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Abstract: From the very start of modelling with power-tail distributions, concerns were expressed
about the actual applicability of distributions with infinite expectations to real-world distributions,
which usually have bounded ranges. Here, we suggest resolving this issue by shifting the analysis
from the true convergence in various CLTs to some kind of quasi convergence, where a stable
approximation to, say, normalised sums of n i.i.d. random variables (or more generally, in a functional
setting, to the processes of random walks), holds for large n, but not “too large” n. If the range of
“large n” includes all imaginable applications, the approximation is practically indistinguishable
from the true limit. This approach allows us to justify a stable approximation to random walks with
bounded jumps and, moreover, it leads to some kind of cascading (quasi) asymptotics, where for
different ranges of a small parameter, one can have different stable or light-tail approximations. The
author believes that this development might be relevant to all applications of stable laws (and thus of
fractional equations), say, in Earth systems, astrophysics, biological transport and finances.

Keywords: rates of quasi-convergence; domain of quasi attraction; functional limit theorem with
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1. Introduction
1.1. Objectives of the Paper

From the very start of modelling with power-tail distributions, concerns were ex-
pressed about the actual applicability of distributions with infinite expectations to real-
world distributions, which usually have bounded ranges, see e.g., [1]. We aim to resolve
this issue by obtaining explicit rates of approximation in functional limit theorems with
stable laws and allowing one to shift the analysis from exact convergence in various CLTs
to some kind of quasi convergence. Namely, we look at stable approximations to, say,
normalised sums of n i.i.d. random variables (or more generally, in a functional setting, to
the processes of random walks), which hold for large n, but not “too large”. If the range
of “large n” includes any imaginable applications (say, being of the order of the age of the
Universe), the approximation is practically indistinguishable from a true limit, and we can
say that the corresponding random variables belong to the domain of quasi attraction of a
stable law. This idea is supported by supplying explicit rates of approximation in explicitly
prescribed ranges of a small parameter. In this way, we justify a stable approximation to
normalised sums of i.i.d. random variables having all moments bounded or even having
a bounded range. It also leads to some kind of cascading (quasi) asymptotics, where for
different ranges of n, one can have different stable or light-tailed approximations. This idea
is already well appreciated by physicists, see, e.g., [2], devoted to the analysis of cosmic rays,
where it is stated that for fluxes “of actual interest one is relatively far from the Gaussian
limit and much closer to the stable law limit” (though Gaussian limit is dictated by the
assumption of bounded Universe). In the present paper, we give an exact quantitative and
qualitative description of this effect. The author believes that this development might be
relevant to all applications of stable laws and processes (and thus of fractional equations),
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say, in the contexts of Earth systems [3], of astrophysics [2], of biological transport [4], of
seismo-dynamics [5] and of finances [1].

A search for the rates of convergence for functional limit theorems with stable laws
was initiated in the author’s paper [6]. That paper also contained a brief review of the
literature on the three related topics: (i) rates of convergence for functional standard central
limit theorem, (ii) rates of (nonfunctional) convergence of sequences to stable laws, and
(iii) functional central limits with stable laws without the rates. We will not reproduce this
review here, but only remind some basic references [7–11] on the rates of convergence of
random sequences (not processes of random walks) to stable laws. The second objective
of the present paper is to introduce essential improvements to the first result of [6] on the
rates of convergence for functional limit theorems with stable laws in finite times. Namely,
while in [6] the rates were very rough and were given only for exact power tails, for the
one-dimensional case and for stability index β ∈ (0, 1); here, we essentially tighten the
rates (improve both orders and distances used) and extend to arbitrary β (excluding β = 1),
arbitrary dimensions, and to standard assumptions of asymptotic (not exact) power tails.
Apart from theoretical importance, results on convergence rates are crucial for assessing
the effectiveness of numeric schemes for solving fractional PDEs by probabilistic methods,
see [12–14]. They provide exact rates of convergence for these schemes.

We refer to books [15–17] for a general background on modelling with stable laws.

1.2. Content

In Section 2, we formulate our results and present proofs that are consequences of two
types of certain technical estimates for stable laws and their random walk approximations.
These two types of estimates are proved in Sections 3 and 4, respectively. In Section 2,
we also present corollaries concerning normalised sums of i.i.d. random variables and
an example of cascading asymptotics. For the latter, we identify explicitly the regions of
different asymptotic regimes and the region of switching between them. Some conclusions
and perspectives are drawn in Section 5. In Appendix A we recall the general theorem
on the rates of convergence of discrete Markov chains to continuous time Feller processes,
which forms the cornerstone for the present derivations.

