combinatory analysis. In addition, the differential
and integral operators are widely used in geometric function theory. The most significant
feature of our study is that we are investigating the properties of new class of analytic
bi-univalent functions under a certain q-derivative operator. Geometric-function-theory-
related research on this topic has still not been performed extensively.

In this paper, we first define the q-derivative (q-difference) operator and then consider
this operator to define a new class of analytic bi-univalent functions of class Σ.

Definition 3 ([18]). For h ∈ A, the q-difference operator is defined as:

Dqh(z) =
h(qz)− h(z)

z(q− 1)
, z ∈ E.

Note that, for m ∈ N and z ∈ E and

Dq(zm) = [m]qzm−1, Dq

(
∞

∑
m=1

amzm

)
=

∞

∑
m=1

[m]qamzm−1,

where (0 < q < 1), is defined by

[m]q =
1− qm

1− q
, and [0]q = 0

and the q-number shift factorial is given by

[m]q! = [1]q[2]q[3]q . . . [m]q,

[0]q! = 1.

The q-generalized Pochhammer symbol is defined by

[x]q,m =
zq(x + m)

zq(x)
, m ∈ N, x ∈ C. (6)

Remark 2. For q→ 1−, then [x]q,m reduces to (x)m = Γ(x+m)
Γ(x) .

Suppose that ϕ is an analytic function with a positive real part in the unit disk E
satisfying

ϕ(0) = 1 and ϕ
′
(0) > 0

and ϕ(E) is symmetric with respect to the real axis and has the series

ϕ(z) = 1 + B1z + B2z2 + B3z3 + . . . and (B1 > 0). (7)



Fractal Fract. 2023, 7, 270 5 of 18

The q-calculus operator theory is used to solve a wide range of problems in heat
transfer and other areas of mathematical physics and engineering that include cylindrical
and spherical coordinates. Several remarkable characteristics of new subclasses of analytic
functions have been found using q-differential operators, including new subclasses of
convex and starlike functions. One of the classic areas of geometric function theory is the
study of particular subclasses of starlike functions and its generalization. Therefore, by
means of the q-difference operator (Dq) defined in Definition 3 and inspired by the work
introduced in [27], a new class of analytic bi-univalent functions of class Σ is introduced.
The original results will be proved in the following section using the Faber polynomial
approach and two lemmas.

Definition 4. Let h be the form (1) and h ∈ J(λ, γ, q; ϕ) if

1 +
1
γ

(
zDqh(z) + λz2D2

q(h(z))
(1− λ)h(z) + λzDqh(z)

− 1

)
≺ ϕ(z)

and

1 +
1
γ

(
wDqg(w) + λw2D2

q(g(w))

(1− λ)g(w) + λwDqg(w)
− 1

)
≺ ϕ(w),

where, 0 ≤ λ ≤ 1, γ ∈ C\{0}, z, w ∈ E and g = h−1.

Note: If both h and its inverse map g = h−1 are in J(λ, γ, q; ϕ), then h is called a
generalized bi-subordinate function of complex order γ.

Remark 3. For λ = 0, then we have J(λ, γ, q; ϕ) = J(0, γ, q; ϕ) and for λ = 1, then we have
J(λ, γ, q; ϕ) = J(1, γ, q; ϕ).

Remark 4. For q→ 1−, then J(λ, γ, q; ϕ) = J(λ, γ; ϕ), and introduced by Deniz in [28].

2. The Faber Polynomial Expansion Method and Its Applications

For the function h ∈ A, Airault and Bouali ([29], page 184) used Faber polynomials to
show that

zh
′
(z)

h(z)
= 1−

∞

∑
m=2

[Rm−1(a2, a3, . . . am)]zm−1, (8)

where

Rm−1(a2, a3, . . . am) =
∞

∑
i1+2i2+...(m−1)im−1=m−1

A(i1, i2, i3, . . . , im−1)
(

ai1
2 ai2

3 . . . aim−1
m

)
and

A(i1, i2, i3, . . . , im−1) = (−1)(m−1)+2i1+···+mim−1

×
(
(i1 + i2 + i3, · · ·+ im−1 − 1)!(m− 1)

(i1!)(i2!)(i3!), . . . (im−1!)

)
.

