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Abstract: In this paper, the (2+1)-dimensional nonlinear Schrödinger equation (2D NLSE) abreast
of the (2+1)-dimensional linear time-dependent Schrödinger equation (2D TDSE) are thoroughly
investigated. For the first time, these two notable 2D equations are attempted to be solved using three
compelling pseudo-spectral/finite difference approaches, namely the split-step Fourier transform
(SSFT), Fourier pseudo-spectral method (FPSM), and the hopscotch method (HSM). A bright 1-soliton
solution is considered for the 2D NLSE, whereas a Gaussian wave solution is determined for the
2D TDSE. Although the analytical solutions of these partial differential equations can sometimes
be reached, they are either limited to a specific set of initial conditions or even perplexing to find.
Therefore, our suggested approximate solutions are of tremendous significance, not only for our
proposed equations, but also to apply to other equations. Finally, systematic comparisons of the three
suggested approaches are conducted to corroborate the accuracy and reliability of these numerical
techniques. In addition, each scheme’s error and convergence analysis is numerically exhibited. Based
on the MATLAB findings, the novelty of this work is that the SSFT has proven to be an invaluable tool
for the presented 2D simulations from the speed, accuracy, and convergence perspectives, especially
when compared to the other suggested schemes.

Keywords: (2+1)-dimensional nonlinear Schrödinger equation; (2+1)-dimensional linear
time-dependent Schrödinger equation; pseudo-spectral methods; finite difference methods

1. Introduction

The Schrödinger equation is a classical field equation. Its vitality is due to its principal
applications in simulating the light propagation in nonlinear optical fibers and planar
waveguides in quantum mechanics [1]. Therefore, this study is devoted to approximating
two prestigious variants of Schrödinger equations, which are the two-dimensional cubic
nonlinear Schrödinger equation (2D NLSE) and the two-dimensional time-dependent
Schrödinger equation (2D TDSE), using three powerful approaches, which are the SSFT,
FPSM, and HSM. The first two methods belong to the pseudo-spectral family while the last
scheme is a finite difference method. These methods were initially introduced by Taha and
Ablowitz [2] in 1984 to approximate the one-dimensional nonlinear Schrödinger equation
(1D NLSE). Since then, they have been widely applied to solve other types of significant
partial differential equations. The 1D NLSE, from which the 2D NLSE is derived, is a
central model of nonlinear science that describes a wide class of phenomena, for example,
modulational instabilities of water waves [3], propagation of heat pulses in anharmonic

Fractal Fract. 2023, 7, 188. https://doi.org/10.3390/fractalfract7020188 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7020188
https://doi.org/10.3390/fractalfract7020188
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-4589-7419
https://doi.org/10.3390/fractalfract7020188
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7020188?type=check_update&version=4


Fractal Fract. 2023, 7, 188 2 of 16

crystals, nonlinear modulation of collisionless plasm waves, helical motion of a very thin
vortex filament, self-trapping of a light beam in a color-dispersive system, and so forth [2].
Its numerical solutions have been widely explored by numerous researchers for their
importance in a plethora of mathematical and physical systems. Likewise, much effort has
been specifically dedicated to investigating its analytical solutions, such as the Akhmediev
breathers [3], Kuznetsov–Ma solitons [4,5], Peregrin soliton [6], and rouge waves (RWs),
which are currently a hot topic of research [7,8]. Furthermore, even in the quantum optics [9]
new RW excitations have been analyzed [10].

To kick off, the well-known 2D NLSE is considered, which has a crucial contribution in
modeling a broad range of physical phenomena, such as nonlinear optics, plasma physics,
electromagnetic wave propagation, underwater acoustics, Bose–Einstein condensation,
biomolecule dynamics, protein chemistry, and design of optoelectronic devices. This
equation is framed as [11–15]:

i
∂Ψ(x, y, t)

∂t
+

(
∂2

∂x2 +
∂2

∂y2

)
Ψ(x, y, t) + β|Ψ(x, y, t)|2Ψ(x, y, t) = 0, (x, y, t) ∈ Ω× (0, T) (1)

Subject to the initial condition and boundary conditions given by:

Ψ(x, y, 0) = Ψ0(x, y), (x, y) ∈ Ω (2)

Ψ(x, y, t) = 0, (x, y) ∈ Γ, 0 ≤ t ≤ T (3)

In Equation (1), Ψ(x, y, t) is a complex-valued function that indicates the complex
amplitude of the waveform, where x, y, and t denote spatial and temporal variables, respec-
tively,

(
∂2

∂x2 +
∂2

∂y2

)
is the Laplacian operator, Ω is [xl , xr]× [yl , yr], Γ is the boundary of Ω,

and β is a real constant. Despite the presence of the analytical solution of this equation, it is
only limited to a specific set of initial conditions [16–20]. Therefore, numerous researchers
have potentially exerted nontrivial efforts attempting to seek creditable approximate so-
lutions for this significant equation, such as the finite difference method, finite element
method, discontinuous Galerkin method, meshless method, finite difference method, spec-
tral and pseudo-spectral method, and so forth. This can be found in [12,21] and references
therein. In recent years, a plethora of finite difference schemes alongside copious pseudo-
spectral approaches have been competently utilized and corroborated to be unconditionally
stable and convergent in solving the NLS equation in multi-dimensions with the optimal
rate of convergence [11,12]. However, our presented schemes are seldom used.

