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Abstract: For an uninterrupted power supply, renewable energy promises to be a suitable alternative
compared to the conventional sources. System delays or communication delays may cause significant
synchronization imbalances between various components in big electrical grids. Since the properties
of solar and wind generation constantly change with climatic circumstances, engineers encounter
many difficulties when substituting sustainable power with conventional electricity. The computation
delay margin may be leveraged to handle a time-delayed automatic generation control (AGC) system.
In order to regulate a distributed hybrid renewable energy system in a three-area AGC configuration,
this paper investigates the influence of the fractional integral order on the stable system’s delay
parameter region. By changing the fractional order range, the delay margin can be increased,
potentially broadening the time-delayed system’s stability region. The controller’s stability region
has dependency on the order of fraction and the time delay. For this purpose, the asymptotic Bode
diagram of the time-delayed fractional proportional-integral controller is determined. The gain and
phase margins are used to calculate the delay margin for the application in discussion. The Honey
Badger algorithm helps to adjust the controller parameters. It is also confirmed that the suggested
controller is resilient to random load perturbations, nonlinearities, and parameter variations.

Keywords: deregulation; fractional-order controller; honey badger algorithm; renewable-based
distributed hybrid system; time-delay

1. Introduction

For the past few decades, renewable-resource research has been creating a roadmap
for green energy [1] across 143 countries in order to battle the greenhouse effect and
environmental pollution and to improve energy stability. The issues posed by global
warming inspire energy policymakers to continue their research in this field. Due to the
rapid change in characteristics of diverse RERs such as solar [2] and wind into the current
power system, some issues and constraints on the system’s stability, security, operation,
and control have become major factors. With a big interconnected grid, this may result
in a large synchronising imbalance between different units, considerable system latency,
or communication delay. Hence, researchers devote a large span of time and effort to
identifying control strategies to balance supply and demand.

Automatic generation control (AGC) ensures the overall system’s reliability and power
quality in the power sector. For the past few decades, an open communication channel [3]
has been allocated to exchange information between the control unit and the generating sta-
tion via a remote terminal unit. To run a deregulated market using open communication [4]
channels between generation companies (GENCOs) and distribution companies (DISCOs),
communication delay may be acceptable during the construction and operation of vast
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interconnected grids. However, in a vast area of interconnected grid, various nonlinearities
and communication delays have a significant impact on system stability. Open networks
also expose numerous deficiencies in distributed generation system (DGS)-AGC services,
such as increased communication lag, packet loss, and cyber attacks (e.g., false data injec-
tion). Hence, it is critical to figure out how communication variations in DGS-AGC affect
system frequency stability in the future electric grid with severe intensity. Depending on the
exact communications networks, normal time delays ranging from a few tens to hundreds
of milliseconds are imposed when sending and processing remote signals. These delays
are projected to increase when open communication channels and layered structures (DGS
aggregators) are implemented, especially during periods of congested communication
due to the massive amount of data interchange. The overall time delay also affects the
AGC system’s damping performance, resulting in synchronism loss and system instabil-
ity [5]. Within a wide area interconnected system, depending on the non-linearity, these
delays could range upto several hundreds of milliseconds [6]. As a result, determining the
margin of allowable delay (MADB) [7] is critical for understanding the consequences of
delay-coupled systems.

There are numerous methods for measuring the stability delay margin of a symmetrical
system with time delay. These can be classified into two categories such as (i) delay
margin analysis in frequency-domain methods, and (ii) delay margin analysis using time-
domain methods. In the frequency domain, the Schur–Cohn approach [8], Rekasius’s
substitution [9], Kronecker multiplication [10], root locus analysis [11], and empirical bode
analysis (EBA) [12] are the techniques for evaluating the delay margin. Delay evaluation in
the time domain is demonstrated by the frequency sweeping test [13] and the linear matrix
inequality [14] approach. All of the existing approaches outlined above aim to compute
delay margin only on the basis of stability, and estimates of the delay margin values at
which the load-frequency control (LFC) system will be marginally stable for a particular
set of proportional-integral (PI) controller gains for various fractional orders. However,
practical LFC systems cannot operate near such sites due to unacceptable frequency-
response oscillation. As a result, various design specifications such as gain margin (GM) and
phase margin (PM) that provide a desired dynamic performance (i.e., damping, overshoot,
and settling time) must be taken into account in delay-margin calculation in addition to
addressing the stability consideration.

The time-domain based direct technique fails to compute MADB when GM and PM are
taken into account because it is not possible to incorporate GM and PM in the computational
procedure. In contrast, the frequency-domain methods may be able to solve this issue. By
maximizing an objective function, time-domain optimization algorithms look for the best
controller settings. The resultant closed-loop control system can attain the best time-domain
dynamic performance. However, system stability with gain and phase margins, as well as
frequency-domain resilience performance, should be assured at the same time.

The application of different optimization techniques for solving AGC problems has
been reported in the literature. Some traditional optimization techniques have strong
convergence characteristics, but they suffer from a local optimality problem. Different
heuristic strategies are efficiently adapted to various AGC problems to prevent this form of
local optimality. For tuning the integral-minus tilt-derivative control with filter, Babu et al.
developed the hybrid crow-search with the particle swarm optimization [15] technique.
A novel adaptive distributed auction-based algorithm [16] was employed for optimal
mileage basis dispatch to quickly identify a high-quality dispatch scheme in a distributed
way. The gravitational search algorithm [17] was proposed for adjusting a dual PI-based
load-frequency controller. Shouran et al. [18] used the bees algorithm to the proportional
integral derivative (PID)/fuzzy PID filter (FPIDF)/fractional-order PID (FOPID) controller
to stabilize and balance the frequency in the multi source system at the rated value. In a
multi-area system, Hakimuddin et al. employed the bacteria foraging algorithm [19] for
the tuning of PID controller. To optimize the weighted matrices of the linear quadratic
controller, Mohanty et al. proposed [20] the modified fruit fly optimization algorithm
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(MFOA) to a multi source system. Goswami et al. proposed a new heuristic algorithm
called the chaotic oppositional krill herd algorithm (COKHA) [21] for solving multi-source
AGC problems. For the frequency control of multi-area power systems with wind power
penetration, Elsisi et al. proposed a novel supervisor fuzzy nonlinear sliding mode control
algorithm [22]. Biswas et al. [23] applied the grasshopper optimization algorithm (GOA)
to solve AGC in a deregulated environment. Hashim et al. recently developed the honey
badger algorithm (HBA) [24] for solving different types of optimization problems.

The literature survey on traditional controllers proves that their performances worsen
as the nonlinearities increase and the disturbance rejection capability decreases. Further-
more, the classical controller only takes countermeasures against disturbances when the
control variable deviates from the reference level. The capacity to reject disturbances can
be improved by incorporating fractional order into conventional controllers. To increase
the performance of typical integral (I)/PI/PID [25] controllers, fractional order I (FOI) [26],
fractional-order PI (FOPI) [26], and FOPID [27] controllers are suggested. Fractional calcu-
lus theory is applied to I/PI/PID controllers, resulting in the FOI/FOPI/FOPID models,
to improve their performance. FO controllers have been used to solve AGC problems in
power systems during the last few years and have shown to be superior to traditional
controllers. Heuristic techniques have become very effective to enhance the performance of
fractional-order controllers, such as the ICA optimization [28] technique applied to the CF-
FOPI–FOPID controller, and the Firefly algorithm optimized FOI/FOPI/2DOF-FOPID [29]
controllers to single- and two-area power systems . Nayak et al. [30] suggested a hybrid salp
swarm algorithm-simulated annealing based three-degree-of-freedom FO-PID controller
on a two-area hybrid system. A non-fragile PID controller [31] was also used to regulate
the frequency of an interconnected multi-source (restructured environment) system.

Due to various non-linearities present in the system, the RERs-based hybrid system
with continuous time delay is the subject of this paper. The main goal of this paper is
to develop a relationship between delay margin (τdm) and fractional order (λ) in the KP–
KI parameter plane, which not only robustly stabilizes uncertain control systems with
varying rate µ = 0 but also specifically determines the stability region for the different
order (λ) of the FOPI controller. This is performed by using EBA to determine the delay
margin [32] using GM and PM for various fractional orders (λ varying from 0 to 1) of the
FOPI controllers. The contributions of this research are as follows:

1. This article proposes a method for designing delay dependent stable systems using
EBA and the delay-margin calculation (MADB) of constant time-delay systems.

2. This study also demonstrates how nonlinearities can generate delays, lowering the dy-
namic performance of an AGC system and, in the worst-case scenario, causing a significant
stability concern. The delay margin for an FOPI controller is estimated using the proposed
(EBA) [32] method, and the controller is designed using a systematic methodology.

3. To test the efficacy of the suggested approach on a three-area renewable-based [31]
hybrid system with distributed generation [33] in a deregulated environment for
constant delays, (µ = 0) is considered.

4. The simulation results validate the accuracy of the EBA used to calculate the delay
margin of the FOPI controller for a certain fractional order range (λ = 0 to 1). The
increase in the fractional order value (λ) may enhance the delay margin (τdm) for a
specific control parameter set (KP and KI) and vice versa. As a result, the higher value
of λ is preferable, which is used to optimize the hybrid system’s dynamic response
with a set delay margin. HBA [24] has been devised in this work for the fine-tuning
of the above control parameters. The taxonomy of the publications regarding the
time-delay-based AGC system is shown in Table 1.

5. In the AGC system, FOPI [26,27] and other combinations[29] are still employed
directly for frequency regulation. In contrast, the author of this paper attempts to
develop the relationship between the FOPI controller’s fractional order (λ) and the
delay margin for MADB evaluation in a time-delayed agc system.
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Table 1. The following is a taxonomy of the publications regarding the time-delay-based AGC system.