1.3. Notations for Spaces and Distances

Letters P and E will be used to denote probability and expectation. We also use the
standard abbreviation i.i.d. for independent identically distributed and r.h.s. (respectively,
l.h.s.) for right (respectively, left) hand side.

As usual, let C(Rd) denote the space of bounded continuous functions on Rd equipped
with the standard sup-norm ‖.‖. By CLip(Rd) we shall denote the space of Lipschitz
continuous functions from C(Rd), the Lipschitz constant being denoted fLip, with the norm
‖ f ‖Lip = max(‖ f ‖, fLip).

For k ∈ N, let Ck = Ck(Rd) denote the space of k times continuously differentiable
functions on Rd with bounded derivatives equipped with the standard norm

‖ f ‖Ck = max{‖ f ‖, k
max
m=1
‖ f (m)‖},

where ‖ f (m)‖ denotes the sup-norm of the norms of multi-linear operators f (m)(x). Let
C∞(Rd) denote the closed subspace of C(Rd) consisting of functions vanishing at infinity,
Ck

∞(Rd) the closed subspace of Ck(Rd) consisting of functions such that itself and all its
derivatives up to order k belong to C∞(Rd).

For α ∈ (0, 1], let Hα = Hα(Rd) denote the space of bounded α-Hölder continuous
functions f having a finite Hölder constant

fα = sup
0<|x−y|≤1

| f (x)− f (y)|
|x− y|α . (1)
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This is a Banach space equipped with the norm

‖ f ‖α = max{‖ f ‖, fα}. (2)

For instance, H1(Rd) = CLip(Rd) so that f1 = fLip.
The same notation is used for the space Hα = Hα(Rd, Rn) of bounded α-Hölder

continuous functions f : Rd → Rn with Euclidean norm used in (1) instead of magnitude.
We shall need this extension mostly for the gradient mapping

f ′(x) = ∇ f (x) = (∂ f /∂x1, · · · , ∂ f /∂xd)(x).

Similarly we use this notation for the square-matrix-valued functions (notably for the
second derivatives of a real-valued function f ), where, by the corresponding norm, we
mean the usual norm of a matrix.

For k ∈ N, let Hk,α = Hk,α(Rd) denote the subspace of Ck(Rd) of functions with
α-Hölder continuous derivatives of order k equipped with the norm

‖ f ‖k,α = max{‖ f ‖Ck , f (k)α }, (3)

where f (k)α is the Hölder constant (of index α) of the mapping f (k) from Rd to the space of
k-linear forms in Rd.

For a subspace B of C(Rd), which is itself a Banach space equipped with the norm
‖.‖B, one can introduce a metric on the set of Rd-valued random variables (more precisely,
on the space of distributions of random variables) by the equation

dB(X, Y) = sup{|E f (X)− E f (Y)| : ‖ f ‖B ≤ 1}. (4)

For instance, if B = Ck, k ∈ N, the corresponding metrics dCk are often referred to as the
smooth Wasserstein metrics (see, e.g., [9]). Intermediate metrics can be defined by using the
spaces of Hölder functions Hα as the subspace B. For the space H1 the corresponding metric
is referred to as the bounded Lipschitz metric or as the (standard) Wasserstein 1-distance,
and it is usually denoted W1.

The Kolmogorov distance between real random variables X and Y is defined by the
formula

dKol(X, Y) = sup
z
|P(X ≤ z)− P(Y ≤ z)|. (5)

When one of the variables, say Y, has a continuous density, p(y), the Kolmogorov
distance can be estimated by the smooth Wasserstein distance. In particular, as was shown
in [6] (extending the arguments from [9]), for any α ∈ (0, 1],

dKol(X, Y) ≤ (M + 1)[dHα(X, Y)]1/(α+1), (6)

dKol(X, Y) ≤ (M + 3/2)[dH1,α(X, Y)]1/(α+2), (7)

where M = supy p(y). For a stable process, estimates for the maximum of densities can

be easily found. For instance, the maximum of the density pβ
t (x) of the stable process

generated by (10) below was estimated in [6] as follows:

Mβ
t = sup

x
sup
s≥t

pβ
s (x) ≤ 1

2
t−1/β. (8)
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2. Main Results

Let τi, i ∈ N, be a sequence of i.i.d. real-valued random variables with a bounded
probability density p, and let

Φh
t =

[t/h]

∑
i=1

h1/βτi, (9)

be the corresponding scaled random walk (where we set Φh
t = 0 for t < h). We shall denote

by V[t/h]
h the transition operators of the discrete Markov chain Φh

t .
For the probability p, we shall assume the following rather standard condition (P) of

an asymptotic power tail, but with the marked difference that this power tail holds for
large but finite distances.