Likewise, we address the eminent 2D TDSE that is deemed to be the central equation
in quantum mechanics. In specific, it is exhaustively used in modeling quantum devices,
propagation of electromagnetic waves, and design of optoelectronic devices. Moreover, it
mainly depends on one temporal variable and two spatial ones, which slightly resemble
the formulation of the 2D NLSE, as shown below [22–25]:

i
∂Ψ(x, y, t)

∂t
+

(
∂2

∂x2 +
∂2

∂y2

)
Ψ(x, y, t) + V(x, y, t)Ψ(x, y, t) = 0, (x, y, t) ∈ Ω× (0, T) (4)

For Equation (4), the initial and boundary conditions are the same as demonstrated in
Equations (2) and (3). The equation’s parameters are similar to what we have previously
defined for the 2D NLSE, whereas V(x, y, t) is a real-valued function that describes the
trapping potential of the energy function. More importantly, this outstanding equation is
frequently used to simulate the propagation of the electron wave through the quantum wire.
However, to model the dynamics of the electron wave propagating along the z-direction
through a quantum wire, the two-dimensional time-dependent linear Schrödinger equation
is evoked in its modified form, which is compatible with the electron waveguide parameters,
as exhibited below [26–28]:
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(
− ћ2

2m

(
∂2

∂x2 +
∂2

∂y2

)
+ (U(x, y)− E)

)
Ψ(x, y, t) = iћ

∂Ψ(x, y, t)
∂t

, (x, y, t) ∈ Ω× (0, T) (5)

where Ψ(x, y, t) is the wave function of the electron, m is the effective mass, ћ is the
plank’s constant divided by 2π, t is the time, U is the potential energy, and E is the en-
ergy. Due to the ultimate importance of this equation in the quantum mechanics realm,
it has widely been explored using plenty of numerical techniques seeking a precise solu-
tion for this equation. For instance, collocation and radial basis functions, the meshless
symplectic method, extended Boadway’s transformation technique, meshless symplectic
procedure are based on highly accurate multiquadric quasi-interpolation and many more.
For more details, see [22–28]. Nowadays, plenty of significant partial differential equa-
tions, such as the 2D NLSE and 2D TDSE have efficiently been solved employing either
a finite difference method or a pseudo-spectral approach, such as the Gross–Pitaevskii
equation [29], the complex Ginzburg Landau equation [30], 2D distributed-order time-
fractional cable equation [31], variable-coefficient Korteweg–De Vries equation [32], and
many others [33–35]. In this literature, both theoretical analysis and numerical simulation
are comprehensively demonstrated.

Here, this work’s main goal is to seek plausible simulations for the processes described
by two distinguished partial differential equations, which are the 2D NLSE abreast of the
2D TDSE. Our target cannot easily be achieved because most partial differential equations
(PDEs) are notoriously difficult to be analytically solved. Therefore, numerous works in
literature have recently been dedicated to a plethora of numerical approaches in an attempt
to tackle the crucial physical and engineering phenomena, modeled by partial differential
equations [36]. In this paper, three approximate numerical schemes are presented, for the
first time, to report these two equations; two of them belong to the pseudo-spectral methods,
which are the SSFT and the FPSM, whereas the last one is a finite difference method, which
is called the HSM. A bright soliton solution is obtained for the 2D NLSE, while a Gaussian
wave solution is constructed for the 2D TDSE. The verification is performed by comparing
our suggested schemes with their exact analytical solution and the results are exhibited
in the form of both tables and graphs. Error and convergence analyses are also explored
numerically. In our future work, this study could be beneficial in providing a profound
insight into the process of solving other partial differential equations that might describe
plenty of significant real-life applications.

This paper is organized as follows. Following this brief introduction addressing the
2D NLSE and 2D TDSE, Section two demonstrates the mathematical preliminaries of the
suggested numerical approaches for approximating the 2D NLSE followed by the 2D TDSE.
The numerical assessments and discussion are elaborated upon in Section three. Finally,
Section four culminates in the overall conclusion of the entire study.

2. Mathematical Preliminaries

Here, we extend the work presented in [2,30,33] to two important variants of the
(2+1)-dimensional Schrödinger equation. To be precise, this section fosters two major parts.
First, the three proposed numerical schemes, which are the SSFT, FPSM, and HSM, are
exhibited for reporting the 2D NLSE alongside its analytical solution. Second, the theoretical
analysis of each of these methods is established in order to cope with the structure of the
2D TDSE.

2.1. (2+1)-Dimensional Nonlinear Schrödinger Equation (2D NLSE)

The 2D NLSE described in Equation (1) is recalled in this subsection along with its
exact bright 1-soliton solution [16,21,37], as shown below:

Ψ(x, y, t) = (2λ)0.5ei(k1x+k2y+ωt+Φo)sech (
(

λ)0.5(x + y− ct + xo)
)

(6)
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where, xo, Φo, c, λ are the initial position, initial phase, propagation speed, and soliton
amplitude, respectively.

Following this, the three compelling numerical techniques are implemented to solve
the 2D NLSE.

2.1.1. Method 1: Split-Step Fourier Transform Method

This scheme is unpretentious, expedient, accurate, and unconditionally stable. Its
unique strategy for the solution relies on the concept of splitting the PDE into two sequential
linear and nonlinear partial equations.