References AGC System Area Time Delay Controllers Prototype τdVs Controller Type Stability Region
Thermal Gas Solar Hydro Wind EV DGS * Type I PI PID FOPI FACTs I PI FOPI with Fractional Order

[7]
√ √ √

Two Yes
√ √ √

[26]
√ √ √

Two Yes
√ √

TID
[34]

√
single Yes MPC

[11]
√ √

Two Yes
√ √

[14]
√

Two Yes
√ √

[34]
√

Single Yes
√ √

[35]
√

Single Yes
√ √

[36]
√ √

Two Yes
√

PIDN
[37]

√
Two Yes MPC

[4]
√ √

Two Yes
√

FPID
[38]

√
Two Yes

√
DMPID

Present work
√ √ √ √

Three Yes
√ √ √

* Distributed generation system (DGS).

2. Description of the Proposed System

A two-area thermal [20] system has been considered as the primary test system (Test
system-1) in this paper. Initially, test system-1 was used to test the efficacy of the HBA
against other evolutionary algorithms such as BFA [19], MFOA [20], COKHA [21], and and
GOA [23]. Then, the research is extended to a three-area hybrid system with distributed
generation in a deregulated environment (test system 2) [23] that includes non-conventional
resources such as solar and wind power plants with distributed generation [33]. For test
system-1, the total power rating of the power system is 600 MW, with each area consisting
of 300 MW units. Total output power for test system 2 has been set at 1600 MW, with
750 MW, 50 MW, 600 MW, and 200 MW being allocated to thermal, wind, solar, and
distributed generation, respectively, as illustrated in Figure 1. The details of the DGS are
discussed below.

Figure 1. Linearized model of three−area renewable−based (Solar−PV) system with distributed
generation.

2.1. Wind-Turbine Generator (WTG)

Wind power, also known as wind energy, is the use of air movement through wind
turbines that fluctuates with time and is connected to previous wind speeds. The auto
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regressive and moving average time-series models can be used to represent the changer of
wind speed over time. Mathematically, the wind speed may be expressed as per (1)

y(t) =
n

∑
i=1

Φiyt−i + αt −
m

∑
j=1

θjαt−j , (1)

where Φi, αt and θj are the auto regressive parameter, moving average parameter, and a
normal white noise process with zero mean in order. Calculation for the speed of wind
may be carried out according to (2).

ωWT = ηWT + σWTx(t), (2)

where the mean and standard deviation of wind speed are ηW T and σW T, respectively. The
output power of wind power generation is calculated using (3), which is shown in Figure 2.

PWTG = 0 if ωWT < Win, ωWT > Wout;
PWTG = λ(WS−Win) if Win < ωWT < Wrs;
PWTG = 1 if Wrs < ωWT < Wout.

(3)

Equation (3) represents cut-in, rated, and cut-out wind speed, respectively, where
the straight line passes through the points of cut-in and rated wind speed. The linear
approximated model of wind-turbine generator for LFC analysis is given by the first-order
transfer function, as defined by (4).

GWTG(s) =
KWTG

(1+sTWTG)
, (4)

where ∆PWTG represents change in power output in wind power generator.

Figure 2. Characteristic of the wind turbine.

2.2. Aqua Electrolyzer and Fuel Cell

Hydrogen cell is the alternative resource for electric power generation. Aqua elec-
trolyzer (AE) takes a portion of (1− γ) WTG to disintegrate water molecules into hydrogen
gas, that can then be utilized to generate electricity via the fuel cell (FC). AE and FC play
an important role in producing the electrical power in the DGS. The transfer functions of
AE and FC are defined as per (5).

GAE = KAE
1+sTAE

,
GFC = KFC

1+sTFC
,

(5)
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where the gain of AE and FC systems are given by KAE & KFC; TAE & TFC are the time
constants of AE & FC, respectively.

2.3. Diesel Unit

Usually a diesel power station (also known as stand-by power station) uses a diesel
engine as a prime mover for the generation of electrical energy. This power station may
work as an auxiliary power generating unit. This kind of power station can be used to
produce limited amount of electrical energy that may serve as an emergency supply station.
The transfer function of the diesel power plant is stated in (6).

GDEG(s) =
KDEG

1 + sTDEG
, (6)

where ∆PDEG is incremental change of output power from diesel power plant; KDEG and
TDEG are the gain and time constant, respectively, of the diesel unit plant.

2.4. Battery-Energy-Storage System (BESS)

Storage renewable energy resources are used to maintain the constant power flow
through tie-line during intermittent load demand, especially in the peak-demand period.
The role of BESS (such as the Tesla power wall battery, the redox-flow battery, and the
super-magnetic energy storage devices) in the grid is elucidated below:

1. Maintain proper coordination between different generating units.
2. Optimize the operating cost.
3. The BESS consists of power coverter with bank of DC batteries. The power converter is

helpful for bi-directional power conversion (DC to AC and vice-versa) as per the grid
requirement.

4. It is also used to neutralize the system harmonics and control the system voltage.
5. The transfer function of the BESS is modeled as per (7).

GBESS(s) =
KBESS

1 + sTBESS
, (7)

where KBESS and TBESS are the gain value and time constant, respectively, of the BESS.
The linearized model of a DGS is illustrated in Figure 3a. As shown in Figure 3b–d,

some non-linearities are included to the thermal unit, such as the governor dead-band
(GDB), boiler dynamics (BD), and governor rate constraints (GRC), to test the effectiveness
of HBA in a realistic environment. In the literature, GRC has been calculated to be 3%
every minute. Backlash non-linearity of 2% for the thermal system and 0.05% for the
hydro system are usually considered. In a deregulated environment, this research studies a
delay-dependent stability. Before the controller, a single delay is taken into account, which
is caused by nonlinearities and a lack of synchronism between solar, wind, and thermal
power plants. It is expressed by an exponential term, e−sτd [34,39] where τd indicates the
total time delay in the system. The use of a three-area hybrid system (thermal, wind, and
solar) with DGS is being studied [23] under the deregulated environment.

As previously stated, the total study was conducted in a deregulated environment,
with the power contracts between various DISCOs and GENCOS being reflected in the
distribution participation matrix (DPM) for the various scenarios (unilateral, bi-lateral, and
contract-violation).

Hence, DPM can be defined as per (8).

DPM =



cp f 11 cp f 12 cp f 13 cp f 14
cp f 21 cp f 22 cp f 23 cp f 24
cp f 31 cp f 32 cp f 33 cp f 34
cp f 41 cp f 42 cp f 43 cp f 44
cp f 51 cp f 52 cp f 53 cp f 54
cp f 61 cp f 62 cp f 63 cp f 64

 (8)
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(a) (b)

(c) (d)

Figure 3. (a) Linearized model of DGS. (b) Schematic block diagram of boiler dynamics in test
system 2. (c) Schematic Block diagram of GRC in test system 2. (d) Schematic diagram of governor
dead−band in test system 2.

The sum of all entities (‘cp f ’ or coefficient of participation factor) in a DPM matrix
placed in a column should be equal to one as represented in (9).

NGENCO

∑
i=1

CPij = 1; for j = 1,2, . . . NDISCO, (9)

where NDISCO is chosen as four for four different load ends.

3. Generalized Form of Transfer Function of a Fractional-Order Time Delayed System

The transfer function of a FO system is given by (10).

GFO(sγ) =
ansγn + an−1sγn−1 + . . . + a0sγ0

Cmsγm + Cm−1sγm−1 + . . . + C0sγ0
=

∆N(sγ)

∆D(sγ)
(10)

In the transfer function, there exists a common division factor Q ∈ S such that γi =
p fi(i = 0, 1, . . . , m), αk = p fk(k = 0, 1, 2, . . . , n); ei, where P is called the commensurate
order, which can be rational or irrational. Therefore, the transfer function can be represented
as per (11).

τ(s) =
y(s)
u(s)

=
M(sP)

N(sP)
=

M(q)
N(q)

, (11)

where q = sγ in the polynomial equation. The generalized form of fractional order system
is given by (12).

GFO(q) =
∏n1

k=0(q + dk)∏n2
i=0(ciq2 + eq

i + fi)

∏n3
j=0(q + gj)∏n4

m=0(hmq2 + omq + zm)
, (12)
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where dk(k = 0, 1, 2, . . . , n1), ci, ei, fi(i = 0, 1, . . . , n2), gj(j = 0, 1, 2, . . . , n3), hm, om, zm,
where (m = 0,1,. . .,n4) are positive integers. Now substituting q = sp, (12) can be
rewritten as per (13).

GFO(sγ) =
∏n1

k=0(s
p + dk)∏n2

i=0(ciq2 + eq
i + fi)

∏n3
j=0(s

p + gj)∏n4
m=0(hmq2 + omq + zm)

=
∆N(sγ)

∆D(sγ)
(13)

This method is also applicable for analyzing the FO non-linear time delayed system.
Let us consider transfer function of a FO linear time delayed system as defined by (14).

GFO(sλ) =

∆N0(sλ) +
p1

∑
j=1

∆Nj(sλ)e−τis

∆D0(sλ) +
p2

∑
i=1

∆Di(sλ)e−τis
=

∆N(sλ)

∆D(sλ)
, (14)

where τd is the delay time, and the real coefficients of FO polynomial are given by (15).

∆Di(sλ) =
m
∑

k=1
qiksλDK ; i ∈ 0, 1, 2, . . . , p1

∆Nj(sλ) =
n
∑

k=1
zjksλNK ; j = 0, 1, 2, . . . , p2

(15)

where λDK & λNK are the non-real native numbers.
The transfer function of the FO system is the commensurate order if and only if λDK

and λDK ∈ kλ (k = 0, 1, . . . , n) and λNK ∈ kα (k = 0, 1, . . . , n) ; otherwise, it is in the range
of non-commensurate order. Now, the characteristic equation of a commensurate fractional
order system is given by (16).