Condition (P): The probability density p(y) on R is bounded and such that

p(y) = Ay−1−β(1 + ε(y)y−1) for y ∈ [Bm, BM],

p(y) ≤ Ay−1−β(1 + ε0y−1) for y ≥ BM,

and p(y) = 0 for y ≤ −B, where ε(y) is a measurable function on R+ such that |ε(y)| ≤ ε0,
with some constants ε0, B ≥ 0, A, β > 0, BM > Bm > 0 such that βBβ

m > A. No additional
assumptions on the behaviour of p(y) on the interval [−B, Bm] are made.

The latter condition is taken for simplicity as being a bit stronger than

βBβ
m ≥ A[1− (Bm/BM)β],

which is equivalent to the requirement that A
∫ BM

Bm
y−1−βdy ≤ 1.

The generator of a one-sided stable Lévy process of index β ∈ (0, 2) (or, in the language
of analysis, fractional derivative operator of order β) is defined by the formulas

Lβ f (x) =
∫ ∞

0

f (x + y)− f (x)
y1+β

dy, β ∈ (0, 1), (10)

Lβ f (x) =
∫ ∞

0

f (x + y)− f (x)− f ′(x)y
y1+β

dy =
∫ ∞

0

∫ y

0
( f ′(w + x)− f ′(x))dw

dy
y1+β

, β ∈ [1, 2). (11)

Remark 1. In fact, the actual standard generators and derivatives differ from these formulas by a
constant multiplier that we omit for simplicity.

Let Tt
β be the Feller semigroup of the β-stable Lévy process Σβ

t in R generated by the
operator Lβ.

Theorem 1. Let β ∈ (0, 1) and the probability density p(y) satisfy the assumption (P). (i) If
β < 1/2 and h ∈ [(βBβ

M)−1/2, 1], then

sup
s≤t
‖(V[s/h]

h − TAs
β ) f ‖ ≤ htC0‖ f ‖Lip, (12)

where

C0 = 4A(1 +
ε0

BM
) + 2ε0 + B +

Bm

1− β
+

4A2

β2(1− β)(1− 2β)
,

which in terms of the Wasserstein 1-distance rewrites as

sup
s≤t

W1(Φh
s , Σβ

As) ≤ C0ht. (13)



Fractal Fract. 2023, 7, 752 5 of 19

(ii) If β ≥ 1/2 and h ∈ [(βBβ
M)−β, 1], then

sup
s≤t
‖(V[s/h]

h − TAs
β ) f ‖ ≤ th(1−β)/(2−β)C1‖ f ‖Lip, (14)

where

C1 = 4A(1 +
ε0

BM
) + 2ε0 + B +

Bm

1− β
+

6A2

β2(1− β)2 ,

which in terms of the Wasserstein 1-distance rewrites as

sup
s≤t

W1(Φh
s , Σβ

As) ≤ C1th(1−β)/(2−β) (15)

Proof. It is a consequence of general estimate (A4), where εh is given by Theorem 4 (i) and
κh is given by Proposition 3, proved in the next two sections.

Remark 2. 1. It may seem strange at first sight that the range of h depends only on BM and not
on Bm, as one can hardly expect any approximation if, say, Bm = BM, which is not banned by our
conditions. However, all constants Ci depend linearly on Bm, so that, for large Bm, our estimates
become essentially void. 2. In [6] we obtained much weaker estimates for the distances between Φh

s

and Σβ
As, and, moreover, only in case ε(y) = 0 and BM = ∞.

Applying (6) and (8) yields the following.

Corollary 1. In case (i) and (ii), we have the following estimates for the Kolmogorov distances for
any t0 ≤ t:

sup
s∈[t0,t]

dKol(Φ
h
s , Σβ

As) ≤
(

1 +
1
2
(At0)

−1/2β

)√
C0ht, (16)

sup
s∈[t0,t]

dKol(Φ
h
s , Σβ

As) ≤
(

1 +
1
2
(At0)

−1/2β

)√
C1th(1−β)/2(2−β), (17)

respectively.