In this regard, Equation (1) should be rearranged in the form of ∂Ψ(x,y,t)
∂t = (L + N)

Ψ(x, y, t), which yields:

∂Ψ(x, y, t)
∂t

= i
(

∂2

∂x2 +
∂2

∂y2

)
Ψ(x, y, t) + βi|Ψ(x, y, t)|2Ψ(x, y, t) (7)

First, we introduce the nonlinear step over a small interval of time [t, t + ∆t], as
follows: ∂Ψ(x,y,t)

∂t = NΨ. Where the nonlinear operator is given by: N = βi|Ψ(x, y, t)|2.
Therefore, the analytical solution of the nonlinear step at time t = t + ∆t will be given by
the following equation, where ∆t is the temporal step size [38]:

Ψ(x, y, t + ∆t) = exp(∆tN)Ψ(x, y, t) = exp
(

βi∆t|Ψ(x, y, t)|2
)

Ψ(x, y, t) (8)

Second, define the linear step: i ∂Ψ(x,y,t)
∂t = LΨ. Where the linear operator is depicted

by: L = i
(

∂2

∂x2 +
∂2

∂y2

)
. Then, we apply the Fourier transform to both sides, which can easily

be solved, as follows:
∂Ψ̂(x, y, t)

∂t
= −i

(
ω2 + ν2

)
Ψ̂ (9)

Thus, the analytical solution of the preceding equation is exhibited, as follows:

Ψ̂(x, y, t + τ) = exp
(
−i
(

ω2 + ν2
)

∆t
)

.Ψ̂(x, y, t)) (10)

Finally, the final equation in the time domain can be formulated, as shown below,
where F and F−1 denote the Fourier and inverse Fourier transforms, respectively [38]. In
a numerical analysis, these transforms can efficiently be performed with the fast Fourier
transform algorithm [2]:

Ψ(x, y, t + ∆t) = F−1(exp
(
−iω2∆t

)
.exp

(
−iν2∆t

)
.F
(

exp
(

βi∆t|Ψ(x, y, t)|2
)

Ψ(x, y, t)
)
) (11)

2.1.2. Method 2: Fourier Pseudo-Spectral Method

The rudimentary basis of this pseudo-spectral approach leans on applying the Fourier
transform to the second-order derivatives while employing the finite-difference relations to
discretize the first-order time derivative. This technique is unconditionally stable. Addi-
tionally, it should be applied to periodic functions over a domain Ω ∈ [−P, P]× [−P, P].

Firstly, replacing the temporal first derivative with the following difference relation

∂Ψ

∂t
=

Ψ(x, y, t + ∆t)−Ψ(x, y, t)
∆t

(12)

Secondly, substituting Equation (12) into Equation (1) leads to the following equations,

Ψ(x, y, t + ∆t)−Ψ(x, y, t)
∆t

= −F−1(i2ω2 π2

P2 F(Ψ))− F−1(i2ν2 π2

P2 F(Ψ))− β|Ψ(x, y, t)|2Ψ(x, y, t) (13)

Ψ(x, y, t + ∆t)−Ψ(x, y, t) = i∆tF−1(i2ω2 π2

P2 F(Ψ)) + i∆tF−1(i2ν2 π2

P2 F(Ψ)) + i∆tβ|Ψ(x, y, t)|2Ψ(x, y, t) (14)
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Ψ(x, y, t + ∆t) = Ψ(x, y, t)− ∆tiF−1(ω2 π2

P2 F(Ψ)))− ∆tiF−1(i2ν2 π2

P2 F(Ψ)) + i∆tβ|Ψ(x, y, t)|2Ψ(x, y, t) (15)

The previous equation provides a solution, which is only stable for values of ∆t
(∆x)2 < 1

π2

and ∆t
(∆y)2 < 1

π2 .

However, adjusting the previous equation, by using the Fornberg and Whitham
principles, leads to an unconditionally stable solution, as shown in the equation below:

Ψ(x, y, t + ∆t) = Ψ(x, y, t)− iF−1(sin
(

ω2 π2

P2 ∆t
)

F(Ψ(x, y, t)))− iF−1(sin
(

ν2 π2

P2 ∆t
)

F(Ψ(x, y, t)))

+ i∆tβ|Ψ(x, y, t)|2Ψ(x, y, t)
(16)

2.1.3. Method 3: Hopscotch Method

This explicit finite difference method is deemed to be a rapid and unconditionally
stable approach that counts on discretizing the space and time derivatives using appropriate
difference relations. However, at approximates the nonlinear term of the equation using an
average formula as is exhibited below:

(Ψ)ij =

(∣∣Ψi−1,j
∣∣2 ∗Ψi−1,j +

∣∣Ψi+1,j
∣∣2Ψi+1,j

2

)
(17)

Subsequently, we plug the previous equation, which is computed at the row j, and the
other appropriate difference relations in Equation (1), subject to the boundary and initial
conditions, which yields:

i
Ψi, j+1 −Ψi, j

∆t
+

Ψi+1, j + Ψi−1, j − 2Ψi, j

(∆x)2 +
Ψi+1, j + Ψi−1, j − 2Ψi, j

(∆y)2 + β

∣∣Ψi−1,j
∣∣2 ∗Ψi−1,j +

∣∣Ψi+1,j
∣∣2Ψi+1,j

2
= 0 (18)

i
(
Ψi, j+1 −Ψi, j

)
= −∆t

Ψi+1, j+Ψi−1, j−2Ψi, j

(∆x)2 − ∆t
Ψi+1, j+Ψi−1, j−2Ψi, j

(∆y)2

−∆tβ
|Ψi−1,j|2∗Ψi−1,j+|Ψi+1,j|2Ψi+1,j

2

(19)