∆D(sλ) = ∆D(sλ) +
y1

∑
i=1

∆Di(sλ)e−τis (16)

Evaluation of Delay Margin Using Empirical Bode Analysis (EBA) of Time-Delayed
Fractional Controller

A study of the fractional order system proves that the equation carries a fractional pole
and zeros in form of double term. Hence, it is helpful to construct asymptotic bode plots
G(s) by adding or subtracting the FO system, which is similar to that of the PIλ controller
transfer function.

In this article, the authors have used the gain plot and the phase plot to analyze the
stability of a time-delayed fractional-order controller, which can be defined as per (17).

GFOC(sλ) = Gc(sλ) =
∆Nc(sλ)

∆Dc(sλ)
=

∆Nc(sλ)∆∗Dc(s
λ)

∆∗Dc(s
λ)∆Dc(sλ)

=
∆Nc(sλ)∆∗Dc(s

λ)∣∣∣∆Dc(s)
λ
∣∣∣2 (17)

Now, equating the imaginary part of the numerator to zero, the value of phase
crossover frequency (PCF) is obtained according to (18).

Im[∆NC(jωpc)
λ∆∗DC(jωpc)] = 0; {putting s = jω = jωpc} (18)

The GM is obtained using the PCF (ωpc), as defined by (19).

GM = −1/Gc(jωpc)
λ (19)
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The value of gain crossover frequency (GCF), as denoted by ωgc, may be yielded
using (20). ∣∣∣Gc(jωgc)

λ
∣∣∣2 = 1 =

∣∣∣∆N(jωgc)
λ
∣∣∣2 =

∣∣∣∆D(jωgc)
λ
∣∣∣2 (20)

The PM obtained using the GCF is given by (21).

PM = 180◦ +∠G(jωgc)
λ (21)

Now, consider the time delay effect in the fractional-order controller transfer function,
as defined by (22).

GFOC(sλ) = GCe−sτd (22)

where τd is the time delay.
The condition for the fractional controller on the verge of stability is given by (23).

Gc(sλ)e−jωgcτdm = −1 (23)

where τdm is the delay margin.
Now, satisfying (23) for stability, the modified equation can be rewritten as per (24).

∠Gc(jωgc)
λ − (ωgc)

λτdm ×
180◦

π
= −180◦ (24)

Thus, using (24), the delay margin may be given by (25).

τdm =
PM

(ωgc)
λ
× π

180◦
=

180◦ +∠G(jωgc)
λ

(ωgc)
λ

× π

180◦
(25)

4. Mathematical Formulation of the Proposed System

The delay margin is calculated in this research to achieve the generation-load balance
at their schedule level, in order to analyze the suggested hybrid system’s delay-dependent
stability. The choice of objective function has a significant impact on the dynamic response
of the system.

4.1. Objective Function

The performance index is determined by using a defined objective function to obtain
optimum controller gain. The control error is responsible for delivering control signals
for the FOPI controller for different fractional orders (λ) for the constant (µ = 0.0) time-
delay system. The objective function (J) is defined as the linear combination of frequency
deviation and tie-line power. The integral squared error (ISE) technique is commonly used
in controller design. The construction of an optimization-based controller necessitates
the selection of acceptable weighted values of frequency deviation for both areas in the
performance indices (J) based on the intended requirements and constraints. Large control
signals were generated by weighting solely frequency and tie-line power deviations in the
performance index, which quickly forces frequency and tie-line deviations to zero. The
objective function treated as performance index is given by (26).

J =
tmin∫
0

(∆P2
tie1−2 + α∆ f 2

1 + δ∆ f 2
2 )dt (26)

The values of α and δ are assumed to be equal in this situation, i.e., 0.056. The weighted
values for the frequency deviation in both locations, α and δ, are used to assign equal im-
portance to tie-line power and frequency responses. Aside from that, a new Honey Badger
technique is presented to improve the FOPI controller’s KP and KI values. Section 5.2.1
outlines the steps for optimizing the gain value of an FOPI controller with various values of λ.
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4.2. System Constraints

The suggested AGC system can be thought of as a restricted optimization problem
with the following constraints given by (27):

KP1,min ≤ KP1 ≤ KP1,max; KI1,min ≤ KI1 ≤ KI1,max;
KP2,min ≤ KP2 ≤ KP2,max; KI2,min ≤ KI2 ≤ KI2,max;
KP3,min ≤ KP3 ≤ KP3,max; KI3,min ≤ K ≤ KI3,max;
λmin ≤ λ ≤ λmax;

(27)

where the control parameters for case-1 (KP, KI & KD) are in the range of 0 to 10. Only
the performance of the FOPI controller with fractional order (λ) has been examined for
different ranges of delay in case-2 to estimate the delay margin (using EBA). The value of
fractional order (λ) of FOPI controllers gain is set between 0.1 and 0.8.

4.3. Mathematical Explanation of MADB Calculation for Time-Delayed FOPI Controller

Optimal design of FOPI controller is determined using the transfer function expressed
in (28).

TFO−PI = Gc(s) =
(

KP +
KI

sλ

)
= KP + KIω

λ cos(πλ/2)− jkIω
−λ sin(πλ/2) (28)

The stability margin of time delay is established by evaluating the delay margin of the
FOPI controller. For this purpose, we substitute s = jω in the time-delayed FOPI controller
to evaluate the characteristic equation

TFO−PI = Gc(jω) =

(
KP +

KI

jωλ

)
e−jωτd = KP + Kiω

λ cos(πλ/2)− jkiω
−λ sin(πλ/2))e

−j(arctan(πλ/2)
(29)

The necessary and sufficient conditions to meet the controller’s robustness requirement
are stated as follows:

(i) PM at GCF:
∠G(jωgc) = PM− π (30)

(ii) Gain of the system at GCF: ∣∣G(jωgc)
∣∣ = 1 (31)

(iii) PM at PCF:
∠G(jωpc) = −π (32)

(iv) Gain of the system at PCF: ∣∣G(jωpc)
∣∣ = 10GM/20 (33)

Applying (30) and (31) in (29), the gain value and phase value of FOPI controller can
be obtained using (34) and (35), respectively,

|C(jω)| =
√

KP + KIωλ cos (πλ/2)2 + (−KIω−λ sin (πλ/2)2 = 1 (34)

and

∠C(jω) = arctan
[

−KI sin(πλ/2)
KP + KIω−λ cos(πλ/2)

]
= PM− π (35)

Equations (36) and (37) may be used to find an FOPI controller that ensures the attainment
of the desired GCF.

KP = ±10GM/20 cot(πλ/2) tan(φ2)√
1 + (tan φ2)

2
(36)
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and

KI = ±
10GM/20 cos(πλ/2) tan(φ2)√

1 + (tan φ2)
2

(37)

where φ2 = −πarc tan(τωpc).
The values of KP and KI have been utilized to define the basic fractional controller

and simulate the individual asymptotic magnitude of the bode plot. Moreover, the stability
condition is judged through the evaluation of the delay margin (τdm) for different FO
controllers (λ = 0.1 to 0.8). The value of the delay margin (τdm) is evaluated using (36)
and (37).

Algorithm Steps for Computation of MADB

The proposed approach for MADB computation using GM and PM includes the
following steps:

1. Without a controller, create a linearized model of a hybrid system (solar-wind-thermal
with DGS).

2. The state space equation of the AGC system with the P-I controller is established. Then,
the linearized hybrid system with time-varying delay is used to design the controller.

3. Based on the linearized model obtained in Step 2, the delay margin is calculated. After
evaluating GM and PM, the value KP and KI using the HBA is obtained, and system
stability is analyzed by satisfying (24) and (25).

4. The search interval for calculating the delay margin starts with τi and concludes with
τf . Furthermore, the following steps are used to determine a specified time delay τd
for a collection of KP and KI :

Step 1: Obtain the transfer function of the FOPI controller for different time delay
τi and ends with τf .

Step 2: Evaluate GM and PM for different time-delayed FOPI-controllers.
Step 3: Calculate delay margin using (24) and (25).

Step 4: Continue the searching process τint =
∣∣∣τi − τf

∣∣∣ with τd, and if τint ≥ τd, go
to step 1 for further tuning. The output is treated as delay margin of τd.

5. The stability of the abovementioned hybrid system is then verified using a simulation
approach with a particular time delay τd for τd ≤ τset.

5. Proposed Honey Badger Algorithm (HBA)
5.1. Honey Badger Algorithm

HBA is based on the behavior of a mammal found in the rain forest of Asia-Pacific
and the Indian sub-continent and it is well known for its fearless nature. Throughout the
world sixty different species of fearless forager preys exist, out of which 12 are recognized
as honey badger subspecies in Asia Pacific region. HBA was designed using the foraging
behavior of the honey badger. Searching for the food source, the honey badger either digs
and smells or follows the honey-bird. It completes its tasks in two different modes such as
digging mode and honey mode. In the first step, the honey badger uses its smelling ability
to select the appropriate location for digging. In the second phase, the badger accepts the
help of the honey guide bird to directly locate a beehive.

5.2. Mathematical Model

As discussed in the previous section, the search process of HBA is classified into two
different phases. They are (i) the digging phase and (ii) the honey phase.
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The exploration and exploitation capability of the algorithm helps it to obtain the
optimal solution of a global optimization problem. At the initial phase, a population
consisting of N number of solutions with D-dimensions is represented according to (38).

ϕ11 ϕ12 ϕ13 . . . ϕ1D
ϕ21 ϕ22 ϕ23 . . . ϕ2D
ϕ31 ϕ32 ϕ33 . . . ϕ3D

. . . . . . .

. . . . . . .
ϕN1 ϕN2 ϕN3 . . . ϕND

 (38)

where the set of badgers up to the ith position is given by ϕi =
[
ϕ1

i , ϕ2
i , ϕ3

i ......ϕN
i
]
.