As a direct consequence, let us derive the approximating rates for normalised sums,
that is, a non-functional (quasi) central limit theorem (CLT) with stable laws. Namely,
setting t = 1 and n = 1/h in the formulas above yields the following.

Corollary 2. Let β ∈ (0, 1) and the probability density p(y) satisfy the assumption (P). (i) If

β < 1/2 and n <
√

βBβ
M, then

W1

(
τ1 + · · ·+ τn

n1/β
, Σβ

A

)
≤ C0/n, dKol

(
τ1 + · · ·+ τn

n1/β
, Σβ

A

)
≤
(

1 +
1
2

A−1/2β

)√
C0/n, (18)

(ii) If β ≥ 1/2 and n < (βBβ
M)β, then

W1

(
τ1 + · · ·+ τn

n1/β
, Σβ

A

)
≤ C1n−(1−β)/(2−β),

dKol

(
τ1 + · · ·+ τn

n1/β
, Σβ

A

)
≤
(

1 +
1
2

A−1/2β

)√
C1n−(1−β)/2(2−β). (19)

When the upper bound for n is large, we may say that the distribution p(y) belongs to
the domain of quasi attraction of the β-stable law, in the sense that the normalised sums of
the corresponding i.i.d. random variables behave in the same way as for distributions from
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the actual domain of attraction, for all practical purposes. The parameter BM is the main
parameter measuring the level of deviation from the actual domain of attraction.

Remark 3. Rates obtained for non-functional approximations (18), (19) are surely far from being
optimal. The proofs (given below) show the essential flexibility of our approach. In this paper,
our main stress was on functional approximations, and moreover, we planned to develop and
demonstrate some methodology and did not fight for the best estimates. Nevertheless, for non-
functional results and for the exact convergence (when BM = ∞) it can be instructive to compare
our rates with those in the literature, which are in abundance. It seems that, even in this case, our
results are not consequences of any known results but complement them. The nearest to us seem to
be the estimates from [9] that also operate with smooth Wasserstein distances and makes the same
standard assumptions on the densities of τ. However, using Hölder spaces, we managed to obtain
estimates of weak convergence in terms of just once differentiable functions for β ∈ (0, 1) and of
twice differentiable functions for β ∈ (1, 2) (unlike twice and thrice differentiable, respectively,
in [9]). Additionally, our approach allows one to further weaken these regularity assumptions
(that is, decrease the order of smooth Wasserstein distances). In other papers, most notably [8], the
assumptions on τ are made in terms of characteristic functions, which makes a direct comparison
with our rates not straightforward.

Let us turn to the case β ∈ (1, 2). In this paper, we decided to avoid dealing with
several technical complications arising in the case β = 1.

Theorem 2. Let β ∈ (1, 2), the probability density p(y) satisfy assumption (P), and h ≥ h̃0 =

[(β− 1)B̃β−1
M ]−β, where coefficients with tilde are defined in (33).

(i) If β ∈ (1, 3/2), then

sup
s≤t
‖(V[s/h]

h − TAs
β ) f ‖ ≤ C2th(2−β)/(3−β)‖ f ′‖Lip, (20)

where

C2 = 4A(1 +
ε̃0

B̃M
) +

βB̃m ε̃0

(β− 1)
+

B̃2

2
+

B̃2
m

(2− β)
+

12A2

(3− 2β)(β− 1)2 .

(ii) If β ∈ [3/2, 2), then

sup
s≤t
‖(V[s/h]

h − TAs
β ) f ‖ ≤ C3th(2−β)/β‖ f ′′‖Lip, (21)

where

C3 = 4A(1 +
ε̃0

B̃M
) +

βB̃m ε̃0

(β− 1)
+

B̃2

2
+

B̃2
m

(2− β)
+

9A2

2(2− β)2(β− 1)2 .

Proof. It is a consequence of estimate (A4), where εh is given by Theorem 4 case (iii) and
κh is given by Proposition 6.

Inequalities of Theorem 2 estimate the smooth Wasserstein distances dC2(Φh
s , Σβ

As).
Analogously to the case β ∈ (0, 1) above one can obtain an estimate for the corresponding
Kolmogorov distances using (7), and for the distances of normalised sums.

