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Abstract: This paper studies gene regulatory networks (GRNs) with distributed delays. The essential
concept of practical stability of the genes is introduced. We investigate the problems of practical
stability and global practical exponential stability of the GRN model under an impulsive control.
New practical stability criteria are proposed by designing appropriate impulsive controllers via the
Lyapunov functions approach. In the design of the impulsive controller, we consider the effect of
impulsive perturbations at fixed times and distributed delays on the stability of the considered GRNs.
Several numerical examples are also presented to justify the proposed criteria.
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1. Introduction

Genetic regulatory networks (GRNs) are very important classes of biological neural
networks that are used to model the complex dynamics and interactions between genes
(mRNA), proteins, and small molecules in the molecular level operating of organisms. Due
to the importance of such neural network models, the investigations of their qualitative
properties has attracted the attention of many experts in applied mathematics, biology,
neuroscience, control science, and cybernetics. Most of the researchers used different classes
of differential equations as models of genetic regulatory systems [1–7].

Due to the fact that delay effects cannot be neglected in the qualitative analysis of
GRNs, the delayed models are also intensively studied in the existing literature, including
some very recent publications [8–13]. However, since the concentrations of genes and
proteins depend on the properties of the regulatory function over a specified range of
previous time, then it is more adequate to consider distributed and unbounded delays in
GRNs. We can point out that, the research on such models is very rare [14,15]. For example,
in Ref. [14] the authors proposed a robust stability analysis for the following GRN with
distributed delay

ṁι = −aιmι(t) +
N

∑
o=1

bιo

∫ t

−∞
ko(t− h) f0(po(h))dh + Jι

ṗι = −cι pι(t) + dι

∫ t

−∞
kι(t− h)mι(h)dh,

(1)

where ι = 1, 2, . . . , N, mι(t), and pι(t) denote the gene expression level of the ι-th mRNA
node and ι-th protein at time t, respectively, aι and cι are positive real constants that
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represent the degradation rates, the translation rates are represented by the positive real
constants dι, and fo are the regulatory functions which are of the Hill form

fo(ω) =
(ω/βo)Ho

1 + (ω/βo)Ho
, ι, o = 1, 2, . . . , N,

in which βo are real positive constants, Ho represent the Hill coefficients, and the connecting
parameters are the constants bιo, given as

bιo =


αιo, if o is an activator of gene ι
−αιo, if o is a repressor of gene ι
0, if there is no link between the node o

and the gene ι,

the basal level of the repressor of gene ι is denoted as Jι and Jι = ∑o∈Iι
αιo, Iι is the collection

of all the o, which are repressors of the gene ι, and ko is the delay kernel.
In addition, impulsive perturbations can affect the qualitative behavior in GRNs.

In fact, GRN systems are very often subjected to short-term environmental changes at some
instants that affect the mRNA molecules and proteins concentrations. Hence, it is natural to
include impulsive conditions in the GRN models, and to study their effect on the behavior
and properties of the impulsively generalized models. It already well acclaimed that the
impulsive differential equations are used as a best formalism to describe processes with
abrupt changes during their evolution [16–18].

Using the theory of impulsive differential equations, several impulsive GRNs have
been proposed and their dynamical properties have been studied. For example, in Ref. [19]
the authors applied the method of Lyapunov functions to study the finite-time stability
of GRNs with impulsive effects. The paper [20] offered a methodology for analyzing the
asymptotic stability of a genetic network under impulsive control. Using the Lyapunov
method and linear matrix inequalities, the authors in Ref. [21] investigated the asymptotic
stability of delayed stochastic GRNs with impulses. Ref. [22] studied the asymptotic
stability of GRNs under impulse control using the direct Lyapunov method. In Ref. [23] an
impulsive control law for fractional-order neural GRNs has been proposed and the Mittag–
Leffler stability behavior was investigated under the designed impulsive controller. The
existence of almost periodic solutions to impulsive fractional GRN models with reaction-
diffusion terms is investigated in Ref. [24].

In addition, to avoid unwanted behavior of the states, different control methodologies
are applied to some classes of GRNs [25,26]. The type of control strategy called impulsive
control, in which the control signals are input into a system only at some time instants, has
been efficiently used in population control, ecosystem control, neuronal dynamics control,
and other fields [27–32]. The advantages in using impulsive controllers in stability and
stabilization of systems are also very well known [33,34].

As the authors of Ref. [20] pointed out, the stability behavior of genetic networks is
essential in the understanding of the living organism at both molecular and cellular levels.
That is why the stability properties of the proposed impulsive models of GRNs are the
most investigated qualitative properties. However, in all existing papers, the results on
asymptotic and finite-time stability properties are established [10,19–23].

However, from the applied point of view, another extended stability concept is more
appropriate. In numerous phenomena, where the model is asymptotically stable or finite-
time stable, but is useless in practice, the concept of practical stability is suitable [35]. In
such cases the trajectories of the model oscillate sufficiently close to a state of interest.
The practical stability notion is used by numerous researchers in the study of applied
models and interesting results have been obtained in Refs. [36–48]. However, despite the
superiority of this concept it is not yet introduced to GRNs, and the aim of this paper is to
fill the gap.
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In this paper, prompted by the above analysis, we design an impulsive control strategy
to a GRN model with distributed delay. We propose the practical stability concept to the
model and adapt the definitions of practical stability and global practical exponential stabil-
ity. Then, we apply the Lyapunov methodology to analyze the practically stable behavior
of the system under the impulsive control. Indeed, the direct method of Lyapunov is a very
powerful mechanism in the study of the qualitative properties of applied mathematical
models, including GRNs [19,21–23]. The main contributions of our paper are:

(1) Distributed delays are considered in our GRN model, which makes it more adequate
to a real system;

(2) We introduce the extended notion of practical stability to the GRN system which is
justifiable due to some economic and social factors and is applicable when the classical
strategies do not allow a mathematically ideal stable behavior;

(3) An appropriate impulsive control scheme is designed for the practically stable be-
havior of the genes which allows control signals to be applied only at some fixed
time instants;

(4) By the use of the Lyapunov function methodology and inequality techniques sev-
eral new sufficient practical stability criteria based on the impulsive control law
are provided;

(5) Numerical examples are presented to demonstrate the strength of the derived criteria.