The first terms of the Faber polynomial Rm−1, m ≥ 2, are given by (e.g., see ([30],
page 52))

R1 = −a2, R2 = a2
2 − 2a3,

R3 = −a3
2 + 3a2a3 − 3a4),

R3 = a4
2 − 4a2

2a3 + 4a2a4 + 2a2
3 − 4a5).



Fractal Fract. 2023, 7, 270 6 of 18

Using the Faber polynomial technique for the analytic functions h, then the coefficients
of its inverse map g can be written as follows (see ([29], page 185)):

g(w) = h−1(w) = w +
∞

∑
m=2

1
m

Rm
m−1(a2, a3, . . . , am)wm,

where the coefficients of the m parametric function are

Rp
1 = pa2,

Rp
2 =

p(p− 1)
2

a2
2 + pa3,

Rp
3 = p(p− 1)a2a3 + pa4 +

p(p− 1)(p− 2)
3!

a3
2,

Rp
4 = p(p− 1)a2a4 + pa5 +

p(p− 1)
2

a2
3 +

p(p− 1)(p− 2)
2

a2
2a3 +

p!
(p− 4)!4!

a4
2,

...

Rp
m−1 =

p!
(p−m)!m!

am
2 +

p!
(p−m + 1)!(m− 2)!

am−2
2 a3 +

p!
(p− n + 2)!(m− 3)!

am−3
2 a4

+
p!

(p− n + 3)!(m− 4)!
am−4

2

(
a5 +

p− n + 3
2

a2
3

)

+
p!

(p− n + 4)!(m− 5)!
am−4

2 (a6 + (p−m + 3)a3a4) + ∑
i≥6

am−i
2 Qi,

and Qi is a homogeneous polynomial in the variables a2, a3, . . . , am, for 6 ≤ i ≤ m; see [31],
page 349, and [29], pages 183 and 205. Particularly, the first three terms of Rp

m−1 are

1
2

R1
1 = −a2,

1
3

R−3
2 = 2a2

2 − a3,

1
4

R3
3 = −(5a3

2 − 5a2a3 + a4).

In general, for r ∈ Z (Z := 0,±1,±2, . . . and m ≥ 2, there is an expansion of Rr
m of the

form:

Rr
m = ram +

r(r− 1)
2

V2
m +

r!
(r− 3)!3!

V3
m + · · ·+ r!

(r−m)!(m)!
Vm

m ,

where,
V r

m = V r
m(a2, a3 . . . .),

and by [32], we have

Vv
m(a2, . . . , am) =

∞

∑
m=1

v!(a2)
µ1 . . . (am)µm

µ1!, . . . , µm!
, for a1 = 1 and v ≤ m.

The sum is taken over all nonnegative integers µ1, . . . , µm, which satisfy

µ1 + µ2 + · · ·+ µm = v,

µ1 + 2µ2 + · · ·+ mµm = m.

Clearly,
Vm

m (a1, . . . , am) = Vm
1 ,
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and the first and last polynomials are

Vm
m = am

1 , and V1
m = am.

Geometric function theory has always placed a great deal of importance on establishing
bounds for the coefficients. The size of the coefficients can determine a number of properties
of analytic functions, including univalency, rate of growth, and distortion. Several scholars
have employed a variety of techniques to resolve the aforementioned problems. Similar
to univalent functions, the bounds of bi-univalent function coefficients have recently
attracted a lot of attention. As a result of the significance of studying the coefficient
problems described above, in this section, we consider the q-difference operator and Faber
polynomial technique to obtain coefficient estimates |ρm| of bi-univalent functions in the
family J(λ, γ, q; ϕ) and discuss the unpredictable behavior of initial coefficient bounds |ρ2|
and Feke–Sezgo problems

∣∣ρ3 − ρ2
2

∣∣ in this family, subject to gap series conditions.
Using the Ruscheweyh differential operator, and Ruscheweyh q-differential operator,

many scholars have defined new classes of convex and starlike functions. In this study, we
also use the Ruscheweyh q-differential operator along with the Faber polynomial method
and discuss the applications of our main results. We also investigate the Feketo–Sezego
problem and some known consequences of our main results.

Set of Lemmas

The following well-known lemmas are required to prove our main theorems:

Lemma 1 ([3]). Let the function p(z) = 1 +
∞
∑

m=1
pmzm and Re(p(z)) > 0 for z ∈ E, then for

−∞ < α < ∞ ∣∣∣p2 − αp2
1

∣∣∣ ≤ { 2− α|p1|2 if α < 1
2

2− (1− α)|p1|2 if α ≥ 1
2 .