Ψi, j+1 = Ψi, j+ i∆t
Ψi+1, j+Ψi−1, j−2Ψi, j

(∆x)2 + i∆t
Ψi+1, j+Ψi−1, j−2Ψi, j

(∆y)2 + iβ ∆t
2 (
∣∣Ψi−1,j

∣∣2 ∗Ψi−1,j

+
∣∣Ψi+1,j

∣∣2Ψi+1,j)
(20)

Thus, the below equation provides the final explicit formula, where λ = ∆t
(∆x)2 and

λ∗ = ∆t
(∆y)2 ,

Ψi, j+1 = (1− 2i(λ + λ∗))Ψi, j + i(λ + λ∗)
(
Ψi+1, j + Ψi−1, j

)
+ iβ

∆t
2

(∣∣Ψi−1,j
∣∣2 ∗Ψi−1,j +

∣∣Ψi+1,j
∣∣2Ψi+1,j

)
(21)

2.2. (2+1)-Dimensional Time-Dependent Linear Schrödinger Equation (2D TDSE)

In this section, our numerical approaches are applied to the 2D TDSE, which is the
governing equation of the quantum wire. More precisely, this significant equation mimics
the electron wave motion through the electron waveguide.

Furthermore, we rewrite the 2D TDSE, as shown in Equation (5), in a more compact
form to obtain Equation (22), as elaborated below:(

−ξ
(

∂2

∂x2 +
∂2

∂y2

)
+ η

)
Ψ(x, y) = i ∂Ψ(x,y)

∂t

ξ = ћ
2m , η = U(x,y)−E

ћ

(22)

A general analytical solution is considered associated with this equation based on the
separation of variables technique:

Ψ(x, y, t) = Ψ0(x, y)e−
iEt
ћ (23)
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2.2.1. Method 1: Split-Step Fourier Transform Approach

We begin with Equation (22), which is already framed in the form of: ∂Ψ(x,y,t)
∂t =

(L + N)Ψ(x, y, t).
Knowing that the linear operator is defined as L = i

(
−ξ
(

∂2

∂x2 +
∂2

∂y2

)
+ η

)
, whereas

the nonlinear operator is absent from this equation, such that N = 0.
Therefore, the nonlinear step, which is given by ∂Ψ(x,y,t)

∂t = NΨ(x, y, t), has an analyti-
cal solution of the form:

Ψ(x, y, t + ∆t) = exp(i∆tN)Ψ(x, y, t) (24)

Ψ(x, y, t + ∆t) = Ψ(x, y, t) (25)

While the linear step, which is represented by ∂Ψ(x,y,t)
∂t = LΨ(x, y, t), is transformed

from the time domain into the frequency domain, as follows:

∂ Ψ̂ (x, y, t)
∂t

=
(
−iξ

(
ω2 + ν2

)
+ iη

)
Ψ̂ (26)

Its analytical solution is given in the frequency domain, as demonstrated below:

Ψ̂(ω, ν, t + ∆t) = exp
(
−iξω2∆t

)
.exp

(
−iξν2∆t

)
.exp(iη∆t).Ψ̂(ω, ν, t) (27)

Hence, the approximate solution can be written as:

Ψ(x, y, t + ∆t) = F−1(exp
(
−iξω2∆t

)
.exp

(
−iξν2∆t

)
.exp(iη∆t).F(Ψ(x, y, t))) (28)

2.2.2. Method 2: Fourier Pseudo-Spectral Method

Substituting the temporal difference relation, presented in Equation (12), into Equation
(22) to obtain the following equations:

i
Ψ(x, y, t + ∆t)−Ψ(x, y, t)

∆t
= −F−1(i2ω2 π2

P2 F(Ψ))− F−1(i2ν2 π2

P2 F(Ψ)) + ηΨ(x, y, t) (29)

Ψ(x, y, t + ∆t)−Ψ(x, y, t) = ξi∆tF−1(i2ω2 π2

P2 F(Ψ)) + ξi∆tF−1(i2ν2 π2

P2 F(Ψ))− i∆tηΨ(x, y, t) (30)

Ψ(x, y, t + ∆t) = Ψ(x, y, t)− ξ∆tiF−1(ω2 π2

P2 F(Ψ))− ξ∆tiF−1(ν2 π2

P2 F(Ψ))− i∆tηΨ(x, y, t) (31)

Incorporating the Fornberg and Whitham principles, in the preceding formula, leads
to an unconditionally stable solution, as shown in the equation below:

Ψ(x, y, t + ∆t) = Ψ(x, y, t)− iξF−1(sin
(

ω2 π2

P2 ∆t
)

F(Ψ(x, y, t)))− iξF−1(sin
(

ν2 π2

P2 ∆t
)

F(Ψ(x, y, t)))
−iη∆tΨ(x, y, t)

(32)

2.2.3. Method 3: Hopscotch Method

The basic step that differentiates this scheme from the previously illustrated HSM
is to approximate the linear term, presented in Equation (22), using the average relation
shown below:

(Ψ)ij =

(Ψi−1,j + Ψi+1,j

2

)
(33)