The content of the paper is constructed according to the following plan. In Section 2 the
impulsive control model of GRNs is introduced and some preliminary results are reported.
The notion of practical stability is adapted for the proposed model. Some fundamentals
related to the Lyapunov method are also presented. In Section 3, the Lyapunov technique
is applied to establish the main impulsive control results on the practical stability. Different
criteria are proposed using different metrics. Several numerical examples are discussed in
Section 4.

2. The Impulsive GRN Model—Preliminaries

Before we propose the impulsive GRN model, we will define some notations. The
state space for the system featuring in the present research is RN ×RN , where RN is the
Euclidean N-dimensional space. We will use the norm of an m = (m1, m2, . . . , mN)

T ∈ RN

defined by ||m|| =
N

∑
ι=1
|mι|.

Let the impulsive instants τ1, τ2, . . . such that 0 < τ1 < τ2 < . . . and liml→∞ τl = ∞.
We propose the following impulsive control GRN model with distributed delays:

˙̄mι = −aιm̄ι(t) +
N

∑
o=1

bιo

∫ t

−∞
ko(t− h) fo( p̄o(h))dh + Jι, t 6= τl ,

˙̄pι = −cι p̄ι(t) + dι

∫ t

−∞
kι(t− h)m̄ι(h)dh, t 6= τl ,

m̄ι(τ
+
l ) = m̄ι(τl) + Mιl(m̄ι(τl)),

p̄ι(τ
+
l ) = p̄ι(τl) + Pιl( p̄ι(τl)),

(2)

where t ≥ 0, ι = 1, 2, . . . , N, m̄ι(τl) = m̄ι(τ
−
l ) and p̄ι(τl) = p̄ι(τ

−
l ) denote the gene expres-

sion level of ι-th mRNA molecule and ι-th protein at time τl before the impulsive controller
to be applied, respectively, and m̄ι(τ

+
l ) and p̄ι(τ

+
l ) denote the concentration of the ι-th

mRNA molecule and ι-th protein, respectively at τ+
l , i.e., after the application of the impul-

sive control law at τl , the impulsive functions Mιl and Pιl represent the abrupt variations
in m̄ι(t) and p̄ι(t), respectively, at τl , i.e., ∆(m̄ι(τl)) = m̄ι(τ

+
l )− m̄ι(τl) = Mιl(m̄ι(τl)) and

∆( p̄ι(τl)) = p̄ι(τ
+
l )− p̄ι(τl) = Pιl( p̄ι(τl)), ι = 1, 2, . . . , N, l = 1, 2, . . . .

For the model (2), we introduce a class of initial functions PCB[(−∞, 0],RN ], which
are bounded, piecewise continuous on (−∞, 0] with points of jump discontinuities at which
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the one-sided limits exist and the functions are continuous from the left. We will denote
the norm of a function φ̄ ∈ PCB[(−∞, 0],RN ] that corresponds to the norm || · || by

||φ̄||∞ = sup
υ∈(−∞,0]

||φ̄(υ)||.

Let φ̄, ϕ̄ ∈ PCB[(−∞, 0],RN ]. The initial conditions for the model (2) are of the type
m̄ι(υ; 0, φ̄) = φ̄ι(υ), −∞ < υ ≤ 0,
p̄ι(υ; 0, ϕ̄) = ϕ̄ι(υ), −∞ < υ ≤ 0,
m̄ι(0+; 0, φ̄) = φ̄ι(0), p̄ι(0+; 0, ϕ̄) = ϕ̄ι(0),

(3)

ι = 1, 2, . . . , N, where mι(0+; 0, φ̄) and pι(0+; 0, ϕ̄) are the right-hand side limits at t = 0.
The following assumptions for the introduced impulsive control GRN will be essential

in our analysis:

A1. For all o = 1, 2, . . . , N and any w, w̄ ∈ R, w 6= w̄ there exist constants f L
o such that the

activation functions fo are bounded and satisfy

0 ≤ fo(w)− fo(w̄)

w− w̄
≤ f L

o .

A2. The following inequality holds for the nonnegative continuous delay kernel functions
defined on R ∫ t

−∞
ko(h)dh ≤ κo

for some positive constants κo and all o = 1, 2, . . . , N.
A3. The functions Mιl and Pιl are continuous on R, ι = 1, 2, . . . , N, l = 1, 2, . . . .

The main goal of this paper is to derive practical stability criteria for the impulsive
control GRN model (2). To do this, we will adopt the following definition from [18,35].

Definition 1. The impulsive control GRN model (2) is:

(a) (η, H)-practically stable, if given (η, H) with 0 < η < H, we have ||φ̄||∞ + ||ϕ̄||∞ ≤ η
implies ||m̄(t)||+ || p̄(t)|| ≤ H, t ≥ 0;

(b) globally practically exponentially stable, if for all φ̄, ϕ̄ ∈ PCB[(−∞, 0],RN ] there exist
constants µ ≥ 0, Θ > 0 and H > 0 such that

||m̄(t)||+ || p̄(t)|| ≤ Θ(||φ̄||∞ + ||ϕ̄||∞)e−µt + H

for t ≥ 0.

Remark 1. Definition 1(a) shows that the notions of practical stability and Lyapunov stability are
different. The Lyapunov stability of a systems does not imply its practical stability and vice versa.
In addition, as we can see from part (b) of Definition 1, in some cases for H = 0 the global practical
exponential stability may imply global exponential stability [47].

Let φ, ϕ ∈ PCB[(−∞, 0],RN ] be initial functions corresponding to the state vectors
m, p ∈ RN of the GRN system (1), and denote

φm
ι (ξ) = φ̄ι(ξ)− φι(ξ), ξ ∈ (−∞, 0],

ϕ
p
ι (ξ) = ϕ̄ι(ξ)− ϕι(ξ), ξ ∈ (−∞, 0],

m̃ι(t) = m̄ι(t)−mι(t), t ≥ 0,

p̃ι(t) = p̄i(t)− pι(t), t ≥ 0,

ι = 1, 2, . . . , N.
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The impulsive controllers in (2) will be defined as

Mιl(m̄ι(τl)) = Um
ιl (m̄ι(τl)−mι(τl)),

Pιl( p̄ι(τl)) = Up
ιl( p̄ι(τl)− pι(τl)),

ι = 1, 2, . . . , N, l = 1, 2, . . . ,

(4)

where Um
ιl and Up

ιl are well defined functions to guarantee the existence of solutions of the
model (2) and the corresponding error system.