Next, let τi, i ∈ N, be a sequence of i.i.d. Rd-valued random variables with a bounded
probability density p, d > 1. The random walk Φh

t and its transition operator V[t/h]
h are

defined as above in case d = 1.
For p, we shall assume the condition (Pd), which is a natural extension of the one-

dimensional case above.
Condition (Pd): With given constants ε0 ≥ 0, β > 0, BM > Bm > 0, the probability

density p(y) on Rd is bounded and such that

p(y) = A(ȳ)|y|−d−β(1 + ε(y)|y|−1) for |y| ∈ [Bm, BM],
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p(y) ≤ A(ȳ)|y|−d−β(1 + ε0|y|−1) for |y| ≥ BM,

where ȳ = y/|y|, ε(y) is a measurable function on Rd such that |ε(y)| ≤ ε0, and A(ȳ) is a
continuous non-negative function on the sphere Sd−1 such that

A =
∫

Sd−1
A(ȳ)dȳ < βBβ

m.

The generator of a d-dimensional stable Lévy process of index β ∈ (0, 2) with a spectral
measure specified by the density function A(ȳ) is defined by the formulas

Lβ f (x) =
∫

Rd

f (x + y)− f (x)
|y|d+β

A(ȳ) dy, β ∈ (0, 1), (22)

Lβ f (x) =
∫

Rd

f (x + y)− f (x)− f ′(x)y
|y|d+β

A(ȳ) dy

=
∫

Rd

∫ 1

0
(y, f ′(x + wy)− f ′(x))dw

A(ȳ)dy
|y|d+β

, β ∈ [1, 2). (23)

One-dimensional results above are presented in a way that they extend straightfor-
wardly to the present d-dimensional case. For instance, for β ∈ (1, 2), we find the following.

Theorem 3. Estimates (12) and (14) of Theorem 1 and estimates (20) and (21) of Theorem 2 still
hold in d-dimensional case, for densities p satisfying condition (Pd), where one has to plug in the
semigroup-generated by (23) in place of TAt

β .

Let us now provide an example of cascading asymptotics showing different regimes
for large and for “very large” number of terms.

Let β = 3/4, BM a positive constant, A = β/(1− B−β
M ), and

p(y) =

{
Ay−1−β, y ∈ [1, BM]

0, y /∈ [1, BM].
(24)

Aiming at dealing with large BM, let us assume for definiteness that BM ≥ 27, so that
1− B−2/3

M ∈ [8/9, 1) and thus A ∈ (2/3, 3/4].
A random variable τ with distribution p(y) satisfies the requirement of Theorem 1 (i)

with Bm = 1 and

C1 =
4β

1− B−β
M

+
1

1− β
+

6

(1− β)2(1− B−β
M )2

≤ 67

On the other hand, the distribution p(y) has finite moments

µ = Eτ = 3A(B1/3
M − 1), σ2 = Var(τ) =

3
4

A(B4/3
M − 1)− [3A(B1/3

M − 1)]2 ≥ B4/3
M /6,

ρ = E|τ − Eτ|3 ≤ A
∫ BM

1
[y4/3 + (3A)3BMy−5/3]dy ≤ 12B7/3

M .

Hence, we can apply the Berry–Essen theorem for the distance of normalised sums of τ to
the standard law. Combining this theorem with Theorem 1 yields the following result.

Proposition 1. For a sequence of i.i.d. random variables τi distributed like τ with the distribution
p(y) given by (24), with BM ≥ 27, it follows that

dKol

(
τ1 + · · ·+ τn

n3/2 , Σ2/3
A

)
≤ 2

√
C1n−1/8, (25)
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for n ≤ B4/9
M /2. On the other hand, for all n,

dKol

(
(τ1 − µ) + · · ·+ (τn − µ)

σn1/2 , N(0, 1)
)
≤ C

ρ

σ3 n−1/2 ≤ 174CB1/3
M n−1/2, (26)

where C is the Berry–Essen constant and N(0, 1) is a standard normal random variable.

Remark 4. The Berry–Essen constant C belongs to the interval (0.4, 0.5). We refer to [18,19] for
the best-known results on its approximation.

We see that roughly speaking, in order for estimate (26) to make sense, we must have
n � B2/3

M . Thus the interval n ∈ [B4/9
M , B2/3

M ] is the switching region, where the (quasi)
2/3-stable asymptotics is transferred to the normal CLT. Clearly, if BM is sufficiently large
so that observations for n beyond the level of B4/9

M are not available or feasible, the random
variable τ looks like it belongs to the domain of attraction of the 3/2-stable law and its true
asymptotics cannot be revealed. However, the example shows exactly where this quasi
attraction actually breaks down and when the true limit becomes visible.