Steps of Proposed Optimization Technique

The proposed design steps employing the HBA technique are outlined as follows:

Step 1: Initialization

Initialize the number of honey badgers with population size N, as per (39).

ϕk = lbk × rbk(ubk − lbk). (39)

where rbk lies between 0 and 1; ϕK is the honey badger at the kth position; and ubk
and lbk are the lower bound and upper bound in the search domain.

Step 2: Defining Intensity

The Ii intensity of the prey is inversely proportional to the honey badger, as given
by (40).

Ii = r2 ×
s

4πd2
i

(40)

where r2 is a random variable lying between 0 to 1; s = (ϕi − ϕi+1)
2 & di = φprey − φi.

Step 3: Density Factor

The density factor (β) is a continuous time-varying randomization used for constant
transformation from exploration to exploitation. The expression for β is given by (41).

β = C× exp
(
−τ

τmax

)
(41)

where C ≥ 1; τmax is the maximum iteration time.

Step 4: Escaping Local Optima

This step, along with the next one, is used to overcome the local optima in HBA.
In this context, the proposed approach employs a flag F that changes the search
direction, allowing agents to thoroughly investigate the search space.

Step 5: Updating the Agent Position

As previously stated, the HBA position update process (ϕnew) is split into two phases,
namely, the digging phase and the honey phase.

1. Digging Phase
In the digging phase, a honey badger performs an action similar to the cardioid shape,
as given by (42).

ϕnew = ϕprey + F× γ× I × ϕprey + F× r3 × β× di × |cos(2πr4)× [1− cos(2πr5)]| (42)
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where ϕprey is position of the prey, which is the best position found so far; r3, r4, and
r5 are the three different random numbers lying between 0 and 1; and F works as a
flag that alters the search direction based on (43).

F =

{
1, i f r6 ≤ 5, r6 is the random number.
−1, else

(43)

2. Honey Phase
In this case, where a honey badger follows a honey guide bird to find the food source,
the modeling expression is defined by (44).

ϕnew = ϕprey + F× r1 × β× d1 (44)

where r1 lies in between 0 to 1, and ϕnew is the new position of the honey badger.

The pseudo-code of HBA for solving the time delayed hybrid system problem is
illustrated in Algorithm 1.

Algorithm 1: Pseudo-code for implementing HBA for a time-delayed hybrid
system

begin
Set parameters τmax, N, γ and C
Initialize the parameters with arbitrary position
Evaluate the fitness value of each honey badger ϕi (i = 1, 2, . . . , N)
Save best position ϕprey to calculate fitness value fprey
while t ≤ τmax do

for m = 1 : N do
Calculate the intensity Ii, using (40)
if r < 0.5 then

Update the position ϕnew using (42)

else
Update the new position ϕnew using (44)

Evaluate ϕnew to yield fnew
if fnew ≤ fi then

Set ϕi = ϕnew and fi = fnew

if fnew ≤ fi then
ϕprey = ϕnew and fprey = fnew

t = t + 1

5.2.1. Application of HBA in Time-Delayed AGC Problem

1. Using (39), initialize the control variables KP1, KI1, KP2, KI2, KP3, KI3 & λ. Calculate
the appropriate control variables’ fitness value at the mth position.

2. The maximum and minimum operating limits are used to standardize the value of
the control parameters.

3. Depending on the population size, several sets of control variables are formed to
generate matrix pools.

4. Equation (44) is used to update the control variables.
5. For each new updated control variable position, calculate the objective function until

an optimal solution is achieved.

6. Simulation Results

The HBA, MFOA, BFA, COKHA, and GOA algorithms are coded in MATLAB, and
the AGC system is designed using MATLAB/SIMULINK tools. The total number of
iterations for HBA, MFOA, COKHA, and GOA approaches for tuning control parameters
are considered as 150 in both cases. Furthermore, EBA is utilized to examine the delay
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margin of stability for various delay ranges. To control the mutation in the perturbation
process, the controllers are set to a range of 0.1 to 0.8 for test system 2, and the simulation
is run in MATLAB (R2014a) on an Intel Core I3 CPU running at 2.20 GHz. To assess
the success of the suggested approach, a variety of simulation combinations are used to
fine-tune the HBA adjusted control parameters.

6.1. Case Study with Two-Area Thermal System

At first, the efficacy of the suggested HBA method is evaluated through the dynamic
responses of the two-area thermal system [20]. Appendix A lists the values of the system
parameters for a two-area thermal unit. Table 2 shows how to maximize the gain value of the
PID controller and the objective function with a 20% step load disturbance at area 1 using
various strategies. When the proposed method is compared with the published methods,
the objective function ‘J’ and other response characteristics such as overshoot, undershoot,
and steady-state error are found to be smaller with the HBA methodology. The second-
best value of the objective function comes from a GOA-tuned [23] PID. Figure 4a–c shows
that the HBA [24] -optimized PID controller gives better outcomes than other heuristic
techniques such as COKHA, BFA, and MFOA in terms of dynamic responses. The dynamic
responses of ∆ f1, ∆ f2, and ∆Ptie1−2 are improved with the suggested HBA optimized PID
controllers, as shown in Table 2. When the suggested HBA optimized PID is compared
with GOA, COKHA [21], and BFA [19] optimized PID, objective function (ISE) is improved
by 18.3%, 49.15%, 63.42%, and 74.79%, respectively. HBA-optimized controllers improve
the dynamic response of ‘∆ f1’, i.e., overshoot by 43.84%, 48.29%, 99.95%, and 99.55%,
respectively, as compared to reported COKHA-, BFA-, and GA-tuned PID controllers .

Table 2. Gain values of PID controllers for the two-area system.

PID Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 (OBJ× 10−5)Controller

MFOA [20] 4.2993 4.6376 4.1970 0.0260 1.0959 0.6929 1.0271
BFA [19] 6.623 5.2453 5.9213 1.4410 0.8187 0.1730 0.6119
COKHA [21] 8.623 6.2493 4.923 3.746 1.425 0.687 0.474
GOA [23] 9.121 8.423 5.9213 3.7462 2.425 0.379 0.0293
HBA 9.82 9.679 6.231 3.782 2.494 0.172 0.00241

PID ∆ f1 ∆ f2

Controller OS× 10−6 US× 10−4 SS OS× 10−6 US× 10−4 SS

MFOA [20] 2.498 −4.27 9.02 8.94 −1.082 7.67
BFA [19] 3.55 −3.37 20.77 0.09503 −0.646 8.25
COKHA [21] 0.00234 −2.65 8.4 0.00763 −0.4963 7.10
GOA[23] 0.002141 −1.99 6.31 0.005063 −0.4289 7.79
HBA 0.00121 −1.76 6.74 0.00 −0.3609 10.4

6.2. Case Study with Time Delays Using the FOPI Controller
6.2.1. A Deregulated Environment with a Renewable Multi-Source System

An experiment using a time-delayed AGC model of a three-area renewable-based
hybrid system with distributed generation is conducted in this research. Appendix B
depicts the hybrid system’s parameter values. The GM and PM [32] for the provided AGC
system outlined in Section 3 are used to calculate the MADB. For the constant time delay
with the varying rate µ = 0.0, the delay margins of τd for different values of KP & KI for the
different fractional order (λ) are obtained, which can aid in the design of FOPI controllers
for a wide range of stable operations of the proposed three-area hybrid system.

Here, a renewable hybrid system with an FOPI controller is studied in a deregulated
context. Tables 3–5 show the delay margin of τd determined using EBA for the different
values of λ in the KP & KI plane. The delay margin is evaluated for different sets of
fractional orders through the proposed technique to identify the stability region of the
proposed time delayed system under a deregulated scenario. The delay margin results for
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the constant time delay (µ = 0) for different fractional orders (λ = 0.1 to 0.4, 0.6, and 0.8)
have been summarized.

(a)

(b)

(c)
Figure 4. (a) Frequency deviation in area 1 in Hz p.u. (b) Frequency deviation in area 2 in Hz p.u.
(c) Tie−power error in MW in p.u. (BFA [19], MFOA [20], COKHA [21], and GOA [23]).
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Table 3. Delay margin for FOPI controller for λ = 0.1 and 0.2

µ = 0 (For Constant Time Delay) [40,41] Fractional Order λ = 0.1

KP
Unilateral Contract (KI) Bilateral Contract (KI)

For τd = 3.521 s. 0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6 For τd = 2.245 s. 0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6

0.1 18.69 16.55 12.05 5.624 3.921 1.625 3.854 4.201 4.869 2.935 2.899 3.675
0.2 11.95 10.02 7.965 3.875 3.118 1.496 3.447 4.268 3.512 2.754 1.985 2.489
0.3 10.16 8.056 7.112 3.886 3.112 2.076 3.021 3.954 2.887 2.335 1.357 4.367
0.4 6.562 4.021 3.521 3.021 2.567 1.456 3.124 2.964 2.245 2.004 1.33 3.925
0.5 4.865 4.345 3.662 2.632 2.016 1.425 1.665 1.565 1.242 1.056 0.995 1.589
0.6 3.596 3.945 2.867 3.112 2.079 1.895 1.112 1.668 2.019 1.662 2.435 3.167
0.7 2.567 2.231 1.892 1.652 1.106 0.765 1.557 1.356 1.662 2.009 1.361 2.461
0.8 1.210 2.142 1.667 1.251 1.324 0.462 0.541 1.092 1.117 0.625 1.092 1.312
0.9 0.657 1.351 1.452 1.001 0.967 0.456 0.974 1.221 1.621 0.462 1.012 1.217
1.0 0.524 0.746 0.532 0.447 0.608 0.346 0.445 0.562 0.947 0.436 1.025 1.401
1.1 0.376 0.228 0.314 0.537 0.258 0.462 1.021 0.312 1.006 0.537 0.628 1.229