Then, the error system is

˙̃mι(t) = −aιm̃ι(t) +
N

∑
o=1

bιo

∫ t

−∞
ko(t− h)go( p̃o(h))dh, t 6= τl ,

˙̃pi(t) = −ci p̃i(t) + dι

∫ t

−∞
kι(t− h)m̃ι(h)dh, t 6= τl ,

m̃ι(τ
+
l ) = m̃ι(τl) + Um

ιl (m̃ι(τl)),

p̃ι(τ
+
l ) = p̃ι(τl) + Up

ιl( p̃ι(τl)),

(5)

where go( p̃o(t)) = fo( p̃o(t) + po(t)) − fo(po(t)), t ≥ 0, Um
ιl (0) = 0, Up

ιl(0) = 0,
ι, o = 1, 2, . . . , N, l = 1, 2, . . . .

Remark 2. As defined by Definition 1, the practical stability concepts for the impulsive con-
trol GRN system (2) can also be applied in the study of the practical synchronization between
the GRN model (1) and the impulsive control model (2) or to practical stability of the solution
(m̃(t) + m(t), p̃(t) + p(t))T of the error system (5). Hence, the impulses can be used to practically
stabilize the behavior of the GRN model (1).

Since we will study an impulsive control system, we will use the method of piecewise
continuous Lyapunov functions L : [0, ∞) × R2N → [0, ∞) in our practical stability
analysis [17,18,23].

Let Υl = (τl−1, τl)×R2N , l = 1, 2, . . . , τ0 = 0, Υ =
∞⋃

l=1

Υl .

Definition 2. A function L : [0, ∞)×R2N → [0, ∞) belongs to the class L0 if it satisfies the
following conditions:

1. The function L is continuous on
∞⋃

l=1

Υl and L(t, 0, 0) = 0 for t ≥ 0;

2. On each of the sets Υl the function L is locally Lipschitz continuous on the variables (m, p);
3. There exist the finite limits

L(τ−l , m, p)=lim
t→τl
t<τl

L(t, m, p), L(τ+
l , m, p)=lim

t→τl
t>τl

L(t, m, p)

and
L(τ−l , m, p) = L(τl , m, p)

for each l = 1, 2, . . . .

For the upper right-hand Dini derivatives of the Lyapunov functions of the class L0
with respect to the system (2) we will use the following definition.
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Definition 3. Given a function L ∈ L0. For φ̄, ϕ̄ ∈ PCB[(−∞, 0],RN ] the upper right-hand
derivative of L with respect to the system (2) is defined by

D+
(2)L(t, φ̄(0), ϕ̄(0))

= lim
s→0+

sup
1
s
[L(t + s, m̄(t + s; 0, φ̄), p̄(t + s; 0, ϕ̄))− L(t, φ̄(0), ϕ̄(0))],

where (m̄(t; 0, φ̄), p̄(t; 0, ϕ̄))T is the state of (2) with φ̄, ϕ̄ ∈ PCB[(−∞, 0],RN ].

The following result from Ref. [18] will also be used.

Lemma 1. Assume that the Lyapunov function L ∈ L0 is such that for φ̄, ϕ̄ ∈ PCB[(−∞, 0],RN ]
and t ≥ 0:

(i) L(t+, φ̄(0) + ∆(φ̄), ϕ̄(0) + ∆(ϕ̄)) ≤ L(t, φ̄(0), ϕ̄(0)), t = τl , l = 1, 2, . . . ;
(ii) For µ, ρ ≥ 0, the inequality

D+
(2)L(t, φ̄(0), ϕ̄(0)) ≤ −µL(t, φ̄(0), ϕ̄(0)) + ρ, t 6= τl

is satisfied whenever

L(t + υ, φ̄(υ), ϕ̄(υ)) ≤ L(t, φ̄(0), ϕ̄(0)), −∞ < υ ≤ 0. (6)

Then,

L(t, m̄(t; 0, φ̄), p̄(t; 0, ϕ̄)) ≤ sup
−∞<υ≤0

L(0, φ̄(υ), ϕ̄(υ))e−µt + ρ1, t ≥ 0,

where ρ1 = supt≥0 ρte−µt.

Remark 3. Lemma 1 and related comparison lemmas with the Razumikhin condition (6) are
widely used in the investigation of the stability properties of different classes of delayed differential
systems [14,18,27,29,32,35].

3. Main Practical Stability Results

In this section we will prove practical stability criteria for the impulsive control GRN
system (2) using the Lyapunov approach.

We will begin with a (η, H)-practical stability result.

Theorem 1. Assume that 0 < η < H, conditions A1–A3 hold, and the parameters and the
impulsive control functions of the impulsive GRN (2) satisfy:

(i)

min
1≤ι≤N

{aι, cι} − max
1≤ι≤N

{dικι,
N

∑
o=1
|boι|κι f L

ι } > 0;

(ii)
Jι = 0, ι = 1, 2, . . . , N;

(iii)
Um

ιl (m̄ι(τl)−mι(τl)) = −γm
ιl m̄ι(τl), 0 < γm

ιl < 2,

Up
ιl( p̄ι(τl)− pι(τl)) = −γ

p
ιl p̄ι(τl), 0 < γ

p
ιl < 2,

ι = 1, 2, . . . , N, l = 1, 2, . . . .