Then, replacing the first and second-order derivatives using the appropriate difference
relations demonstrated earlier, to obtain the below equations:

i
Ψi, j+1 −Ψi, j

∆t
= −ξ

Ψi+1, j + Ψi−1, j − 2Ψi, j

(∆x)2 − ξ
Ψi+1, j + Ψi−1, j − 2Ψi, j

(∆y)2 + η
Ψi−1,j + Ψi+1,j

2
(34)
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i
(
Ψi, j+1 −Ψi, j

)
+ ξ∆t

Ψi+1, j + Ψi−1, j − 2Ψi, j

(∆x)2 + ξ∆t
Ψi+1, j + Ψi−1, j − 2Ψi, j

(∆y)2 − η∆t
Ψi−1,j + Ψi+1,j

2
= 0 (35)

Ψi, j+1 = Ψi, j + iξ∆t
Ψi+1, j + Ψi−1, j − 2Ψi, j

(∆x)2 + iξ∆t
Ψi+1, j + Ψi−1, j − 2Ψi, j

(∆y)2 − iη∆t
(Ψi−1,j + Ψi+1,j

2

)
(36)

Thus, the following equation provides the final explicit formula, where λ = ∆t
(∆x)2 and

λ∗ = ∆t
(∆y)2 ,

Ψi, j+1 = (1− 2iξ(λ + λ∗))Ψi, j + iξ(λ + λ∗)
(
Ψi+1, j + Ψi−1, j

)
− iη∆t

(Ψi−1,j + Ψi+1,j

2

)
(37)

3. Numerical Experiments

This section is oriented to comprise two consecutive numerical assessments. The
first one pertains to the solution of the 2D NLSE using the three suggested schemes
named SSFT, FPSM, and HSM whereas comparing their obtained results with the exact
solution to corroborate their accuracy, stability, and convergence. The second assessment
targets the 2D TDSE solutions. Specifically, the three proposed techniques are managed to
extract the approximate solution of the 2D TDSE. Thereafter, the approximate solutions
of the three schemes are compared with their analytical solution as well to substantiate
their effectiveness.

3.1. Simulations of the 2D NLSE

To perform this experiment, we have employed an initial bright soliton of the form:

Ψ0(x, y) = (2)0.5ei(k1x+k2y)sech (x + y) (38)

The preceding equation has been attained by plugging λ and c equal to one while
setting Φo and xo to zero in Equation (6).

In the meantime, we have carried out our experiment with β = 1 plugged in Equation (1),
representing the 2D NLSE, over a square physical domain Ω = [−20, 20]× [−20, 20], which
is uniformly discretized with a grid composed of 201 × 201 points, under a temporal
precision of ∆t = 10 ×10−3 and spatial precision of ∆x = ∆y = 2 ×10−1. We have opted
for these selections, taking into consideration that the smaller the values of spatial and
temporal step sizes that we select, the higher the accuracy of the scheme due to the greater
number of grid points we obtain for the computations. However, because of the additional
complexity, the computational process takes longer to execute. At the first stage of this test,
we have recorded the absolute values of the wave amplitude at a specific time t = 1 that
is executed through 1001 subsequent iterations, while utilizing random x values from the
interval [1, 10] and y values from the interval [5, 15]. These wave amplitudes are computed
based on the three proposed numerical approaches, along with the exact solution, presented
in Equation (6), to advocate for their accuracy and stability. All of these computed values
are extensively summarized in Table 1.

In addition, a 3D graph of the modulus of the exact analytical solution of the 2D NLSE,
employing a bright soliton has been exhibited in Figure 1. This solution has been computed
over x and y domains of [−20, 20] × [−20, 20] at time t = 10. Moreover, the SSFT method
has been implemented to solve Equation (1) over x and y domains of [−30, 30] × [−30, 30]
at a time sequence of t = 1, t = 3, and t = 6. This process has resulted in discretizing the
square physical domain into an equally spaced grid of 301 × 301 points, while executing
the different values of time required for the consecutive software iterations of 1001, 3001,
and 6001, respectively. The dynamic behavior of the obtained results is demonstrated in
Figure 2. Specifically, the 3D graphs are presented in Figure 2a–c, whereas Figure 2d–f
represent the 2D graphs of the resulted approximate solution. The corresponding contour
plots are clearly shown in Figure 2g–i.
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Table 1. A comparison of the modulus of the wave amplitude at time t = 1 and different x and y
values, using the SSFT, FPSM, and HSM, at ∆x = ∆y = 2×10−1 and ∆t = 10−3, and the exact analytical
solution, over x and y domains of [−20, 20] × [−20, 20] for the 2D NLSE.

x y |Ψ|-SSFT |Ψ|-FPSM |Ψ|-HSM |Ψ|-EXACT
CPU

Time(s)-
SSFT

CPU
Time(s)-
FPSM

CPU
Time(s)-

HSM

1 5 1.9057 ×10−2 2.0523 ×10−2 1.9095 ×10−2 1.9057 ×10−2 2.5108 3.6608 1.0901 ×10
2 7 9.4883 ×10−4 1.0218 ×10−3 9.5074 ×10−4 9.4883 ×10−4 2.250 3.5893 1.0856 ×10
3 8 1.2841 ×10−4 1.3829 ×10−4 1.2867 ×10−4 1.2841 ×10−4 2.1515 3.9462 1.2564 ×10
5 10 2.3519 ×10−6 2.5329 ×10−6 2.3567 ×10−6 2.3519 ×10−6 2.1435 4.9033 1.0614 ×10
7 13 1.5847 ×10−8 1.7066 ×10−8 1.5879 ×10−8 1.5847 ×10−8 2.1152 3.8490 1.0929 ×10
9 14 7.8905 ×10−10 8.4968 ×10−10 7.9057 ×10−10 7.8898 ×10−10 2.138 3.5086 1.0966 ×10

10 15 1.0680 ×10−10 1.1499 ×10−10 1.0699 ×10−10 1.0678 ×10−10 2.1300 3.4625 1.1075 ×10
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Figure 1. Exact solution of the 2D NLSE with a bright soliton input pulse, at time t = 10, over x and y
domains of [−20, 20] × [−20, 20].