3. Technical Estimates I: Random Walk Approximation for Stable Generators

In this section, we supply the first group of inequalities needed for the application of
Proposition A1 in our setting, namely estimates of type (A1).

Theorem 4. Let ε(y) be a measurable bounded function on R+ satisfying assumption (P).
(i) Let β ∈ (0, 1), δ ∈ (1, 1/β] and

hδ = (βBβ
M)−1/δ. (27)

Then ∣∣∣∣h−1
∫ ∞

−∞
f (h1/βy)p(y)dy− A

∫ ∞

0

f (y)dy
y1+β

∣∣∣∣
≤
(

2A(1 +
ε0

BM
) + ε0 + B +

Bm

1− β

)
hδ−1‖ f ‖Lip, (28)

for any f ∈ CLip(R) vanishing at zero and any h ∈ [hδ, 1].
In particular, for g ∈ CLip(R),∣∣∣∣h−1

∫ ∞

0
[g(x± h1/βy)− g(x)]p(y)dy− A

∫ ∞

0

[g(x± y)− g(x)]dy
y1+β

∣∣∣∣
≤
(

4A(1 +
ε0

BM
) + 2ε0 + B +

Bm

1− β

)
‖g‖Liphδ−1. (29)

(ii) Let β ∈ (1, 2). Then∣∣∣∣h−1
∫ ∞

−∞
f (h1/βy)p(y)dy− A

∫ ∞

0

f (y)dy
y1+β

∣∣∣∣
≤
(

2A(1 +
ε0

BM
) +

βBmε0

2(β− 1)
+

B2

2
+

B2
m

(2− β)

)
h1+2/β‖ f ′‖Lip, (30)

for
h ≥ h0 = [(β− 1)Bβ−1

M ]−β.

and any differentiable f vanishing at zero together with its first derivative and such that f ′ ∈
CLip(R).
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In particular,

∣∣h−1
∫ ∞

−∞
[g(x± h1/βy)− g(x)∓ g′(x)h1/βy]p(y)dy− A

∫ ∞

0

[g(x± y)− g(x)∓ g′(x)y]dy
y1+β

∣∣
≤
(

4A(1 +
ε0

BM
) +

βBmε0

(β− 1)
+

B2

2
+

B2
m

(2− β)

)
‖g′‖Liph−1+2/β, (31)

for g ∈ H1,1(R) and h ≥ h0.
(iii) Let again β ∈ (1, 2) and set m =

∫
yp(y) dy the first moment of p (which is well-defined

due to the assumptions of the theorem). Let us assume (for definiteness) that m ≥ 0 and

max(m, Bm) + m < BM.

Then∣∣h−1
∫ ∞

−∞
[g(x + h1/β(y−m))− g(x)]p(y)dy− A

∫ ∞

0

[g(x + y)− g(x)− g′(x)y]dy
y1+β

∣∣
≤
(

4A(1 +
ε̃0

B̃M
) +

βB̃m ε̃0

(β− 1)
+

B̃2

2
+

B̃2
m

(2− β)

)
‖g′‖Liph−1+2/β, (32)

for g ∈ H1,1(R) and h ≥ h̃0, where

B̃ = B + m, B̃m = max(m, Bm), B̃M = BM −m, ε̃0 = ε0 + (m + ε0)(1 + β). (33)

(iv) Finally, let p̃(y) = [p(y) + p(−y)]/2 be the symmetrized version of the probability
density p. Then

∣∣h−1
∫ ∞

−∞
[g(x + h1/βy)− g(x)] p̃(y)dy− A

2

∫ ∞

−∞

[g(x + y)− g(x)]dy
y1+β

∣∣
≤
(

4A(1 +
ε0

BM
) +

βBmε0

(β− 1)
+

B2

2
+

B2
m

(2− β)

)
‖g′‖Liph−1+2/β, (34)

for β ∈ (1, 2), g ∈ H1,1(R) and h ≥ h0. Integrals in this formula are understood in the sense of
the main value.

Remark 5. (i) If BM = ∞, it is natural to choose δ = 1/β in Statement (i). We have taken here
arbitrary δ, because for small β, the interval [h1/β, 1] can become void even for sufficiently large BM.
In addition, notice that the bound h ≤ 1 was used only for δ < 1/β and is not required whenever
δ = 1/β. (ii) Statements (iii) and (iv) are particular cases of a more general situation with different
power asymptotics for p on positive and negative half-lines. This general case is dealt with in the
next result concerning stable limits in arbitrary dimensions. (iii) As seen from the proofs below,
most of the explicit constants on the r.h.s. of the estimates above can be essentially tightened. We
tried to give the simplest versions that, at the same time, clearly indicate the role of all parameters.
(iv) The case with β = 1 requires certain modifications that we are not touching here.