µ = 0.0 (Varying Rate of Time Delay) [40,41] Fractional Order λ = 0.2

KP

Unilateral Contract (KI) Bilateral Contract (KI)

For τd = 4.032 s. 0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6 For τd = 2.776 s. 0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6

0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2

0.1 15.03 11.43 9.64 6.321 2.035 0.325 9.821 7.69 5.035 3.254 2.132 1.117
0.2 13.24 10.25 8.115 6.796 2.115 1.254 10.12 8.254 6.785 3.285 2.875 1.085
0.3 12.98 8.641 7.125 6.549 3.102 0.956 7.625 6.166 4.225 2.789 2.995 4.675
0.4 8.652 6.385 4.032 3.685 2.295 0.792 3.654 4.325 2.776 1.602 2.469 3.679
0.5 8.110 7.110 6.542 4.825 1.259 0.992 3.356 2.976 3.214 3.679 2.224 3.025
0.6 7.665 6.532 3.102 2.516 1.296 0.561 3.691 3.998 2.976 1.965 2.291 1.765
0.7 7.869 3.271 1.652 2.109 0.567 0.329 0.1576 1.254 2.302 3.021 2.163 1.219
0.9 6.894 3.102 1.851 0.867 0.325 0.112 0.916 1.096 2.954 2.110 1.657 2.957
1.0 5.789 1.129 0.649 0.320 0.109 0.096 1.127 2.254 1.897 2.214 1.627 2.961
1.1 1.425 0.697 0.527 0.339 0.246 0.194 0.762 1.165 1.562 1.602 1.658 2.118
1.2 0.557 0.395 0.302 0.114 0.259 0.112 1.112 2.621 2.102 1.579 1.221 2.187

Table 4. Delay margin for proposed FOPI controller for λ = 0.3 and 0.4

µ = 0 (For Constant Time Delay) [40,41] Fractional Order λ = 0.3

KP
Unilateral Contract (KI) Bilateral Contract (KI)

For τd = 6.328 s. 0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6 For τd = 3.014 s. 0.05 ≤ KP ≤ 0.3 & 0.1 ≤ KI ≤ 0.2

0.1 20.55 18.33 7.651 5.951 3.891 2.321 4.412 5.042 3.379 2.402 1.875 2.024
0.2 11.03 12.54 6.689 4.328 2.887 1.957 3.135 2.781 1.878 1.562 1.251 2.012
0.3 8.861 6.669 5.032 3.102 2.451 1.210 2.965 3.701 2.425 1.861 1.560 2.865
0.4 7.765 6.562 6.328 4.321 1.746 1.152 2.954 3.613 3.014 1.814 1.583 3.189
0.5 4.576 5.176 3.954 2.021 2.689 1.290 0.989 1.476 1.435 1.902 1.117 2.452
0.6 3.897 4.108 2.759 2.591 2.113 1.995 1.195 1.005 2.294 1.501 0.752 0.531
0.7 2.292 2.012 1.765 1.425 1.140 0.762 1.421 1.097 1.712 2.439 1.392 3.057
0.8 1.337 2.154 1.619 1.379 1.134 0.731 0.632 1.193 1.575 0.925 1.349 1.125
0.9 0.701 1.693 1.228 0.924 1.135 1.477 0.7254 1.098 1.299 0.719 1.125 1.369
1.0 0.577 0.919 0.717 0.795 0.601 0.389 0.652 1.025 1.569 1.229 0.987 1.125
1.1 0.695 0.762 0.479 0.964 0.351 0.7161 1.596 1.125 0.993 0.412 0.817 1.227

µ = 0.0 [40,41] Fractional Order λ = 0.4

KP

Unilateral Contract (KI) Bilateral Contract (KI)

For τd = 7.102 s. 0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6 For τd = 4.325 s. 0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6

0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1 1.2

0.1 20.21 13.51 7.214 6.541 3.0285 0.785 9.842 7.698 5.785 3.894 3.185 2.441
0.2 19.54 14.25 9.584 7.895 2.854 1.334 9.798 8.195 5.445 3.025 2.051 3.195
0.3 20.54 10.29 8.065 7.968 1.462 0.115 7.956 5.036 3.016 3.025 2.112 2.956
0.4 20.65 8.325 7.102 4.912 1.952 0.234 5.165 4.225 4.325 2.521 2.028 3.235
0.5 21.03 8.432 6.102 3.895 1.229 0.109 3.295 4.069 3.194 3.526 2.445 3.012
0.6 20.02 6.105 3.025 2.052 1.102 0.292 2.002 3.896 3.399 3.112 2.092 2.145
0.7 17.89 3.563 2.353 1.869 0.659 0.259 2.405 2.559 3.755 4.119 1.895 3.757
0.8 10.02 2.672 1.652 0.812 0.702 0.235 1.775 1.572 2.095 2.685 1.775 3.025
0.9 5.726 1.115 0.8325 0.720 0.514 0.232 1.362 2.012 2.105 2.899 1.852 2.954
1.1 1.586 0.772 0.835 0.312 0.739 0.445 0.742 2.332 3.025 2.425 1.667 2.547
1.1 0.778 0.5471 0.5124 0.6951 0.3591 0.2421 1.227 2.521 2.901 2.039 1.001 2.135
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Table 5. Delay margin for FOPI controller for λ = 0.6 and 0.8.

µ = 0 (For Constant Time Delay) [40,41] Fractional Order λ = 0.6

KP
Unilateral Contract (KI) Bilateral Contract (KI)

For τd = 7.234 s 0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6 For τd = 4.112 s 0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6

0.1 30.225 21.025 17.85 12.24 7.845 6.621 4.425 4.105 3.102 2.785 2.102 2.522
0.2 15.03 13.02 11.054 7.895 6.425 3.775 2.471 1.987 3.657 1.442 1.014 2.957
0.3 12.34 8.964 9.163 4.752 3.254 1.476 3.95 4.302 4.112 2.103 1.897 3.147
0.4 6.725 7.258 7.234 4.067 1.897 1.251 3.478 2.897 3.255 1.987 1.425 3.752
0.5 5.761 4.325 3.965 2.462 2.229 1.658 1.289 0.896 1.987 1.625 1.235 2.785
0.6 4.789 3.987 3.125 2.995 2.257 1.992 1.025 0.954 2.654 1.972 1.065 0.765
0.7 2.189 1.892 1.567 1.665 1.140 0.967 1.314 1.005 1.254 2.957 1.659 3.992
0.8 2.567 2.068 1.954 1.462 1.203 0.941 0.786 1.335 1.776 1.292 1.465 1.214
0.9 0.981 1.975 1.524 1.321 1.213 1.577 0.925 1.945 1.542 0.967 1.456 1.251
1.0 0.964 0.867 0.627 0.430 0.612 0.967 0.183 1.235 1.569 1.798 0.887 1.035
1.1 0.767 0.625 0.514 0.320 0.102 0.9614 1.897 1.234 0.975 0.532 0.977 1.876

µ = 0.0 (For Constant Time Delay) [40,41] Fractional Order λ = 0.8

KP

Unilateral Contract (KI) Bilateral Contract (KI)

For τd = 8.265 s 0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6 For τd = 4.025 s. 0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6

0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2

1.0 30.02 26.62 14.45 12.24 6.85 3.525 14.64 12.24 8.785 6.954 5.784 4.321
0.2 22.65 18.75 12.90 9.451 8.354 3.452 11.147 10.075 7.652 5.847 3.995 2.652
0.3 21.54 17.58 11.71 10.375 8.475 3.654 6.487 4.321 2.801 2.224 1.841 2.024
0.4 10.04 9.524 8.265 6.147 4.320 1.221 0.992 3.954 4.025 2.721 1.942 2.864
0.5 21.99 14.25 10.02 8.765 6.754 0.541 2.574 2.728 2.002 1.954 3.957 7.015
0.6 19.75 9.754 7.871 4.574 3.024 1.279 2.995 3.976 4.652 3.214 1.954 2.745
0.7 18.92 9.471 6.974 5.471 3.114 1.287 2.975 3.102 3.897 4.775 1.947 3.257
0.8 12.25 7.651 3.14 1.847 0.702 0.235 1.258 1.957 2.147 2.775 1.525 3.147
0.9 6.021 2.154 0.987 0.564 0.314 0.127 1.678 2.758 2.564 3.287 1.957 3.002
1.0 1.425 0.772 0.9325 0.757 0.8725 0.652 0.512 3.214 3.324 2.214 1.857 2.957
1.1 0.978 0.625 0.312 0.725 0.478 0.342 1.574 2.521 3.775 2.432 1.467 2.025

6.2.2. Poolco-Based Transaction

Poolco-based operations, in which DISCOs have a contract with other GENCOs in the
same area, involve all GENCOs equally. A load disturbance of 0.1 p.u (MW) occurred in
area 1. In this example study, time delays τd = 6.102 s to 6.238 s were employed constant
time delay (µ = 0) before controller for area 1, area 2 and area 3 respectively. Consider
the following scenario, where DISCO1, DISCO2 have a power contract with GENCO1,
GENCO2, and GENCO3, which are represented by a DPM matrix [23], as given in (45).

DPM =



0.5 0.5 0 0
0.25 0.25 0 0
0.25 0.25 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 (45)

Total generation must match the load demand in steady-state conditions, which is
given by (46). 