3.1.1. Error and Convergence Analysis

Subsequently, the second stage of this experiment is to compute the error, represented
in calculating the sum of squares error (SSE) and thus conduct an exhaustive comparison
among our proposed numerical approaches, against their exact analytical solution, over the
same equal domain of x and y values from −20 to 20, but at different values of time from
0.1 to 2. For this test, we have used a temporal step size of 10−3 and spatial step size of
2 ×10−1 for all of the proposed approaches as well. The SSE has been recorded at each time
value to manifest the difference between the exact and the approximate solution. Table 2
demonstrates the SSEs for the three proposed methods abreast of the CPU processing time
in seconds.

Finally, to numerically advocate the convergence of the proposed numerical schemes,
three graphs have been developed and further demonstrated in Figure 3. These graphs
illustrate the relationship between a set of different temporal step sizes versus the absolute
error, computed by |(ue− ua)/ua|, where ue is the exact solution while ua represents the
approximate solution. In Figure 3a, the SSFT has been employed over a square domain of
[−20, 20] × [−20, 20] while changing the temporal step size from 0.0005 to 0.0095. This
experiment has been performed at consecutive times of t = 3, 5, and 7. The same values
have been used for the FPSM in. Figure 3b. Whereas in Figure 3c, the HSM has been
applied over a square domain of [−10, 10] × [−10, 10], temporal range values from 0.0001
to 0.0009, and performed at time values of t = 1, 1.5, and 2 to reduce the execution time.
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Figure 2. (a–c) Three-dimensional graphs, (d–f) 2D graphs, and (g–i) contour plots for simulating
the free-space propagation of the 2D bright soliton, using the SSFT for solving the 2D NLSE with
∆t = 10−3 and ∆x = ∆y = 2× 10−1, at different times (a,d,g) t = 1, (b,e,h) t = 3, (c,f,i) t = 6, over x
and y domains of [−30, 30] × [−30, 30].

3.1.2. Results and Discussion

The obtained simulations of the 2D bright soliton presented in the 2D and 3D plots of
Figure 2 are in excellent agreement with the results exhibited in [18–21].
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Table 2. A comparison of the sum of squares error (SSE) of the SSFT, FPSM, and HSM, at ∆x = ∆y
= 2 ×10−1 and ∆t = 10−3, and the exact analytical solution along with the CPU processing time at
different time values t ∈ [0.1, 2], over x and y domains of [−20, 20] × [−20, 20] for the 2D NLSE.

Time, t SSFT-SSE FPSM-SSE HSM-SSE CPU
Time(s)-SSFT

CPU
Time(s)-FPSM

CPU
Time(s)-HSM

0.1 1.1245 ×10−23 1.3906 ×10−1 1.3824 ×10−1 3.3838 ×10−1 5.2151 ×10−1 1.6471
0.2 4.3874 ×10−23 5.5797 ×10−1 3.5031 ×10−1 4.6749 ×10−1 7.9404 ×10−1 3.2275
0.4 1.6982 ×10−22 2.2446 8.6132 ×10−1 8.7677 ×10−1 1.4244 5.6874
0.5 2.6874 ×10−22 3.5160 1.1819 1.1225 1.7936 7.4073
1 1.0716 ×10−21 1.4204 ×10 9.3939 2.1427 3.4773 1.4721 ×10

1.5 2.4222 ×10−21 3.2157 ×10 1.3036 ×102 3.4239 5.3946 2.1097 ×10
2 4.2536 ×10−21 5.7390 ×10 5.7535 ×102 4.2984 7.1198 2.7243 ×10
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Figure 3. Comparative graphs representing the relationship between a range of different temporal
step sizes, when ∆x = ∆y = 2× 10−1, versus the obtained absolute error, using (a) the SSFT, (b) the
FPSM, for solving the 2D NLSE, at different times t = 3, t = 5, and t = 7, over x and y domains of
[−20, 20] × [−20, 20], whereas using different time values of t = 1, t = 1.5, and t = 2, over x and y
domains of [−10, 10] × [−10, 10] for (c) the HSM.

Moreover, as inferred by the preceding numerical findings presented specifically in
Tables 1 and 2, the SSFT has demonstrated a superb performance over the other pro-
posed methods. This is remarkably noted due to the least achieved SSE values in terms of
10 ×10−22, which is almost zero, along with the smallest CPU processing time for manipu-
lating this problem. This unique behavior might have occurred because of the employment
of the splitting technique between the linear and nonlinear parts of the partial differential
equation while solving them separately, in addition to the leverage of implementing the
fast Fourier transform algorithm in this scheme [30,33,34]. Furthermore, it showed a perfect
convergence due to exhibiting an absolute error in terms of 10 ×10−12. This is shown in
Figure 3a. The FPSM solution has remarkably consumed less CPU computational time
when compared to the HSM, especially at high time values. In addition to this, the absolute
error collapses whenever the temporal step size value diminishes, which substantiates
its convergence as per Figure 3b. The HSM seems to be more meticulous than the FPSM.
However, it is a time-consuming approach for solving the NLSE in two dimensions. There-
fore, this method has been deduced to be more compatible with small-time values over a
wide range of spatial values or further higher temporal values over a short range of spatial
values. Its convergence is also numerically proved in Figure 3c.