Then, the impulsive control GRN (2) is (η, H)-practically stable.
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Proof. For 0 < η < H and φ̄, ϕ̄ ∈ PCB[(−∞, 0],RN ] let suppose ||φ̄||∞ + ||ϕ̄||∞ ≤ η.
Based on the designed impulsive control system (2) and the practical stability concept,

we consider a Lyapunov function defined as

L1(t, m̄, p̄) = ||m̄(t)||+ || p̄(t)|| =
N

∑
ι=1
|m̄ι(t)|+

n

∑
ι=1
| p̄ι(t)|. (7)

Using A3 and condition (iii) of Theorem 1, at the impulsive control instants t = τl ,
l = 1, 2, . . . , we have:

L1(τ
+
l , m̄(τ+

l ), p̄(τ+
l ))

=
N

∑
ι=1
|m̄ι(τl) + Mιl(m̄ι(τl))|+

N

∑
ι=1
| p̄ι(τl) + Pιl( p̄ι(τl))|

≤
N

∑
ι=1
|1− γm

ιl ||m̄ι(τl)|+
N

∑
ι=1
|1− γ

p
ιl || p̄ι(τl)|

<
N

∑
ι=1
|m̄ι(τl)|+

N

∑
ι=1
| p̄ι(τl)| = L1(τl , m̄(τl), p̄(τl)),

or
L1(t+, φ̄(0) + ∆(φ̄), ϕ̄(0) + ∆(ϕ̄)) ≤ L1(t, φ̄(0), ϕ̄(0)), t = τl , l = 1, 2, . . . . (8)

From A1, A2, and conditions (i), (ii) of Theorem 1, we obtain:

L̇1(t, m̄(t), p̄(t))

≤
N

∑
ι=1

[
− aι|m̄ι(t)|+

N

∑
o=1
|bij| f L

o κo sup
−∞<υ≤0

| p̄o(υ)|
]

+
N

∑
ι=1

[
− cι| p̄ι(t)|+ dικι sup

−∞<υ≤0
|m̄ι(υ)|

]
≤ − min

1≤ι≤N
{aι, cι}L1(t, m̄(t), p̄(t)) (9)

+ max
1≤ι≤N

{dικι,
N

∑
o=1
|boι|κι f L

ι } sup
−∞<υ≤0

L1(t + υ, m̄(υ), p̄(υ))

or for φ̄, ϕ̄ ∈ PCB[(−∞, 0],RN ] such that L1(t + υ, φ̄(υ), ϕ̄(υ)) ≤ L1(t, φ̄(0), ϕ̄(0)),
−∞ < υ ≤ 0, the inequality

D+
(2)L1(t, φ̄(0), ϕ̄(0)) ≤ 0, t 6= τl (10)

is satisfied.
Then, from (8) and (10), according to Lemma 1 for µ = ρ = 0, we have

L1(t, m̄(t; 0, φ̄), p̄(t; 0, ϕ̄)) ≤ sup
−∞<υ≤0

L1(0, φ̄(υ), ϕ̄(υ)), t ≥ 0.

Therefore, for t ≥ 0

||m̄(t)||+ || p̄(t)|| ≤ ||φ̄||∞ + ||ϕ̄||∞ ≤ η < H

and the impulsive control GRN (2) is (η, H)-practically stable.

In the next, we will propose criteria for the global practical exponential stability of the
impulsive control GRN system (2).
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Theorem 2. Assume that H > 0, conditions A1–A3 and (iii) of Theorem 1 hold, and conditions (i)
and (ii) in Theorem 1 are replaced by:

(i∗) ∃ µ > 0 such that

min
1≤ι≤N

{aι, cι} − max
1≤ι≤N

{dικι,
N

∑
o=1
|boι|κι f L

ι } ≥ µ;

(ii∗) ∃ ρ ≥ 0 such that
N

∑
ι=1
|Ji| < ρ, sup

t≥0
ρte−µt = H,

then the impulsive control GRN (2) is globally practically exponentially stable.

Proof. Let H > 0. Consider again the Lyapunov function L1(t, m̄, p̄) defined by (7).
From A1, A2, and conditions (i∗), (ii∗) of Theorem 2, we have that for t 6= τl ,

φ̄, ϕ̄ ∈ PCB[(−∞, 0],RN ] such that L1(t + υ, φ̄(υ), ϕ̄(υ)) ≤ L1(t, φ̄(0), ϕ̄(0)), −∞ < υ ≤ 0,
the inequality

D+
(2)L1(t, φ̄(0), ϕ̄(0)) ≤ −µL1(t, φ̄(0), ϕ̄(0)) + ρ (11)

is satisfied.
Then, from (8), (11) and Lemma 1, we obtain

L1(t, m̄(t; 0, φ̄), p̄(t; 0, ϕ̄))

≤ sup
−∞<υ≤0

L1(0, φ̄(υ), ϕ̄(υ))e−µt + H, t ≥ 0.

Therefore, for any Θ ≥ 1, we have

||m̄(t)||+ || p̄(t)|| ≤ Θ(||φ̄||∞ + ||ϕ̄||∞)e−µt + H

for t ≥ 0, which proves the global practical exponential stability of the impulsive control
GRN system (2).

Remark 4. Due to its advantages, the practical stability notion has been studied for numerous
applied systems [36–39,41,42,45,46,48]. The recent results on practical stability of neural network
models is a further evidence of its remarkable importance for such models [40,43,44,47]. The problem
of applying it to GRN models deserves our attention, which was realized in Theorems 1 and 2.

Remark 5. In addition, since the practical stability concept is useful in many biological systems
when the dynamic of the model is contained within particular bounds, the presented result can be
extended to different biological systems.

InTheorems1and2weusedthenormof (m, p) = (m1, m2, . . . , mN , p1, p2, . . . , pN)
T ∈ R2N

defined by

||(m, p)||1 = ||m||+ ||p|| =
N

∑
ι=1
|mι|+

N

∑
ι=1
|pι|.

In the next result in order to provide global practical exponential stability of the
impulsive control GRN system (2) we will consider the norm of a vector (m, p) ∈ R2N

given as

||(m, p)||2 =

√√√√ N

∑
ι=1
|mι|2 +

N

∑
ι=1
|pι|2.
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Theorem 3. Assume that H > 0, conditions A1–A3, (ii), (iii) of Theorem 1 hold, and the parame-
ters of the impulsive controlled GRN (2) satisfy:

min1≤ι≤N{2aι −∑N
o=1 |bιo|κo f L

o , 2cι − dικι}

−max1≤ι≤N{dικι, ∑N
o=1 |bji|κι f L

ι } ≥ µ > 0.
(12)

Then, the impulsive control GRN (2) is globally practically exponentially stable.