∆Pg1ss
∆Pg2ss
∆Pg3ss
∆Pg4ss
∆Pg5ss
∆Pg6ss

 =



0.5 0.5 0 0
0.25 0.25 0 0
0.25 0.25 0 0

0 0 0 0
0 0 0 0
0 0 0 0




0.1
0.1
0.0
0.0

 (46)

Simulations are conducted primarily for constant time delay using an FOPI controller
with λ) ranging from 0 to 1. The EBA approach is used to calculate the delay margin, as
shown in Tables 3–5. In the case of constant time delay (µ = 0.0), the delay margin of
τdm grows (from 3.521 s to 6.102 s) with rising value of fractional order (λ = 0.1 to 0.8) for
a set of KP and KI values within a particular range (0.1 < Kp < 0.5 & 0.2 < KI < 0.6).
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The stability range for an FOPI controller with λ = 0.6 for τd = 6.102 s is the same as the
time-varying delay τd = 8.265 s with λ = 0.8. For KP > 0.4 or KI > 0.6, the system moves
into an unstable zone for the time-varying delay τd = 8.265 s with λ = 0.8 and τd = 6.102 s
with λ = 0.4 of the FOPI controller. The system stability for the HBA-tuned P-I controller
(KI1 = 0.5624; KP1 = 0.3132; KI2 = 0.5624; KP2 = 0.2304; KI3 = 0.5566; KP3 = 0.2395) with
λ = 0.8 approaches a stable area, as shown in Figure 5a,b and as shown in Table 6.

(a)

(b)

(c)

Figure 5. (a) Area 1 frequency deviation for unilateral condition with 10% SLP type of load distur-
bance with time−varying delay τd = 6.102 s. at a rate of µ = 0.0. (b) Area 2 frequency deviation
for unilateral scenario with 10 % SLP type of load with time−varying delay τd = 6.102 s. at a rate
µ = 0.0. (c) Area 3 frequency deviation for for unilateral scenario with 10 % SLP type of load with
constant time delay τd = 6.328 s. at a rate µ = 0.0.
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Table 6. Gain values of FOPI controllers for thermal-solar-wind system (test system 2) with DGS
under deregulated environment in unilateral condition with time delays.

Fractional 0.1 ≤ Kp ≤ 0.5 & 0.2 ≤ KI ≤ 0.6 (Tables 3–5)

Order KP1 KI1 KP2 KI2 KP3 KI3 OBJ× 10−2

λ = 0.2 τd = 6.102′ with µ = 0.0 0.3142 0.1496 0.2258 0.5914 0.4695 0.4453 1.964

λ = 0.4 τd = 6.102′ with µ = 0.0 0.3542 0.4965 0.1167 0.321 0.196 0.3345 0.7916

λ = 0.6 τd = 6.102′ with µ = 0.0 0.3954 0.2349 0.4748 0.3951 0.2286 0.5672 0.3542

λ = 0.8 τd = 6.102′ with µ = 0.0 0.3132 0.5624 0.2304 0.5954 0.2395 0.5566 0.0251

∆ f1 ∆ f2 ∆ f3

OS US SS OS US SS OS US SS

λ = 0.2 HBA-tuned FOPI controller with fractional order λ = 0.2 go towards unstable system

λ = 0.4 HBA-tuned FOPI controller with fractional order λ = 0.4 go towards marginally stable system

λ = 0.6 0.213 −0.09654 16.21 0.32324 −0.005954 10.11 0.00263 −0.07892 18.99

λ = 0.8 0.00157 −0.07978 21.37 0.06183 −0.05963 25.83 0.04107 −0.0007595 13.53

Fractional 0.3 ≤ Kp ≤ 0.4 & 0.4 ≤ KI ≤ 0.6 (Tables 3–5)

Order KP1 KI1 KP2 KI2 KP3 KI3 OBJ× 10−2

λ = 0.2 τd = 6.328′ with µ = 0.0 0.321 0.573 0.3965 0.576 0.3061 0.5647 0.965

λ = 0.4 τd = 6.328′ with µ = 0.0 0.3357 0.5802 0.321 0.574 0.4621 0.4765 0.2471

λ = 0.6 τd = 6.328′ with µ = 0.0 0.324 0.5874 0.3789 0.5624 0.3054 0.684 0.0457

λ = 0.8 τd = 6.328′ with µ = 0.0 0.375 0.594 0.3127 0.601 0.3571 0.5974 0.00754

∆ f1 ∆ f2 ∆ f3

OS US SS OS US SS OS US SS

λ = 0.2 HBA-tuned FOPI controller with fractional order λ = 0.2 go towards unstable system

λ = 0.4 HBA-tuned FOPI controller with fractional order λ = 0.4 go towards marginally stable system

λ = 0.6 0.4512 −0.0165 5.97 0.674 −0.00447 8.63 0.00446 −0.0128 7.124

λ = 0.8 0.2239 −0.00912 11.24 0.01294 −0.001967 5.78 0.0000158 −0.00135 6.532

For the steady-state operation range of KP & KI are 0.3 ≤ KP ≤ 0.4 and 0.4 ≤ KI ≤ 0.6,
where the value of fractional order of the FOPI controller should greater than 0.4 (λ ≥ 0.4)
for constant time delay (µ = 0) at τd = 7.234 s. As a result, the system lost its stability
approach towards the oscillation mode for KP > 0.4 or KI > 0.6 at τd = 7.234 s. On the
other hand, as the fractional order decreases, the system becomes unstable (λ = 0.4 to 0.2),
even if the range of KP and KI (i.e., 0.4 ≤ KI ≤ 0.6 & 0.3 ≤ KI ≤ 0.4) is maintained. A
simulation-based delay margin further demonstrates that the suggested HBA-tuned FOPI
controller is capable of achieving system stability with a specific range of fractional orders
(0.4 ≤ λ ≤ 0.8). The dynamic responses for frequency deviation in area 1 and area 2 in the
context of constant time delay are presented in Figure 5c. The simulation results clearly
show that as the value of λ decreases, the oscillations become more unstable, whereas
as the fractional order (λ) increases, the oscillations slowly die out. For the time delay
(τd = 8.265 s), the dynamic response for HBA-tuned FOPI with λ = 0.8 steady state (ST/
10.25 s /∆ f1) is considerably faster than λ = 0.4 (ST/17.12 s/∆ f1). From the standpoint
of stability, HBA-based FOPI with λ = 0.8 yields the lowest values of the ITSE, OS, US,
and ST.

The simulation results serve to verify the accuracy of the EBA used to calculate the delay
margin, the comparative analysis of which is mentioned in Table 7 & shown in Figure 6a–c.
The FOPI controller lies in the stable region for the time-varying delay as well as the constant
time delay with the specific fractional order λ during the design of the LFC scheme under
the unilateral condition, which has been verified through the dynamic responses of the time
delayed hybrid system.
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Table 7. Stability analysis for 0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6 using gain margin (GM) and phase
margin (PM) from Bode plots for specified time delay (τd).

Gain of KP & KI GM (µ = 0.0) PM (µ = 0.0) Delay
Stability

with Fractional Order (λ) at ′τd = 7.102 s.’ at ′τd = 7.102 s.’ Margin (τdm)

λ = 0.2, KP = 0.3021:0.3789:0.3112, KI = 0.4603:0.5914:0.5861 4.786 dB −1.086◦ 6.542 s. No

λ = 0.4, KP = 0.3692:0.3021:0.3214, KI = 0.4786:0.6012:0.5314 7.56 dB 0◦ 7.102 s Marginally stable

λ = 0.6, KP = 0.3066:0.4166:0.3101, KI = 0.5541:0.3106:0.5041 1.925 dB ∞ s Yes

Gain of KP & KI GM (µ = 0.0) PM (µ = 0.0) Delay
Stability

with Fractional Order (λ) at ′τd = 6.328 s’ at ′τd = 6.328 s’ Margin (τdm)

λ = 0.1, KP = 0.321:0.396:0.3061, KI = 0.573:0.516:0.5647 1.184 dB −1.025◦ 3.521 s No

λ = 0.3, KP = 0.3357:0.321:0.4021, KI = 0.5502:0.574:0.5106 11.03 dB 5.625◦ 6.328 s Marginally stable

λ = 0.8, KP = 0.375:0.3127:0.3571, KI = 0.544:0.601:0.5974 1.0856 dB ∞ 8.265 s Yes

(a)

(b)

Figure 6. (a) Bode diagram when µ = 0 for constant time delay at τd = 7.102 s in unilateral case.
(b) Bode diagram when (µ = 0) for time delay at τd = 7.234 s in the unilateral case.
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6.2.3. Bilateral Transaction

In the bilateral case, the constant time delay τd = 3.014 s and τd = 3.194 s for λ are
considered. For the bilateral contract, power is transferred from the GENCO to the own
DISCO as well as other area DISCOs. A change in the DPM matrix in this scenario can be
stated as per (47).

DPM =



0.1 0.2 0.5 0.3
0.2 0.1 0 0.1
0.0 0.1 0.3 0.2
0.3 0.2 0.1 0.1
0.2 0.3 0.0 0.1
0.2 0.1 0.1 0.2

 (47)

The following values, as given by (48), are created to meet demand and maintain the
system’s steady-state:

∆Pg1ss = 0.11p.u.(MW);
∆Pg2ss = 0.03p.u.(MW);
∆Pg3ss = 0.06p.u.(MW);
∆Pg4ss = 0.07p.u.(MW);
∆Pg5ss = 0.06p.u.(MW);
∆Pg6ss = 0.06p.u.(MW);


(48)

The dynamic response depicts that for λ = 0.4, the system evolves towards an unstable
area when KP > 0.5 and KI > 0.6 for τd = 3.194 s. When the time delay τd is shorter than the
delay margin (τdm < τd), the oscillations fade away and the system’s response approaches
a stable area, which can be achieved using the HBA technique. As demonstrated in Table 8,
the gain value of an FOPI controller based on HBA is within the delay margin. As described
before, the delay margin is primarily estimated using EBA. The simulation results are first
used to investigate the delay margin for a constant time delay (µ = 0.0) with a delay of
τd = 3.194 s. Figure 7a depicts the system’s response. The stability limit of the FOPI
controller for the time-varying delay (τd = 3.194 s) is 0.1 ≤ KP ≤ 0.5 & 0.2 ≤ KI ≤ 0.6
(KP & KI) for fractional order range (0.2 ≤ λ ≤ 0.8).