3.2. Simulations of the 2D TDSE

In this section, to ascertain the effectiveness and accuracy of our proposed numerical
schemes in solving the 2D TDSE, presented in Equation (22), copious numerical assessments
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have been performed. In this regard, we have utilized an initial Gaussian wave of the
form [22–24,26]:

Ψ0(x, y) = 20ei(Bx+Cy)e−[
(x−M)2+(y−H)2)

2σ2 ] (39)

where B and C are the propagation constants of the fundamental mode, M and H constitute
the central position of the pulse at t = 0. While σ indicates the spread of the pulse in the
propagation direction. Furthermore, for simplicity, we have assumed that ξ and η are equal
to the unity in Equation (22).

For the validation purpose, a 3D graph of the absolute value of the analytical solution,
presented in Equation (23), of the 2D TDSE is exhibited in Figure 4, where the exact solution
is selected to be a Gaussian pulse over a domain of [0, 30] × [0, 30], computed at time
t = 15, while setting B and C to unity, σ to 2

√
2, and M and H to 0 and 7, respectively.
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Figure 4. Exact solution of the 2D TDSE simulating the propagation of the Gaussian input pulse, at
time t = 15, over x and y domains of [0, 30] × [0, 30].

Our experiments began by changing the physical domain into Ω= [0, 15] × [0, 15],
which is discretized with a grid that is composed of 151× 151 points, under a temporal
step size of ∆t = 10−3 and spatial step sizes of ∆x = ∆y = 10−1. Thereafter, we have
plotted the numerical approximate solution of the 2D TDSE, within a period from t = 3 to
13, to mimic the electron’s wave motion while propagating through the quantum wire
in two-dimension and three-dimension graphs, and further indicate the direction of the
motion within the suggested period. As demonstrated in Figure 5, the SSFT approach
was employed to simulate the absolute value of the electron wave function in (a, b, c) 3D
graphs, (d, e, f) 2D graphs, and (g, h, i) contour plots at (a, d, g) t = 3, (b, e, h) t = 7,
(c, f, i) t = 13. To reach these specific times, “MATLAB R2021a” (The MathWorks, Inc.,
Natick, Massachusetts, United States) software has generated consecutive iterations of 3001,
7001, and 13,001, respectively.

The second part of this assessment aims to authenticate the accuracy and efficacy
of the three suggested numerical schemes, which are the SSFT, FPSM, and HSM. In this
regard, first, numerous experiments are established by employing an x and y domain of
Ω = [0, 20] × [0, 20], which constructs a grid of 101 × 101 points, at a temporal step size of
∆t = 10−3 and spatial step sizes of ∆x = ∆y = 2×10−1. The modulus of the wave amplitudes
has been computed abreast of their CPU elapsed time, using the three proposed approaches
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along with the analytical solution, at a specific time t = 6, while seeking random x and y
values within our predefined domain Ω, as represented in Table 3.
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Figure 5. (a–c) Three-dimensional graphs, (d–f) 2D graphs, and (g–i) contour plots for simulating
the propagation of the 2D Gaussian pulse through the quantum wire in the z-direction, using the
SSFT for solving the 2D TDSE with ∆t = 10−3 and ∆x = ∆y = 10−1, at different times (a,d,g) t = 3,
(b,e,h) t = 7, (c,f,i) t = 13, over x and y domains of [0, 15] × [0, 15].

3.2.1. Error and Convergence Analysis

Thereafter, another experiment has performed over the same domain of
Ω = [0, 20] × [0, 20], targeting higher time values within a range from t = [1, 15], at
a temporal step size of ∆t = 10−3 and spatial step sizes of ∆x = ∆y = 2 ×10−1. This equally
spaced domain has created a grid of 101 × 101 points, as mentioned earlier. Moreover,
reaching time t = 10 has generated subsequent iterations of 10,001 while seeking a higher
time t = 15 has produced more iterations of 15,001. Therefore, the MATLAB CPU process-
ing time has been tracked as well in this assessment. In Table 4, a systematic comparison of
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the three proposed approaches is conducted to evaluate the SSE at different time values
within our predefined domain Ω.

Table 3. A comparison of the modulus of the wave amplitude alongside the execution time, at time
t = 6 and different x and y values, using the SSFT, FPSM, and HSM solutions, at ∆x = ∆y = 2× 10−1

∆t = 10−3, over x and y domains of [0, 20] × [0, 20] for the 2D TDSE.

x y |Ψ|-SSFT |Ψ|-FPSM |Ψ|-HSM |Ψ|-Exact CPU
Time-SSFT (s)

CPU
Time-FPSM (s)

CPU
Time-HSM (s)