Lemma 2 ([28]). Let the function φ(z) =
∞
∑

m=1
φmzm so that |φ(z)| < 1 for z ∈ E, then

∣∣∣φ2 + βφ2
1

∣∣∣ ≤ { 1− (1− δ)|β|2 if β > 0
1− (1 + δ)|β|2 if β ≤ 0.

(9)

This paper uses the q-difference operator for ξ ∈ A, and the new class J(λ, γ, q; ϕ) of
generalized bi-subordinate functions of complex order γ is defined. Next, in Theorem 1,
upper bounds ρm for generalized bi-subordinate functions of complex order γ are proved
and in Theorem 2 the initial coefficient bound |ρ2| and Feke–Sezgo problems

∣∣ρ3 − ρ2
2

∣∣ are
investigated by putting the special value of parameters in the class J(λ, γ, q; ϕ), and we
obtain some new and known results. In Section 4, we use the Ruscheweyh q-differential
operator and investigate some new characteristics of the class of generalized bi-subordinate
functions of complex order γ in the form of some new results. In Section 5, we give
concluding remarks.

3. Main Results

Theorem 1. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(λ, γ, q; ϕ) and ρk = 0, 2 ≤ k ≤ m− 1, then

|ρm| ≤
|γ|B1(

[m]q − 1
)(

1 + λ
(
[m]q − 1

)) , (B1 > 0).
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Proof. If we write
Λ(h(z)) = (1− λ)h(z) + λzDqh(z),

then

h ∈ J(λ, γ, q; ϕ)⇔ 1 +
1
γ

(
zDq(Λ(h(z)))

Λ(h(z))
− 1
)
≺ ϕ(z)

and

g = h−1 ∈ J(λ, γ, q; ϕ)⇔ 1 +
1
γ

(
wDq(Λ(g(w)))

Λ(g(w))
− 1
)
≺ ϕ(w).

We notice that
am = 1 + λ

(
[m]q − 1

)
ρn

for

Λ(h(z)) = z +
∞

∑
m=2

amzm.

Now, using the Faber polynomial expansion (8) for the power series J(λ, γ, q; ϕ) yields:

1 +
1
γ

(
zDq(Λ(h(z)))

Λ(h(z))
− 1
)
= 1− 1

γ

∞

∑
m=2

[Rm−1(a2, a3, . . . am)]zm−1, (10)

and for the inverse map g = h−1, obviously, we have

1 +
1
γ

(
wDq(Λ(h(w)))

Λ(h(w))
− 1
)
= 1− 1

γ

∞

∑
m=2

Rm−1(b2, b3, . . . bm)wm−1 (11)

where
bm = 1 + λ

(
[m]q − 1

)
τn =

1
m

Rm
m−1(a2, a3, . . . , am).

By the definition of subordination, there exist two Schwarz functions

u(z) =
∞

∑
m=1

cmzm

and

v(w) =
∞

∑
m=1

dmwm,

Additionally, we have

ϕ(u(z)) = 1− B1

∞

∑
m=1

R−1
m (c1,−c2, . . . (−1)m+1cm, B1, B2, . . . Bm)zm (12)

and

ϕ(v(w)) = 1− B1

∞

∑
m=1

R−1
m (d1,−d2, . . . , (−1)m+1dm, B1, B2, . . . Bm)wm. (13)
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In general (e.g., see [28]), the coefficients Rp
m = Rp

m(k1, k2, . . . , km, B1, B2, . . . Bm) are
given by

Rp
m =

p!
(p−m)!(m)!

km
1

Bm

B1
+

p!
(p−m + 1)!(m− 2)!

km−2
1 k2

Bm−1

B1

+
p!

(p−m + 2)!(m− 4)!
km−3

1 k3

(
Bm−2

B1

)

+
p!

(p−m + 3)!(m− 4)!
km−4

1

[
k4

(
Bm−3

B1

)
+

(
p−m + 3

2

)
k2

2

(
Bm−2

B1

)]

+
p!