Proof. For φ̄, ϕ̄ ∈ PCB[(−∞, 0],RN ] we define

||(φ̄, ϕ̄)||2∞ = sup
υ∈(−∞,0]

||(φ̄(υ), ϕ̄(υ))||2

and the Lyapunov function

L2(t, m̄, p̄) =
N

∑
ι=1
|m̄ι(t)|2 +

n

∑
ι=1
| p̄ι(t)|2. (13)

Using A3 and condition (iii) of Theorem 1, at the impulsive control instants t = τl ,
l = 1, 2, . . . , we have:

L2(τ
+
l , m̄(τ+

l ), p̄(τ+
l ))

=
N

∑
ι=1
|m̄ι(τl) + Mιl(m̄ι(τl))|2 +

N

∑
ι=1
| p̄ι(τl) + Pιl( p̄ι(τl))|2

≤
N

∑
ι=1
|1− γm

ιl |
2|m̄ι(τl)|2 +

N

∑
ι=1
|1− γ

p
ιl |

2| p̄ι(τl)|2

<
N

∑
ι=1
|m̄ι(τl)|2 +

N

∑
ι=1
| p̄ι(τl)|2 = L2(τl , m̄(τl), p̄(τl)),

or
L2(t+, φ̄(0) + ∆(φ̄), ϕ̄(0) + ∆(ϕ̄))

≤ L2(t, φ̄(0), ϕ̄(0)), t = τl , l = 1, 2, . . . . (14)

From A1, A2, and condition (ii) of Theorem 1, we get:

L̇2(t, m̄(t), p̄(t))

≤
N

∑
ι=1

[
− 2aι|m̄ι(t)|2 + 2

N

∑
o=1
|bιo| f L

o κo sup
−∞<υ≤0

| p̄o(υ)||m̄ι(t)|
]

+
N

∑
ι=1

[
− 2cι| p̄ι(t)|2 + 2dικι sup

−∞<υ≤0
|m̄ι(υ)|| p̄ι(t)|

]

≤
N

∑
ι=1

[
− 2aι|m̄ι(t)|2 +

N

∑
o=1
|bιo| f L

o κo( sup
−∞<υ≤0

| p̄o(υ)|2 + |m̄ι(t)|2)
]

+
N

∑
ι=1

[
− 2cι| p̄ι(t)|2 + dικι( sup

−∞<υ≤0
|m̄ι(υ)|2 + | p̄ι(t)|2)

]

≤ − min
1≤ι≤N

{2aι −
N

∑
o=1
|bιo|κo f L

o , 2cι − dικι}L2(t, m̄(t), p̄(t))
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+ max
1≤ι≤N

{dικι,
N

∑
o=1
|boι|κι f L

ι } sup
−∞<υ≤0

L2(t + υ, m̄(υ), p̄(υ)).

Condition (12) implies that the inequality

D+
(2)L2(t, φ̄(0), ϕ̄(0)) ≤ −µL2(t, φ̄(0), ϕ̄(0)), t 6= τl (15)

is valid if L2(t + υ, φ̄(υ), ϕ̄(υ)) ≤ L2(t, φ̄(0), ϕ̄(0)), −∞ < υ ≤ 0.
Then, from (14), (16), and Lemma 1, we obtain

L2(t, m̄(t; 0, φ̄), p̄(t; 0, ϕ̄))

≤ sup
−∞<υ≤0

L2(0, φ̄(υ), ϕ̄(υ))e−µt, t ≥ 0.

Therefore, for any Θ ≥ 1, we have

||(m̄(t), p̄(t))||22 ≤ Θ||(φ̄, ϕ̄)||22∞e−µt

for t ≥ 0.
So, for any H > 0

||(m̄(t), p̄(t))||2 ≤
√

Θ||(φ̄, ϕ̄)||2∞e−
µ
2 t + H, t ≥ 0,

which proves the global practical exponential stability of the impulsive control GRN
system (2). The proof is completed.

For the last result we will use the following lemma.

Lemma 2 (Young’s Inequality [49]). For a > 0, b > 0, q > 1, 1
q +

1
r = 1 the following inequality

ab ≤ 1
q

aq +
1
r

br

holds.

Theorem 4. Assume that 0 < η < H, conditions A1–A3, (ii), abd (iii) of Theorem 1 hold, and
there exist real positive constants ηι, θιo, ι, o = 1, 2, . . . , N, and µ such that the parameters of the
impulsive controlled GRN (2) satisfy:

min
1≤ι≤N

{qai −
N

∑
o=1

(q− 1)|bιo|
qθιo
q−1 κo f L

o , qcι − (q− 1)d
qηι
q−1
ι κι}

− max
1≤ι≤N

{κιd
q(1−ηι)
ι ,

N

∑
o=1
|boι|q(1−θoι)κι f L

ι } ≥ µ.

(16)

Then, the impulsive control GRN (2) is globally practically exponentially stable.

Proof. Let φ̄, ϕ̄ ∈ PCB[(−∞, 0],RN ] and define the norm

||(φ̄, ϕ̄)||q∞ = sup
υ∈(−∞,0]

||(φ̄(υ), ϕ̄(υ))||q,

where

||(m̄, p̄)||q =

{
N

∑
ι=1
|m̄ι|q +

N

∑
ι=1
| p̄ι|q

}1/q

, q ≤ 1.
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Consider the Lyapunov-type function

Lq(t, m̄, p̄) =
N

∑
ι=1
|m̄ι(t)|q +

N

∑
ι=1
| p̄ι(t)|q. (17)

Using A3 and condition (iii) of Theorem 1, at the impulsive control instants t = τl ,
l = 1, 2, . . . , we have:

Lq(τ
+
l , m̄(τ+

l ), p̄(τ+
l ))

=
N

∑
ι=1
|m̄ι(τl) + Mιl(m̄ι(τl))|q +

N

∑
ι=1
| p̄ι(τl) + Pιl( p̄ι(τl))|q

≤
N

∑
ι=1
|1− γm

ιl |
q|m̄ι(τl)|q +

N

∑
ι=1
|1− γ

p
ιl |

q| p̄ι(τl)|q

<
N

∑
ι=1
|m̄ι(τl)|q +

N

∑
ι=1
| p̄ι(τl)|q = Lq(τl , m̄(τl), p̄(τl)),

or
Lq(t+, φ̄(0) + ∆(φ̄), ϕ̄(0) + ∆(ϕ̄))