Table 8. Gain values of FOPI controllers for thermal−solar−wind system (test system 2) with DGS
under deregulated environment in bilateral condition with time delays.

Fractional 0.1 ≤ Kp ≤ 0.5 & 0.2 ≤ KI ≤ 0.6 (Tables 3–5)

Order KP1 KI1 KP2 KI2 KP3 KI3 OBJ× 10−2

λ = 0.2 τd = 3.194′ with µ = 0.0 0.1212 0.3591 0.4214 0.2514 0.1148 0.1067 1.997
λ = 0.4 τd = 3.194′ with µ = 0.0 0.1559 0.5016 0.3621 0.1054 0.6214 0.5745 0.198
λ = 0.6 τd = 3.194′ with µ = 0.0 0.3398 0.598 0.3547 0.5617 0.3097 0.4758 0.1421
λ = 0.8 τd = 3.194′ with µ = 0.0 0.375 0.594 0.3127 0.601 0.3571 0.5974 0.00754

∆ f1 ∆ f2 ∆ f3

OS US SS OS US SS OS US SS

λ = 0.2 HBA-tuned FOPI controller with fractional order λ = 0.2 go towards unstable system
λ = 0.4 HBA-tuned FOPI controller with fractional order λ = 0.4 go towards marginally stable system
λ = 0.6 0.2794 −0.1952 6.57 0.1192 −0.8132 7.12 0.3174 −0.574 14.34
λ = 0.8 0.00157 −0.07978 21.37 0.06183 −0.05963 25.83 0.04107 −0.0007595 13.53

Fractional 0.3 ≤ Kp ≤ 0.4 & 0.4 ≤ KI ≤ 0.6 (Tables 3–5)

Order KP1 KI1 KP2 KI2 KP3 KI3 OBJ× 10−2

λ = 0.1 τd = 3.014′ with µ = 0.0 0.3010 0.5914 0.374 0.3947 0.313 0.5531 1.008
λ = 0.4 τd = 3.014′ with µ = 0.0 0.3972 0.5701 0.3071 0.4348 0.3901 0.5147 0.7014
λ = 0.6 τd = 3.014′ with µ = 0.0 0.33952 0.4021 0.3965 0.4965 0.3925 0.3414 0.04312
λ = 0.8 τd = 3.014′ with µ = 0.0 0.375 0.594 0.3127 0.601 0.3571 0.5974 0.00754

∆ f1 ∆ f2 ∆ f3

OS US SS OS US SS OS US SS

λ = 0.2 HBA-tuned FOPI controller with fractional order λ = 0.2 go towards unstable system
λ = 0.4 HBA-tuned FOPI controller with fractional order λ = 0.4 go towards marginally stable system
λ = 0.6 0.4512 −0.0165 5.97 0.674 −0.00447 8.63 0.00446 −0.0128 7.124
λ = 0.8 0.002239 −0.001054 9.87 0.00364 −0.01287 11.47 0.0000158 −0.00226 8.324
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(a)

(b)

(c)

Figure 7. (a) Area 1 frequency deviation for Bilateral condition with a 10 % SLP type of load with
time-varying delay τd = 4.325 s. at a rate µ = 0.0. (b) Area 2 frequency deviation for bilateral scenario
10% SLP type of load with constant time delay τd = 3.014 s at a rate of µ = 0. (c) Area 3 frequency
deviation for 10 % SLP type of load with constant time delay τd = 3.014 s at rate of µ = 0.
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The time delay is evaluated as τd = 3.194 s for time delays (µ = 0). The time delay
attack decreases the system’s performance and pushes it towards an unstable zone, as
seen in Figure 7a–c. Similar conclusions may be drawn from those findings, which show
that an HBA-based FOPI controller with λ = 0.3 is capable of achieving system stability
within a delay margin. Lowering λ from 0.8 to 0.6 slows down the system and takes a
long time to achieve steady state (ST/29.14 s/∆ f1). However, increasing λ from 0.3 to
0.8 at constant time delay (µ = 0) can improve it efficiently (ST/9.87 s/∆ f1). As a result,
the proposed coordinated HBA-tuned FOPI controller with λ = 0.8 has a better dynamic
response and provides better overshoot, undershoot, and settling time, which can produce
a sufficient increase in stability and quickly restore the frequency and tie-line power to
their steady-state values, as shown in Table 8. The HBA-tuned FOPI with a greater order
of fraction delivers the best dynamic response and has better overshoot (OS), undershoot
(US), and settling time (ST) (as seen in the dynamic responses).

6.2.4. Contract Violation

The results are checked in case of contract violation to authenticate the effectiveness of
the proposed HBA technique in case of constant time delay of τd = 5.231 s and the constant
time delay of τd = 3.021 s. Table 9 shows the optimum gain values of the KP and KI of
FOPI controllers achieved by the suggested HBA for various fractional (λ = 0.1 to 0.4,
0.6, and 0.8) orders. The FOPI controller gain values are also given with a delay margin
(0.05 ≤ KP ≤ 0.4 & 0.1 ≤ KI ≤ 0.6), which is derived using EBA.

Table 9. Gain values of FOPI controllers for thermal−solar−wind system (test system 2) with DGS
system under deregulated environment in contract violation condition with time delays.

Fractional 0.1 ≤ Kp ≤ 0.5 & 0.2 ≤ KI ≤ 0.6 (Tables 3–5)

Order KP1 KI1 KP2 KI2 KP3 KI3 OBJ× 10−2

λ = 0.2 τd = 5.231′ with µ = 0.5 0.3671 0.4342 0.3012 0.5647 0.3301 0.5647 1.547
λ = 0.4 τd = 5.231′ with µ = 0.5 0.3649 0.5012 0.3352 0.5741 0.3901 0.5019 0.8914
λ = 0.6 τd = 5.231′ with µ = 0.5 0.3961 0.4108 0.3374 0.5814 0.3397 0.5712 0.0941
λ = 0.8 τd = 5.231′ with µ = 0.5 0.2167 0.3241 0.287 0.1247 0.4214 0.1147 0.002387

∆ f1 ∆ f2 ∆ f3

OS US SS OS US SS OS US SS

λ = 0.2 HBA-tuned FOPI controller with fractional order λ = 0.2 go towards unstable system
λ = 0.4 HBA-tuned FOPI controller with fractional order λ = 0.4 go towards marginally stable system
λ = 0.6 0.00894 −0.002604 33.65 0.012945 −0.01014 12.24 0.00921 −0.00685 9.12
λ = 0.8 0.00157 −0.07978 21.37 0.06183 −0.05963 25.83 0.04107 −0.0007595 13.53

Fractional 0.3 ≤ Kp ≤ 0.4 & 0.4 ≤ KI ≤ 0.6 (Tables 3–5)

Order KP1 KI1 KP2 KI2 KP3 KI3 OBJ× 10−2

λ = 0.1 τd = 3.021′ with µ = 0.0 0.3094 0.5391 0.3602 0.5422 0.3658 0.5712 1.847
λ = 0.3 τd = 3.021′ with µ = 0.0 0.3127 0.5464 0.3901 0.5667 0.3201 0.4967 0.0567
λ = 0.6 τd = 3.021′ with µ = 0.0 0.396 0.5654 0.3142 0.5254 0.3647 0.5247 0.00147
λ = 0.8 τd = 3.021′ with µ = 0.0 0.3891 0.5022 0.3451 0.5714 0.3522 0.5214 0.001191

∆ f1 ∆ f2 ∆ f3

OS US SS OS US SS OS US SS

λ = 0.2 HBA-tuned FOPI controller with fractional order λ = 0.2 go towards unstable system
λ = 0.4 HBA-tuned FOPI controller with fractional order λ = 0.4 go towards marginally stable system
λ = 0.6 0.001147 −0.0014 9.54 0.1942 −0.003267 14.22 0.09211 0 10.22
λ = 0.8 0.00214 −0.000142 6.24 0.1046 −0.000921 5.64 0.009164 0 4.67

In a contract violation case, DISCO breaks the contract by demanding more electricity
from GENCO than is specified in the contract. An extra amount of power 0.1 p.u (MW) is
demanded by DISCO, so that ∆Puc1= 0.1 p.u (MW), ∆Puc2= 0.0; ∆Puc3= 0.0; ∆Puc4= 0.0.
The rest of the scenarios are the same as they were in the bilateral transaction. Therefore, ∆Puc1
+ ∆Puc1 = ∆Puc1,loc1 = 0.1 + 0.0 = 0.1 p.u (MW), and ∆Puc1,loc2 = ∆Puc3 + ∆Puc4 = 0.0 p.u (MW).
In the event of a contract violation scenario, the area control error (ACE) participation
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factor (apf) plays a critical part in violating the contract between GENCOs and DISCOs.
The following equation is created to meet demand and maintain the system’s steady-state:


∆Pg1ss
∆Pg2ss
∆Pg3ss
∆Pg4ss

 =


cpf11 cpf12 cpf13 cpf14
cpf21 cpf22 cpf23 cpf24
cpf31 cpf32 cpf33 cpf34
cpf41 cpf42 cpf43 cpf44




∆PL1
∆PL2
∆PL3
∆PL4

+


∆Puc,Loc1 0 0 0
0 ∆Puc,Loc2 0 0
0 0 ∆Puc,Loc3 0
0 0 0 ∆Puc,Loc4




apf11
apf12
apf13
apf14

 (49)

As a result, area 1 demands surplus un-contract power, which is automatically com-
pensated by GENCO2 and GENCO3 of area 2 and area 3. Therefore,

∆Pg1ss = 0.18p.u.(MW);
∆Pg2ss = 0.1155p.u.(MW);
∆Pg3ss = 0.085p.u.(MW);
∆Pg4ss = 0.16p.u.(MW);
∆Pg5ss = 0.16p.u.(MW);
∆Pg6ss = 0.16p.u.(MW);


(50)

Table 9 and Figure 8 compare the performance of the FOPI controller with various
fractional orders (λ = 0.1 0.4, 0.6, and 0.8) by recording the dynamic responses of the
multi-source hybrid system in the form of OS, US, and ST, as well as the objective function.
The results show that the suggested HBA-based FOPI with fractional order λ = 0.8 is
responsible for the best solution quality for KP, KI (0.3 ≤ KP ≤ 0.4 & 0.4 ≤ KI ≤ 0.6) for
time delays τd = 5.231 s and τd = 3.021 s for the proposed AGC system.