(p−m + 4)!(m− 5)!
km−5

1

[
k5

(
Bm−4

B1

)
+ (p−m + 4)k2k3

(
Bm−3

B1

)]
+ ∑

j≥6
km−j

1 Qj,

where Qj in the variables k2, k3, . . . km is a homogeneous polynomial of degree j.
Evaluating the coefficients of Equations of (10) and (12) yields

1
γ

Rm−1(a2, a3, . . . am) = B1R−1
m (c1,−c2, . . . (−1)mcm, B1, B2, . . . Bm). (14)

However, using the facts |cm| ≤ 1 and |dm| ≤ 1 (e.g., see [3]), and under the assumption
2 ≤ k ≤ m− 1 and ak = 0, respectively, we have

1
γ

(
[m]q − 1

)
am =

1
γ

(
[m]q − 1

)(
1 + λ

(
[m]q − 1

))
ρm = −B1cm−1. (15)

Evaluating the coefficients of Equations (11) and (13) yields

1
γ

Rm−1(b2, b3, . . . bm) = B1R−1
m (d1,−d2, . . . (−1)mdm, B1, B2, . . . Bm), (16)

which by the hypothesis, we obtain

− 1
γ

(
[m]q − 1

)
bm = −B1dm−1.

Note that, for, 2 ≤ k ≤ m− 1, bm = −am and ak = 0; therefore

1
γ

(
[m]q − 1

)
am =

1
γ

(
[m]q − 1

)(
1 + λ

(
[m]q − 1

))
ρm = −B1dm−1. (17)

Taking the absolute values of either of Equations (15) or (17) we obtain the required
bound.

This completes Theorem 1.

For λ = 0, in Theorem 1, we obtain a new corollary, which is given below.

Corollary 1. Let γ ∈ C\{0}. If both function h(z) and its inverse map g = h−1 are in J(0, γ, q; ϕ)
and ρk = 0, 2 ≤ k ≤ m− 1, then

|ρm| ≤
|γ|B1

[m]q − 1
, B1 > 0.

For λ = 1, in Theorem 1, we obtain a new corollary, which is given below.
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Corollary 2. Let γ ∈ C\{0}. If both function h(z) and its inverse map g = h−1 are in J(1, γ, q; ϕ)
and ρk = 0, 2 ≤ k ≤ m− 1, then

|ρm| ≤
|γ|B1

[m]q

(
[m]q − 1

) , B1 > 0.

For q→ 1− in Theorem 1, we obtain a known corollary that was proven in [28].

Corollary 3 ([28]). Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) and its inverse map
g = h−1 are in J(λ, γ; ϕ) and ρk = 0, 2 ≤ k ≤ m− 1, then

|ρm| ≤
|γ|B1

(m− 1)(1 + λ(m− 1))
, B1 > 0.

For λ = 0, and q→ 1− in Theorem 1, we obtain a known corollary that was proven in [28].

Corollary 4 ([28]). Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) and its inverse map
g = h−1 are in J(γ; ϕ) and ρk = 0, 2 ≤ k ≤ m− 1, then

|ρm| ≤
|γ|B1

m− 1
, B1 > 0.

Theorem 2. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(λ, γ, q; ϕ), then

|ρ2| ≤



√
|γ|B1{(

[3]q−1
)(

1+λ
(
[3]q−1

))
−
(
[2]q−1

)(
1+λ

(
[2]q−1

))2
} if B1 ≥ |B2|√

|γ|B2{(
[3]q−1

)(
1+λ

(
[3]q−1

))
−
(
[2]q−1

)(
1+λ

(
[2]q−1

))2
} if B1 < |B2|


and ∣∣∣ρ3 − ρ2

2

∣∣∣ ≤


|γ||B1|(
[3]q−1

)(
1+λ

(
[3]q−1

)) if B1 ≥ |B2|
|γ||B2|(

[3]q−1
)(

1+λ
(
[3]q−1

)) if B1 < |B2|

.

Proof. For m = 2, Equations (14) and (16), respectively, yield

ρ2 =
γB1c1(

[2]q − 1
)(

1 + λ
(
[2]q − 1

)) and ρ2 =
−γB1d1.(

[2]q − 1
)(

1 + λ
(
[2]q − 1

)) . (18)

If we take the absolute values of any of these two equations, and apply |cm| ≤ 1 and
|dm| ≤ 1 (e.g., see Duren [3]), we obtain

|ρ2| ≤
|γB1|(

[2]q − 1
)(

1 + λ
(
[2]q − 1

)) .