≤ Lq(t, φ̄(0), ϕ̄(0)), t = τl , l = 1, 2, . . . . (18)

Let t ≥ 0, t 6= τl , l = 1, 2, . . . . After the application of A1, A2, and condition (ii) of
Theorem 1, we get:

L̇q(t, m̄(t), p̄(t))

≤
N

∑
ι=1

q
[
− aι|m̄ι(t)|q +

n

∑
o=1
|bιo| f L

o κo sup
−∞<υ≤0

| p̄o(υ)||m̄ι(t)|q−1
]

+
N

∑
ι=1

q
[
− cι| p̄ι(t)|q + dικι sup

−∞<υ≤0
|m̄ι(υ)|| p̄ι(t)|q−1

]

=
N

∑
ι=1

q
[
− aι|m̄ι(t)|q − cι| p̄ι(t)|q

+
n

∑
o=1
|bιo|1−θιo f L

o κo sup
−∞<υ≤0

| p̄o(υ)|
(
|bιo|

θιo
q−1 |m̄ι(t)|

)q−1

+d1−ηι
ι κι sup

−∞<υ≤0
|m̄ι(υ)|

(
d

ηι
q−1
ι | p̄ι(t)|

)q−1]
.

For a = |bιo|1−θιo sup−∞<υ≤0 | p̄o(υ)| and b =

(
|bιo|

θιo
q−1 |m̄ι(t)|

)q−1
we have from

Lemma 2

|bιo|1−θιo sup
−∞<υ≤0

| p̄o(υ)|
(
|bιo|

θιo
q−1 |m̄ι(t)|

)q−1

≤ 1
q
|bιo|q(1−θιo) sup

−∞<υ≤0
| p̄o(υ)|q (19)

+
q− 1

q
|bιo|

qθιo
q−1 |m̄ι(t)|q.
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Analogously, for a = d1−ηι
ι sup−∞<υ≤0 |m̄ι(υ)| and b =

(
d

ηι
q−1
ι | p̄ι(t)|

)q−1

,

Lemma 2 implies

d1−ηι
ι sup

−∞<υ≤0
|m̄ι(υ)|

(
d

ηι
q−1
ι | p̄ι(t)|

)q−1

≤ 1
q

dq(1−ηι)
ι sup

−∞<υ≤0
|m̄ι(υ)|q (20)

+
q− 1

q
d

qηι
q−1
ι | p̄ι(t)|q.

Using (19) and (20), we get:

L̇q(t, m̄(t), p̄(t)) ≤
N

∑
ι=1

q
[
− aι|m̄ι(t)|q − cι| p̄ι(t)|q

+
N

∑
o=1

f L
o κo

1
q
|bιo|q(1−θιo) sup

−∞<υ≤0
| p̄o(υ)|q

+
N

∑
o=1

f L
o κo

q− 1
q
|bιo|

qθιo
q−1 |m̄ι(t)|q + κι

1
q

dq(1−ηι)
ι sup

−∞<υ≤0
|m̄ι(υ)|q

+κι
q− 1

q
d

qηι
q−1
ι | p̄ι(t)|q

]
=

N

∑
ι=1

[
− aιq|m̄ι(t)|q − cιq| p̄ι(t)|q +

N

∑
o=1

f L
o κo|bιo|q(1−θιo) sup

−∞<υ≤0
| p̄o(υ)|q

+
N

∑
o=1

f L
o κo(q− 1)|bιo|

qθιo
q−1 |m̄ι(t)|q + κιd

q(1−ηι)
ι sup

−∞<υ≤0
|m̄ι(υ)|q

+κι(q− 1)d
qηι
q−1
ι | p̄ι(t)|q

]
.

The rest of the proof repeats the steps in the proof of Theorem 3 using condition (16)
and the norm ||(m, p)||q of (m, p) = (m1, m2, . . . , mN , p1, p2, . . . , pN)

T ∈ R2N .

Remark 6. Theorem 4 generalizes Theorems 2 and 3. For q = 1 we can easily obtain Theorem 2,
and for q = 2 Theorem 3 follows as a corollary.

Remark 7. The obtained practical stability results generalize and complement the results in
Ref. [14] to the impulsive control case applying the practical stability notion. The results are
new and offer an impulsive control strategy to the model (1) that can be reached in a setting time and
greatly improve the functionality in real application. The main advantages of the impulsive control
strategy lie in the fact that it is applied only in some discrete times τl and can reduce the amount
of transmitted information drastically [27–34]. The controllers have effects on sudden changes of
the states of (1) at the instances τl . The functions Um

ιl and Up
ιl characterize the control gains of

synchronizing impulses. Hence, we designed an impulsive control law under which the model (2) is
practically synchronized onto model (1).

Remark 8. The asymptotic stability and finite-time stability concepts have been applied by few
authors to some classes of GRNs with impulsive effects [19–23]. Different from all existing stability
results we offer practical stability results for an impulsive GRN. The presented results can be
considered as an extension and complement of the results in Refs. [19–23] and some others. The
practical stability concept [35] is inspired by numerous applications [36–38,40–44,46–48] and can
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be successfully used when the nodes of a GRN model oscillate close to a state, in which the behavior
is still acceptable, but not necessarily mathematically stable.

Remark 9. Note that, the practical stability definition is with respect to the region containing the
origin [35]. However, it can be applied to any other equilibrium after a corresponding translation of
this state to the origin. Hence, if the stability analysis is developed for the equilibrium at the origin,
then without loss of generality, it can be universally used for other equilibria of the model.

4. Numerical Examples
4.1. Example 1

In this example, we consider the following GRN model as a drive system
ṁι = −aιmι(t)

+
2

∑
o=1

bιo

∫ t

−∞
ko(t− h) fo(po(h))dh + Jι

ṗι = −cι pι(t) + dι

∫ t

−∞
kι(t− h)mι(h)dh,

(21)

where ι = 1, 2, a1 = a2 = 0.5, J1 = J2 = 0, c1 = c2 = 2.5, d1 = 0.4, d2 = 0.3, fo(po) =
p2

o
1+p2

o
,

ko(h) = e−h, o = 1, 2,

bij =

(
b11 b12
b21 b22

)
=

(
0.3 −0.3
−0.01 0.1

)
.