(a)

Figure 8. Cont.
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(b)

(c)

Figure 8. (a) Area 1 frequency deviation for contract violation with SLP type load and 10% load
disturbance with time−varying delay τd = 5.231 s at a rate µ = 0. (b) Area 2 frequency deviation
for contract violation case with SLP type of load and 10% load disturbance with constant time delay
τd = 3.021 s at a rate of µ = 0. (c) Frequency deviation of Area 3 with constant time delay τd = 3.021 s.
at a rate µ = 0 at 10% load disturbance.

7. Robustness Analysis of the Proposed Method

To test the robustness of the FOPI controller, a random load perturbation (RLP) is
applied to area 1 of the supplied solar-wind-thermal system using the proposed HBA with
different values of λ. The RLP load type value varies by ±0.02 p.u (MW).

A random step load change is applied in area 1 with a time delay τd = 7.365 s to judge
the robustness of the proposed HBA-based FOPI controller under specified time delays.
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Figure 9a depicts the RLP (random type of load) pattern applied to the suggested hybrid
system. Under the deregulated scenario, the gain value of the different parameters of the
FOPI controller (within the delay margin) is optimized simultaneously in three separate
cases. The comparison results are shown in Table 10. As demonstrated in Figure 9b–d, the
peak magnitude of the frequency and the tie-power oscillations with HBA-based FOPI with
the fractional order (λ = 0.8) is quickly attenuated under the RLP type of load, proving the
robustness of the HBA-based proposed controller.

(a) (b)

(c) (d)

Figure 9. (a) Using a load of ±0.02 p.u., random load perturbation was performed (MW). (b) For
a ±0.02 (p.u) RLP type of load, frequency variation in area 1 in Hz for unilateral condition with
time−varying (τd = 7.365 s) (µ = 0) delay. (c) For a ±0.02 (p.u) RLP type of load, frequency variation
in area 2 in Hz for unilateral condition with time−varying (τd = 7.365 s) (µ = 0) delay. (d) For
a ±0.02 (p.u) RLP type of load, frequency variation in area 3 in Hz for unilateral condition with
constant time (τd = 5.127 s) (µ = 0) delay.
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Table 10. Gain values of FOPI controller to (test system 2) hybrid thermal−wind−solar system with
DGS constant time delays τd = 7.365 s and RLP type of load for ±0.02 MW (p.u).

0.3 ≤ KP ≤ 4.0 & 0.4 ≤ KI ≤ 0.6 Optimized Parameter Unilateral Contract

FOPI (λ = 0.2) FOPI (λ = 0.4) FOPI (λ = 0.8)

KP1 0.3036 0.354 0.3364
KI1 0.571 0.5014 0.5892

P-I Controller with KP2 0.3296 0.3964 0.3345
Fractional order KI2 0.5012 0.5361 0.5714
0.2, 0.4 & 0.8 KP3 0.3120 0.3941 0.3241

KI3 0.5941 0.5601 0.5901

OBJ 1.231 0.621 0.1754

Bilateral Contract

FOPI (λ = 0.2) FOPI (λ = 0.4) FOPI (λ = 0.8)

KP1 0.3017 0.3924 0.3195
KI1 0.5952 0.5010 0.5431
KP2 0.3016 0.3891 0.3457
KI2 0.5013 0.5512 0.5014
KP3 0.3901 0.3410 0.3324
KI3 0.5001 0.5447 0.5131

OBJ 0.0674 0.0221 0.00754

Contract violation

FOPI (λ = 0.2) FOPI (λ = 0.4) FOPI (λ = 0.8)

KP1 0.3001 0.3109 0.3794
KI1 0.5974 0.5197 0.5661
KP2 0.3914 0.3107 0.3761
KI2 0.5013 0.5512 0.5014
KP3 0.3741 0.3011 0.3951
KI3 0.5201 0.5901 0.5461

OBJ 0.002513 0.000954 0.000124

8. Conclusions

This article focuses on optimal delay tuning to overcome the communication delay
problem during the synchronization of non-conventional (wind-solar) power plants with
conventional energy plants in order to reduce dependency on traditional resources and
bring renewable energy resources into the mainstream of the power generating sector
(thermal plants). To assess the performance of the proposed HBA, initially, a two-area
thermal system is studied, and a comparison is performed between HBA, COKHA, GOA,
BFA, and MFOA. The proposed HBA technique excels the other algorithms in terms of
dynamic response. Furthermore, by considering time delays with a specified range of ‘λ’ in
the LFC control loop, a delay dependent stability criterion is proposed to find the delay
margin for the FOPI controller. It has been analyzed how the delay margin considerably
fluctuates with different values of ‘λ’ of the FOPI controller for a certain range of delay.
The results revealed that as the value of ‘λ’ rises, the delay margin (τdm) increases in a
renewable-based three-area hybrid system with distributed generation in a deregulated
environment. Finally, it can be seen that a hybridized DGS system performs better since it
can meet specific power requirements and minimize the system oscillation totally.

The major findings of this paper are summarized below:

• The delay margin of the FOPI controller is determined using empirical bode analysis (EBA),
which may be used in designing the controller for the aforesaid linearized time delayed
system and verifying it using their dynamic performance in three different instances.

• Using the HBA method, all of the parameters of the FOPI controller in area 1, area 2,
and area 3 are stable within the permissible delay margin. An experiment is run with
a range of fractional order (λ from 0.1 to 0.8) for an FOPI controller with a set of KP
and KI values maintained within a given delay margin. The investigation shows that
the frequency response and tie-line power fluctuations are strongly affected by the
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controller for a given time delay. Within a specified control parameter set (KP & KI),
the fractional order (λ) may enhance the delay margin (τdm).

• Use the RLP type of load to test the FOPI controller’s resilience performance for the
provided system.

• The findings show how the proposed controlling technique can make the hybrid
system optimally stable over a wide range of delays.

The technique proposed in this paper may be extended to consider the following
research initiatives in the future:

• The AGC time-delay systems with multiple areas (more than three).
• In the case of random nature time delay in a multi-area system, structured singular

value and Schur–Cohn (hemetic matrix creation) may determine the MADB and
provide a thorough stability study.

• Test the stability of a time-delay system with advanced controllers (such as tilt-integral-
derivative (TID), two-degrees-of-freedom (2DOF)-PID, 3DOF-PID, fractional-order
PID, and cascade PI–PID, TID, and cascade-TID, which are designed to handle both
constant and time-varying delays.
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Abbreviations
The following abbreviations are used in this manuscript:

AE Aqua electrolyzer
AGC Automatic generation control
BD Boiler dynamics
BESS Battery-energy-storage system
BFA Bacterial foraging algorithm
COKHA Chaotic oppositional krill herd algorithm
DGS Distributed generation system
DISCOs Distribution companies
DOF Degrees of freedom
DPM Distribution participation matrix
EBA Empirical bode analysis
FC Fuel cell
FO Fractional-order
FOPI Fractional-order proportional-integral
FPIDF Fuzzy proportional integral derivative filter
GCF Gain crossover frequency
GDB Governor dead band
GENCOs Generation companies
GM Gain margin
GOA Grasshopper optimization algorithm
GRC Governor rate constraints
HBA Honey badger algorithm
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LFC Load-frequency control
MADB Margin of allowable delay
MFOA Modified fruitfly optimization algorithm
NFZ Non-fragile PID controller
PCF Phase crossover frequency
PID Proportional-integral-derivative
PM Phase margin
RERs Renewable energy resources
TID Tilt-integral-derivative
WTG Wind-turbine generator

Appendix A. Renewable Three-Area Hybrid System

B1, B2 = 0.425 p.u MW/Hz; R1, R2 = 2.4 Hz/p.u ; TG1 = 0.08 s; TT1 = 0.3 s;
Tr1 = 10 s; Kr1 = 0.3 s; KP1 = 120 Hz/pu MW; KP2 = 120 Hz/pu MW; TP1 = TP2
= 20 s; Ptie12 = 200 MW; a12 = −1 , XG = 0.6 s; YG = 1.1 s; KT1 = KT2 = 0.6;
TRH = 41.6 s, TR = 5 s; TGH = 0.51 s, TW = 1 s, KH1 = KH2 = 0.3, Cg = 1;

bg = 0.049 s; TF = 0.239 s; TCR = 0.01 s; TCD = 0.2 s; RLP = ±0.02 p.u(Mw)

Appendix B. Value of Solar-Wind & Distributed Generation Parameter

KIB = 0.03; TIB = 26; TRB = 69; TD = 0.1; K1 = 0.85; K2 = 1.25; K3 = 0.92;
CB = 200; KWTG = 0.3; TWTG = 1.4; KAE = 0.02; TAE = 0.5; KFC = 0.01;
TFC = 3; KDEG = 0.03; TDEG = 23; KBESS = −0.003; TBESS = 0.1; a = 900;
b = −18; d = 50; KWT1 = 1.25; KWT2 = 1.10; TTP,WT1 = 0.3; TTP,WT2 = 0.65;
Kr = 10; Tr = 0.5; KPS = 120; TPS = 20; β = 0.9
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