Proof. (i) We shall compare the integrals separately in the domains [Bm, BM], [−B, Bm] and
[BM, ∞).

Firstly,

h−1
∫ BM

Bm
f (h1/βy)p(y) dy = Ah−1

∫ BM

Bm
f (h1/βy)

(1 + ε(y)y−1) dy
y1+β

= A
∫ h1/βBM

h1/βBm

f (y) dy
y1+β

+ Ah1/β
∫ h1/βBM

h1/βBm

f (y)ε(h−1/βy) dy
y2+β

. (35)
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For the second term, we have the following estimate:∣∣∣∣∣Ah1/β
∫ h1/βBM

h1/βBm

f (y)ε(h−1/βy) dy
y2+β

∣∣∣∣∣ ≤ Aε0 fLiph1/β
∫ h1/βBM

h1/βBm

dy
y1+β

=
Aε0

β
fLiph−1+1/βB−β

m ≤ ε0 fLiph−1+1/β,

where we used the inequality βBβ
m > A.

Secondly,∣∣∣∣h−1
∫ Bm

−B
f (h1/βy)p(y)dy

∣∣∣∣ ≤ h−1+1/β fLip

∫ Bm

−B
|y|p(y)dy ≤ h−1+1/β fLip(Bm + B),

and ∣∣∣∣∣
∫ h1/βBm

0

f (y)dy
y1+β

∣∣∣∣∣ ≤ fLip

∫ Bmh1/β

0

dy
yβ

=
B1−β

m
1− β

fLiph−1+1/β,

so that ∣∣∣∣∣h−1
∫ Bm

−B
f (h1/βy)p(y)dy− A

∫ h1/βBm

0

f (y)dy
y1+β

∣∣∣∣∣
≤
(

B + Bm +
AB1−β

m
1− β

)
h−1+1/β fLip ≤

(
B +

Bm

1− β

)
h−1+1/β fLip.

The latter estimate follows from the inequality βBβ
m > A.

Thirdly,∣∣∣∣h−1
∫ ∞

BM

f (h1/βy)p(y) dy
∣∣∣∣ ≤ h−1 A

∫ ∞

BM

| f (h1/βy)|(1 + ε0y−1) dy
y1+β

= A
∫ ∞

h1/βBM

| f (z)|(1 + ε0h1/βz−1) dz
z1+β

≤ h−1 A‖ f ‖
[

1

βBβ
M

+ ε0
1

(1 + β)B1+β
M

]

≤ h−1+δ A
(

1 +
ε0

BM

)
‖ f ‖.

In the last inequality we used the definition of hδ and the inequality βBβ
m > A.

Finally, combining the three estimates above yields (28).
(ii) Proof of (30) is analogous. Firstly, for the second term of (35) we obtain the upper

bound
1
2

Aε0 f ′Liph1/β
∫ h1/βBM

h1/βBm

dy
yβ

=
Aε0

2(β− 1)
f ′Liph−1+2/βB−(β−1)

m ≤ β

2(β− 1)
Bmε0 f ′Liph−1+2/β.

Secondly, ∣∣∣∣∣h−1
∫ Bm

−B
f (h1/βy)p(y)dy− A

∫ h1/βBm

0

f (y)dy
y1+β

∣∣∣∣∣
≤ 1

2

(
B2 + B2

m +
AB2−β

m
2− β

)
h−1+2/β f ′Lip ≤

(
B2

2
+

B2
m

2− β

)
h−1+1/β f ′Lip.
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Thirdly, ∣∣∣∣h−1
∫ ∞

BM

f (h1/βy)p(y) dy
∣∣∣∣ ≤ A

∫ ∞

h1/βBM

| f (z)|(1 + ε0h1/βz−1) dz
z1+β

≤ A
∫ ∞

h1/βBM

(1 + ε0h1/βz−1)dz
zβ

‖ f ′‖

≤ h−1+1/β A‖ f ′‖
[

1

(β− 1)Bβ−1
M

+ ε0
1

βBβ
M

]
≤ h−1+2/β A

(
1 +

ε0

BM

)
‖ f ′‖.