The impulsively controlled GRN model is

˙̄mι = −aιm̄ι(t) +
2

∑
o=1

bιo

∫ t

−∞
ko(t− h) fo( p̄o(h))dh + Jι, t 6= τl ,

˙̄pι = −cι p̄ι(t) + dι

∫ t

−∞
kι(t− h)m̄ι(h)dh, t 6= τl ,

m̄ι(τ
+
l ) = m̄ι(τl) + Mιl(m̄ι(τl)),

p̄ι(τ
+
l ) = p̄ι(τl) + Pιl( p̄ι(τl)),

(22)

where 0 < τ1 < τ2 < · · · < τl < τl+1 < . . . , τl → ∞ as l → ∞, the impulsive functions are
Mιl(m̄ι(τl)) = − 1

5 m̄ι(τl), Pιl( p̄ι(τl)) = − 1
4 p̄ι(τl), ι = 1, 2, l = 1, 2, . . . .

We can check, that
f L
ι = 1, κι = 1, ι = 1, 2

and

min
1≤ι≤2

{aι, cι} − max
1≤ι≤2

{dικι,
2

∑
o=1
|boι|κι f L

ι } = 0.5− 0.4 > 0.

Hence, by Theorem 1, we can conclude that for 0 < η < H such that ||φ̄||∞ + ||ϕ̄||∞ ≤ η,
the impulsive control GRN model (22) is (η, H)-practically stable. The practically stable
behavior of the genes is shown in Figure 1.
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(a)-

-

0

( )tm1

( )tm2

(b)-

-

0

( )tp1
( )tp2

Figure 1. The trajectories of the genes of the impulsive control GRN model (22): (a) The practically
stable behavior of m̄1(t) and m̄2(t); (b) The practically stable behavior of p̄1(t) and p̄2(t).

4.2. Example 2

Consider system (21) as a drive system with J1 = J2 = 0.3. The corresponding
impulsive control GRN model is

˙̄mι = −aιm̄ι(t) +
2

∑
o=1

bιo

∫ t

−∞
ko(t− h) fo( p̄o(h))dh + Jι, t 6= τl ,

˙̄pι = −cι p̄ι(t) + dι

∫ t

−∞
kι(t− h)m̄ι(h)dh, t 6= τl ,

m̄ι(τ
+
l ) = m̄ι(τl) + Mιl(m̄ι(τl)),

p̄ι(τ
+
l ) = p̄ι(τl) + Pιl( p̄ι(τl)),

(23)

where 0 < τ1 < τ2 < · · · < τl < τl+1 < . . . , τl → ∞ as l → ∞, the impulsive functions are
Mιl(m̄ι(τl)) = − 2

7 m̄ι(τl), Pιl( p̄ι(τl)) = − 1
5 p̄ι(τl), ι = 1, 2, l = 1, 2, . . . .

For the parameters of the impulsive GRN (23) condition (iii) of Theorem 1 is satisfied.
In addition, conditions of Theorem 2 are also met for 0 ≤ µ ≤ 0.1 and ρ > 0.6.

Hence, Theorem 2 guarantees that for H = supt≥0 = ρte−µt > 0, ρ > 0.6, the
impulsive control GRN model (23) is globally practically exponentially stable. The global
practically exponentially stable behavior of the genes is shown on Figure 2. Thus, if
the impulsive control functions Mιl and Pιl are chosen accordingly, the global practically
exponentially stable behavior of the driven system (21) can be efficiently controlled.

(a)-

-

0

( )tm1

( )tm2

(b)-

-

0

( )tp1
( )tp2

Figure 2. The trajectories of the genes of the model (23): (a) The trajectories of m̄1(t) and m̄2(t);
(b) The trajectories of p̄1(t) and p̄2(t).
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Note that condition (12) of Theorem 3 is not valid for the model (23) since

min1≤ι≤2{2aι −∑2
o=1 |bιo|κo f L

o , 2cι − dικι}

−max1≤ι≤2{dικι, ∑2
o=1 |boι|κι f L

ι } = 0.4− 0.4 = 0.

4.3. Example 3

Consider the GRN model (21) as a drive system with the following parameters

a1 = a2 = 2, J1 = J2 = 0, c1 = c2 = 0.6, d1 = 0.2, d2 = 0.1, fo(po) = p2
o

1+p2
o
, ko(h) = e−h,

o = 1, 2, bij =

(
b11 b12
b21 b22

)
=

(
0.5 −0.4
−0.3 0.4

)
.

Keeping the parameters in the continuous part, the response system is given by

˙̄mι = −aιm̄ι(t) +
2

∑
o=1

bιo

∫ t

−∞
ko(t− h) fo( p̄o(h))dh + Jι, t 6= τl ,

˙̄pι = −cι p̄ι(t) + dι

∫ t

−∞
kι(t− h)m̄ι(h)dh, t 6= τl ,

m̄ι(τ
+
l ) = m̄ι(τl) + Mιl(m̄ι(τl)),

p̄ι(τ
+
l ) = p̄ι(τl) + Pιl( p̄ι(τl)),

(24)

where 0 < τ1 < τ2 < · · · < τl < τl+1 < . . . , τl → ∞ as l → ∞, the impulsive functions are
Mιl(m̄ι(τl)) = − 1

5 m̄ι(τl), Pιl( p̄ι(τl)) = − 1
3 p̄ι(τl), ι = 1, 2, l = 1, 2, . . . .

We can check that for system (24) condition (12) of Theorem 3 is valid for f L
ι = 1, κι = 1,

ι = 1, 2 and min1≤ι≤2{2aι − ∑2
o=1 |bιo|κo f L

o , 2cι − dικι} = 1, max1≤ι≤2{dικι, ∑2
o=1 |boι|

κι f L
ι } = 0.8, or for 0 ≤ µ ≤ 0.2, and condition (i∗) of Theorem 2 is not satisfied.