1 2 3.3481× 10−2 5.6360× 10−2 3.3671× 10−2 3.3481× 10−2 9.7617 1.7982× 10 2.0319× 10
3 3 4.1302× 10−1 6.9525× 10−1 4.1317× 10−1 4.1302× 10−1 9.7447 1.8179× 10 2.0544× 10
4 9 1.1087 1.8664 1.1088 1.1087 9.9013 1.7964× 10 2.0502× 10
6 10 2.6932 4.5336 2.6972 2.6932 9.7623 1.8005× 10 2.0722× 10
8 12 1.8053 3.0390 1.8118 1.8053 9.7739 1.8002× 10 2.0316× 10
9 13 1.0159 1.7100 1.0203 1.0159 9.7287 1.8012× 10 2.1132× 10

10 15 1.5775× 10−1 2.6554× 10−1 1.5848× 10−1 1.5775× 10−1 9.7627 1.8001× 10 2.4169× 10

Table 4. A comparison of the sum of squares error (SSE) of the SSFT, FPSM, and HSM, at ∆x = ∆y =

2× 10−3 and ∆t = 10−1, and the exact analytical solution along with the CPU processing time at
different time values t ∈ [1, 15], over x and y domains of [0, 20] × [0, 20] for the 2D TDSE.

Time, t SSFT-SSE FPSM-SSE HSM-SSE CPU
Time(s)-SSFT

CPU
Time(s)-FPSM

CPU
Time(s)-HSM

1 2.4098× 10−23 2.1779× 10−4 2.6489× 10−2 1.6961 3.3541 3.4406
3 2.8561× 10−22 3.1057× 10−3 3.5105× 10−2 4.9491 9.0329 1.0188× 10
6 9.6769× 10−22 1.7428× 10−2 3.7323× 10−2 9.8193 1.7994× 10 2.0811× 10
8 2.1952× 10−21 3.7548× 10−2 3.7364× 10−2 1.2958× 10 2.3946× 10 2.8573× 10
10 2.9793× 10−21 7.1372× 10−2 3.7365× 10−2 1.6463× 10 2.9894× 10 3.8181× 10
12 5.2078× 10−21 1.2563× 10−1 3.7364× 10−2 1.9430× 10 3.5876× 10 5.3228× 10
15 5.3166× 10−21 2.6623× 10−1 3.7165× 10−2 2.4539× 10 4.8238× 10 5.9862× 10

Eventually, for the convergence investigation of our proposed numerical schemes
in reporting the 2D TDSE, three graphs have been implemented in Figure 6, as similarly
followed in Figure 3 for the 2D NLSE, which demonstrate the relationship between a
period of different temporal step sizes versus the absolute error. In Figure 6a, the SSFT
was employed over a square domain of [0, 15] × [0, 15] while changing the temporal step
size over a range from 0.0005 to 0.0095. This experiment was performed at consecutive
times t = 10, 15,and 20. The same values were used for the FPSM and HSM, as shown in
Figure 6b,c.

3.2.2. Results and Discussion

As substantiated in the previous section pertaining to the 2D NLSE, the graphical find-
ings depicting the simulation of the 2D Gaussian wave through the quantum wire, demon-
strated in Figure 5, using the SSFT are compatible with the results published in [22–24]
using other methodologies.

Furthermore, the obtained numerical results listed in Tables 3 and 4 endorsed that the
SSFT renders the utmost feasible results, which are represented in establishing the highest
accuracy level while consuming the least possible elapsed time. Therefore, it is perfectly
compatible with the short and broad domains of the spatial and temporal values. As shown
in Figure 6a, its absolute error is almost zero over different temporal step sizes, which
corroborates its optimum convergence behavior.

The FPSM is a faster approach than the HSM. Hence, it is more reasonable for reaching
higher temporal and spatial values. This scheme’s convergence is also numerically proven
in Figure 6b as the error value drops down whenever the temporal step size decreases.
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The HSM provides more accuracy than the FPSM. However, it is not desirable for
high temporal values over broad spatial domains due to its slow-going behavior. Figure 6c
declares the convergence of this scheme as well.

To sum up, the three suggested schemes are straightforward, rapid, effectual, and
accurate for solving both the 2D NLSE and 2D TDSE. However, the SSFT is more efficient
than the others in terms of speed, efficacy, and convergence.

4. Conclusions

In the PDE realm, analytical solutions are only known for a few scenarios. Therefore,
numerical techniques are commonly used as an asset to explore the characteristics of their
solutions. In this study, we presented three powerful approximate finite difference/pseudo-
spectral techniques to solve the crucial 2D NLSE alongside the 2D TDSE; these techniques
are called the SSFT, FPSM, and HSM. The 2D NLSE, which is a fundamental equation in
nonlinear optics, was associated with a bright 1-soliton solution while a Gaussian wave
solution was considered for the 2D TDSE, which is an eminent equation in quantum
mechanics. The mathematical analysis was derived in this literature and corroborated
by MATLAB simulations. The obtained numerical results of our proposed schemes were
compared to the exact analytical solution to bolster their efficacy and credibility. Their
outcomes were presented in either illustrative graphs or tables. Moreover, the analysis of
the error and convergence were numerically computed. As a result, the MATLAB numerical
findings elaborated that SSFT has exhibited a top-notch capability in the presented 2D
simulations while sustaining the least possible execution time. Moreover, the FPSM has
demonstrated a credible second-rank performance in terms of the consumed elapsed time.
On the contrary, the HSM has been preferable over the short temporal and spatial domains
that require less computational procedures due to its higher processing time. To recapitulate,
the three suggested schemes are deemed to be dependable, robust, and effective for this
simulation, hence they might be advantageous for approximating other types of equations
in our future work.
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