For m = 3, Equations (14) and (16), respectively, yield

1
γ


(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
ρ3

−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
ρ2

2

 = B1c2 + B2c2
1 (19)
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and

1
γ


−
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
ρ3

+

 2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2

ρ2
2

 = B1d2 + B2d2
1. (20)

By combining the two equations mentioned above and finding |ρ2|, we arrive at

ρ2
2 =

γ
(

B1c2 + B2c2
1 + B1d2 + B2d2

1
)

2
{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} .

Or

|ρ2|2 ≤
|γ|B1

(∣∣∣c2 +
B2
B1

c2
1

∣∣∣+ ∣∣∣d2 +
B2
B1

d2
1

∣∣∣)
2
{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} . (21)

If B2 ≤ 0, and δ = B2
B1

, then by using Lemma 2 for (21), we obtain

|ρ2|2 ≤
|γ|B1

[
1−

(
B1+B2

B1

)
|c1|2

]
+
[
1−

(
B1+B2

B1

)
|d1|2

]
2
{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} . (22)

If B1 + B2 > 0, then (22) yields

|ρ2| ≤
√√√√√ |γ|B1{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} .

If B1 + B2 < 0, then for the maximum values of |c1| = |d1|

|ρ2|2 ≤
2|γ|B1

[
1−

(
B1+B2

B1

)]
2
{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
}

=
−|γ||B2|{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} .

If B2 > 0, and δ = B2
B1

, then by using Lemma 2 on (21), we obtain

|ρ2|2 ≤
|γ|B1

{[
1−

(
B1−B2

B1

)
|c1|2

]
+
[
1−

(
B1−B2

B1

)
|d1|2

]}
2
{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} . (23)

If B1 − B2 > 0, then (23) yields

|ρ2| ≤
√√√√√ |γ|B1{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} .
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If B1 − B2 < 0, then for the maximum values of |c1| = |d1|, we have

|ρ2|2 ≤
2|γ|B1

[
1−

(
B1+B2

B1

)]
2
{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
}

=
|γ||B2|{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} .

Therefore

|ρ2| ≤
√√√√√ |γ||B2|{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} .

Now we subtract (19) and (20), and B1 > 0, we have

ρ3 − ρ2
2 =

γB1

2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)){(c2 +
B2

B1
c2

1

)
−
(

d2 +
B2

B1
d2

1

)}
. (24)

If we take the absolute values of the two sides of (24), we obtain

∣∣∣ρ3 − ρ2
2

∣∣∣ ≤ |γ|B1

{∣∣∣c2 +
B2
B1

c2
1

∣∣∣+ ∣∣∣d2 +
B2
B1

d2
1

∣∣∣}
2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) .

(25)

If B2 ≤ 0, and δ = B2
B1

, then by using Lemma 2 on (25), we obtain

∣∣∣ρ3 − ρ2
2

∣∣∣ ≤ |γ|B1

{[
1−

(
B1+B2

B1

)
|c1|2

]
+
[
1−

(
B1+B2

B1

)
|d1|2

]}
2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) . (26)

If B1 + B2 > 0, then (26) yields∣∣∣ρ3 − ρ2
2

∣∣∣ ≤ |γ|B1(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) .

If B1 + B2 < 0, then for the maximum values of |c1| = |d1|, inequality (26) yields

∣∣∣ρ3 − ρ2
2

∣∣∣ ≤ 2|γ|B1

[
1−

(
B1+B2

B1

)]
2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
=

−|γ||B2|(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) .

If B2 > 0, and δ = B2
B1

, then by using Lemma 2 for (25) we obtain

∣∣∣ρ3 − ρ2
2

∣∣∣ ≤ |γ|B1

{[
1−

(
B1−B2

B1

)
|c1|2

]
+
[
1−

(
B1−B2

B1

)
|d1|2

]}
2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) . (27)
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If B1 − B2 > 0, then (27) yields∣∣∣ρ3 − ρ2
2

∣∣∣ ≤ |γ|B1(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) .

If B1 − B2 < 0, then for the maximum values of |c1| = |d1|, the inequality (27) yields

∣∣∣ρ3 − ρ2
2

∣∣∣ ≤ 2|γ|B1

[
1−

(
B1+B2

B1

)]
2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
=

|γ||B2|(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) .