In this case, according to Theorem 3, we can conclude that the impulsive control GRN
model (24) is globally practically exponentially stable for 0 < η < H.

4.4. Example 4

We again consider the GRN model (21) as a drive system with the following parameters

a1 = a2 = 1, J1 = J2 = 0, c1 = c2 = 2, d1 = 0.9, d2 = 0.8, fo(po) = p2
o

1+p2
o
, ko(h) = e−h,

o = 1, 2, bij =

(
b11 b12
b21 b22

)
=

(
0.2 0.4
−0.2 0.3

)
.

The response system with the same values of the parameters in the continuous part is
given by 

˙̄mι = −aιm̄ι(t) +
2

∑
o=1

bιo

∫ t

−∞
ko(t− h) fo( p̄o(h))dh + Jι, t 6= τl ,

˙̄pι = −cι p̄ι(t) + dι

∫ t

−∞
kι(t− h)m̄ι(h)dh, t 6= τl ,

m̄ι(τ
+
l ) = m̄ι(τl) + Mιl(m̄ι(τl)),

p̄ι(τ
+
l ) = p̄ι(τl) + Pιl( p̄ι(τl)),

(25)

where 0 < τ1 < τ2 < · · · < τl < τl+1 < . . . , τl → ∞ as l → ∞, the impulsive functions are
Mιl(m̄ι(τl)) = − 1

3 m̄ι(τl), Pιl( p̄ι(τl)) = − 1
2 p̄ι(τl), ι = 1, 2, l = 1, 2, . . . .

We can check that for system (25) we have f L
ι = 1, κι = 1, ι = 1, 2. In addition, condition

(i∗) of Theorem 2 is satisfied for min1≤ι≤2{aι, cι} = 1, max1≤ι≤2{dικι, ∑2
o=1 |boι|κι f L

ι } = 0.9
(or 0 ≤ µ ≤ 0.1), and condition (12) of Theorem 3 is satisfied for min1≤ι≤2{2aι−∑2

o=1 |bιo|κo f L
o ,

2cι − dικι} = 1.4, max1≤ι≤2{dικι, ∑2
o=1 |boι|κι f L

ι } = 0.9 (or for 0 ≤ µ ≤ 0.5).
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In this case, using both Theorems 2 and 3, we can conclude that the impulsive control
GRN model (25) is globally practically exponentially stable.

4.5. Example 5

Consider the GRN model (21) as a drive system with the following parameters

a1 = a2 = 1.1.3, J1 = J2 = 0, c1 = c2 = 2, d1 = d2 = 1.1, fo(po) = p2
o

1+p2
o
, ko(h) = e−h,

o = 1, 2, bij =

(
b11 b12
b21 b22

)
=

(
1 0.2
0.3 0.2

)
.

The response system with the same values of the parameters in the continuous part is
given by 

˙̄mι = −aιm̄ι(t) +
2

∑
o=1

bιo

∫ t

−∞
ko(t− h) fo( p̄o(h))dh + Jι, t 6= τl ,

˙̄pι = −cι p̄ι(t) + dι

∫ t

−∞
kι(t− h)m̄ι(h)dh, t 6= τl ,

m̄ι(τ
+
l ) = m̄ι(τl) + Mιl(m̄ι(τl)),

p̄ι(τ
+
l ) = p̄ι(τl) + Pιl( p̄ι(τl)),

(26)

where 0 < τ1 < τ2 < · · · < τl < τl+1 < . . . , τl → ∞ as l → ∞, the impulsive functions are
Mιl(m̄ι(τl)) = − 2

5 m̄ι(τl), Pιl( p̄ι(τl)) = − 1
4 p̄ι(τl), ι = 1, 2, l = 1, 2, . . . .

We can check that for system (26) we have f L
ι = 1, κι = 1, ι = 1, 2.

Additionally,

min
1≤ι≤2

{aι, cι} = 1.2 < max
1≤ι≤2

{dικι,
2

∑
o=1
|boι|κι f L

ι } = 1.3,

and

min
1≤ι≤2

{2aι −
2

∑
o=1
|bιo|κo f L

o , 2cι − dικι} = 1.3

= max
1≤ι≤2

{dικι,
2

∑
o=1
|boι|κι f L

ι } = 1.3.

Hence, condition (i∗) of Theorem 2 and condition (12) of Theorem 3 do not hold.
However, if we consider q = 3, ηι = θιo = 2/3, ι, o = 1, 2, we have

min
1≤ι≤2

{3aι −
2

∑
o=1

2|bιo|κo f L
o , 3cι − 2dικι} = 1.4

> max
1≤ι≤2

{dικι,
2

∑
o=1
|boι|κι f L

ι } = 1.3.

Hence, by Theorem 4, we can conclude that the impulsive control GRN model (26) is
globally practically exponentially stable.

In addition, if in the impulsive control system, we consider impulsive functions
given by

Mιl(m̄ι(τl)) = − 2
5 m̄ι(τl),

Pιl( p̄ι(τl)) =
1
4 p̄ι(τl), ι = 1, 2, l = 1, 2, . . . ,

(27)

then we cannot make any conclusion by Theorem 4 for the practical stable behavior of
system (26). The trajectories of the genes are demonstrated on Figure 3. We can see that the
impulses cannot practically control the trajectories of p̄1(t) and p̄2(t).
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Figure 3. The trajectories of the genes of the model (26) with impulses (27): (a) The behavior of m̄1(t)
and m̄2(t); (b) The behavior of p̄1(t) and p̄2(t).

Remark 10. By Example 5 we demonstrate how the impulses can affect the practical stabil-
ity properties of the model and how they can be efficiently applied to design suitable impulsive
control strategies.

5. Conclusions

In this paper, an impulsive control stability analysis is conducted for the states of a
GRNs with distributed delays. The extended notion of practical stability is introduced
and new criteria that guarantee practical stability and global exponential practical stability
of the proposed impulsive control model are established. Using the Lyapunov function
methodology the effectiveness of impulses on the practical stability behavior are considered.
A number of examples is presented to illustrate the proposed results and the use of different
criteria. The suggested results and technique can be also applied to a fractional-order
version of the model, which is a subject of our future research.
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