This concludes the proof of Theorem 2.

Taking λ = 0 in Theorem 2, we obtain a new corollary.

Corollary 5. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(γ, q; ϕ), then

|ρ2| ≤


√
|γ||B1|
[3]q−[2]q

if B1 ≥ |B2|√
|γ||B2|
[3]q−[2]q

if B1 < |B2|


and ∣∣∣ρ3 − ρ2

2

∣∣∣ ≤

|γ||B1|
[3]q−1 if B1 ≥ |B2|
|γ||B2|
[3]q−1 if B1 < |B2|

.

Taking λ = 1 in Theorem 2, we obtain the following new corollary.

Corollary 6. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(1, γ, q; ϕ), then

|ρ2| ≤


√

|γ|B1{(
[3]q−1

)
[3]q−

(
[2]q−1

)
[2]2q

} if B1 ≥ |B2|√
|γ||B2|{

[3]q
(
[3]q−1

)
−
(
[2]q−1

)
[2]2q

} if B1 < |B2|


and ∣∣∣ρ3 − ρ2

2

∣∣∣ ≤


|γ|B1

[3]q
(
[3]q−1

) if B1 ≥ |B2|
|γ||B2|

[3]q
(
[3]q−1

) if B1 < |B2|

.

Taking q→ 1− in Theorem 2, we obtain the known corollary proved in [28].
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Corollary 7. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(λ, γ; ϕ), then

|ρ3| ≤


√

|γ|B1

2(1+2λ)−(1+λ)2 if B1 ≥ |B2|√
|γ||B2|

2(1+2λ)−(1+λ)2 if B1 < |B2|


and ∣∣∣ρ3 − ρ2

2

∣∣∣ ≤


|γ|B1
2(1+2λ)

if B1 ≥ |B2|
|γ||B2|

2(1+2λ)
if B1 < |B2|

.

4. Applications

Kanas and Raducanu [21] defined the Ruscheweyh q-differential operator as follows:
For f ∈ A,

Rδ
qh(z) = h(z) ∗ Fq,δ+1(z) (δ > −1, z ∈ E) (28)

where

Fq,δ+1(z) = z +
∞

∑
m=2

zq(m + δ)

[m− 1]! Γq(1 + δ)
zm = z +

∞

∑
m=2

[δ + 1]m−1

[m− 1]!
zm. (29)

We note that

lim
q→1−

Fq,δ+1(z) =
z

(1− z)δ+1 , lim
q→1−

Rδ
qh(z) = h(z) ∗ z

(1− z)δ+1 .

Making use of (28) and (29), we have

Rδ
qh(z) = z +

∞

∑
m=2

zq(m + δ)

[m− 1]! Γq(1 + δ)
amzm = z +

∞

∑
m=2

ψmamzm (z ∈ E), (30)

where zq is the q-generalized Pochhammer symbol defined in (6) and

ψm =
zq(m + δ)

[m− 1]q! Γq(1 + δ)
. (31)

From (30), we note that

R0
qh(z) = h(z),

R1
qh(z) = zDqh(z),

Rδ
qh(z) =

zDδ
q(zδ−1h(z))
[δ]q!

(δ ∈ N).

We also have

Dq(Rδ
qh(z)) = 1 +

∞

∑
m=2

[m]qψmamzm−1. (32)

Remark 5. When q→ 1−, then the Ruscheweyh q-differential operator reduces to the differential
operator defined by Ruscheweyh [33].

Definition 5. Let h be of the form (1) and h ∈ J(λ, γ, ψ, q; ϕ) if

1 +
1
γ

 zDq

(
Rδ

qh(z)
)
+ λz2D2

q

(
Rδ

qh(z)
)

(1− λ)Rδ
qh(z) + λzDq

(
Rδ

qh(z)
) − 1

 ≺ ϕ(z)
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and

1 +
1
γ

 zDq

(
Rδ

qg(z)
)
+ λw2D2

q

(
Rδ

qg(w)
)

(1− λ)
(
Rδ

qg(w)
)
+ λwDq

(
Rδ

qg(w)
) − 1

 ≺ ϕ(w),

where 0 ≤ λ ≤ 1, γ ∈ C\{0}, z, w ∈ E and g = h−1.

Theorem 3. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(λ, γ, ψ, q; ϕ) and ρk = 0, 2 ≤ k ≤ m− 1, then

|ρm| ≤
|γ|B1

ψm
(
[m]q − 1

)(
1 + λ

(
[m]q − 1

)) .

Proof. If we write

Λ(h(z)) = (1− λ)Rδ
qh(z) + λzDq

(
Rδ

qh(z)
)

,

then

h ∈ J(λ, γ, ψ, q; ϕ)⇔ 1 +
1
γ

 zDq

(
Λ
(
Rδ

qh(z)
))

Λ
(
Rδ

qh(z)
) − 1

 ≺ ϕ(z)

and

g = h−1 ∈ J(λ, γ, ψ, q; ϕ)⇔ 1 +
1
γ

wDq

(
ΛRδ

qg(w)
)

Λ(g(w))
− 1

 ≺ ϕ(w).

We see that
am = ψm

(
1 + λ

(
[m]q − 1

))
for

Λ(h(z)) = z +
∞

∑
m=2

amzm.

Now, an application of Faber polynomial expansion to the power series J(λ, γ, ψ, q; ϕ)
yields:

1 +
1
γ

(
zDq(Λ(h(z)))

Λ(h(z))
− 1
)
= 1− 1

γ

∞

∑
m=2

[Rm−1(a2, a3, . . . am)]zm−1,

After that, by using the similar method of Theorem 1, we can obtain Theorem 3.

Theorem 4. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(λ, γ, ψ, q; ϕ), then

|ρ2| ≤



√
|γ|B1{(

[3]q−1
)(

1+λ
(
[3]q−1

))
ψ3−

(
[2]q−1

)(
1+λ

(
[2]q−1

))2
ψ2

2

} if B1 ≥ |B2|√
|γ|B2{(

[3]q−1
)(

1+λ
(
[3]q−1

))
ψ3−

(
[2]q−1

)(
1+λ

(
[2]q−1

))2
ψ2

2

} if B1 < |B2|


and ∣∣∣ρ3 − ρ2

2

∣∣∣ ≤


|γ|B1(
[3]q−1

)(
1+λ

(
[3]q−1

))
ψ3

if B1 ≥ |B2|
|γ|B2(

[3]q−1
)(

1+λ
(
[3]q−1

))
v

if B1 < |B2|

.



Fractal Fract. 2023, 7, 270 16 of 18

Proof. For m = 2, Equations (14) and (16), respectively, yield

ρ2 =
γB1c1

ψ2

(
[2]q − 1

)(
1 + λ

(
[2]q − 1

)) and ρ2 =
−B1d1.

ψ2

(
[2]q − 1

)(
1 + λ

(
[2]q − 1

)) .

If we take the absolute values of any of these two equations, and apply |cm| ≤ 1 and
|dm| ≤ 1 (e.g., see Duren [3]), we obtain

|ρ2| ≤
|γB1|

ψ2

(
[2]q − 1

)(
1 + λ

(
[2]q − 1

)) .

For m = 3, Equations (14) and (16), respectively, yield

1
γ


(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
ψ3ρ3

−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
ψ2

2ρ2
2

 = B1c2 + B2c2
1

and

1
γ


−
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
ψ3ρ3

+

 2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
ψ3

−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
ψ2

2

ρ2
2

 = B1d2 + B2d2
1.

By using the similar method of Theorem 2, we can obtain the required result of
Theorem 4.

5. Conclusions

In order to introduce a new class of generalized bi-subordinate functions of complex
order γ in the open unit disk E, we used the idea of convolution and q-calculus in the
current work. We produced estimates for the general coefficients in their Taylor–Maclaurin
series expansions in the open unit disk E for functions that belong to the class of analytic and
bi-univalent functions. Our approach is mostly based on the Faber polynomial expansion
technique. In addition, we listed some corollaries and applications of our primary findings.

The application of the idea of subordination and the Faber polynomial technique for
producing findings involving the newly defined operators can be identified when addi-
tional research proposals are produced. Additionally, the method that has been presented
in this paper might also apply to define a number of new subclasses of meromorphic, mul-
tivalent, and harmonic functions and can be investigated for a number of new properties of
these classes. The only innovation in the types of studies that can be conducted in these
classes will come from the researchers themselves and how the findings presented here
motivate them.
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