(iii) We have∫ ∞

−∞
[g(x + h1/β(y−m))− g(x)]p(y) dy =

∫ ∞

−∞
[g(x + h1/βz)− g(x)]p(m + z) dz

=
∫ ∞

−∞
[g(x + h1/βz)− g(x)− g′(x)h1/βz]p(m + z) dz. (36)

We are going to apply Statement (ii) to the probability density pm(z) = p(m + z) with
parameters (33).

If z ∈ [B̃m, B̃M], then z + m ∈ [Bm, BM] and therefore

pm(z) = p(m + z) =
A(1 + ε(m + z)(m + z)−1)

(m + z)1+β

= Az−1−β[1 + ε(m + z)z−1(1 + q)−1](1 + q)−1−β = Az−1−β[1 + ε̃(z)z−1],

where q = m/z ≤ 1 and

|ε̃(z)| ≤ ε0 + m(1 + β) + ε0(1 + β)q ≤ ε̃0,

because |(1 + q)−1−β − 1| ≤ q(1 + β).
Now, by Statement (ii), we can conclude that∫ ∞

−∞
[g(x + h1/βz)− g(x)− g′(x)h1/βz]p(m + z) dy

differs from
A
∫ ∞

−∞
[g(x + z)− g(x)− g′(x)z]

dy
y1+β

by the r.h.s. of (31) with all constants with tilde. Consequently, by (36), this implies (32).
(iv) Changing the integration variable y to −y in the second inequality of (31) and

summing up with the first one yields

∣∣h−1
∫ ∞

−∞
[g(x+ h1/βy)− g(x)− g′(x)h1/βy] p̃(y)dy− A

2

∫ ∞

−∞

[g(x + y)− g(x)− g′(x)y]dy
y1+β

∣∣
≤
(

4A(1 + ε0) +
βBmε0

(β− 1)
+

B2

2
+

B2
m

(2− β)

)
‖g′‖Liph−1+2/β.

The integrals containing g′(x) vanish yielding (34).

Let us now obtain a multidimensional extension of these estimates, reducing attention
to β ≥ 1.

Recall that for a differentiable function f on Rd we shall denote by ‖ f ′‖ the sup-norm
of the Euclidean length of the gradient vector f ′ = ∇ f , and by ‖ f ′′‖ the sup-norm of
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the standard matrix norm of the matrix of the second derivatives of f and ‖ f ′‖C1(Rd) =

max(‖ f ′‖, ‖ f ′′‖).

Theorem 5. Let a density p on Rd satisfy condition (Pd) and β ∈ (1, 2).
Let m =

∫
yp(y)dy ∈ Rd denote the first moment of p (which is well-defined due to the

assumptions of the theorem). All estimates below are supposed to hold for

h ≥ h0 = [(β− 1)Bβ−1
M ]−β

(with the corresponding B̃M and h̃0 in case (iii)) and twice continuously differentiable functions f
and g.

(i) For a differentiable f vanishing at zero together with its first derivative, it follows that∣∣∣∣h−1
∫

Rd
f (h1/βy)p(y)dy−

∫
Rd

A(ȳ)
f (y)dy
|y|d+β

∣∣∣∣
≤
(

2A(1 +
ε0

BM
) +

βBmε0

2(β− 1)
+

B2
m

(2− β)

)
h−1+2/β‖ f ′‖C1(Rd). (37)

(ii) If m = 0, then∣∣∣∣h−1
∫

Rd
[g(x + h1/βy)− g(x)]p(y) dy−

∫
Rd

A(ȳ)
[g(x + y)− g(x)]dy

y|d|+β

∣∣∣∣
≤
(

4A(1 +
ε0

BM
) +

βBmε0

β− 1
+

B2
m

(2− β)

)
h−1+2/β‖g′‖C1(Rd), (38)

(iii) If m 6= 0 and 3‖m‖ < BM − Bm, then

∣∣h−1
∫

Rd
[g(x + h1/β(y−m))− g(x)]p(y)dy−

∫
Rd

A(ȳ)
[g(x + y)− g(x)− g′(x)y]dy

|y|d+β

∣∣
≤
(

4A(1 +
ε̃0

B̃M
) +

βB̃m ε̃0

(β− 1)
+

B̃2
m

(2− β)

)
‖g′‖C1(R)h

−1+2/β, (39)

where
B̃m = 2‖m‖+ Bm, B̃M = BM −m, ε̃0 = 2ε0 + 22+β(|m|+ ε0)(1 + β). (40)

Proof. Statement (i) is a straightforward extension of the proof of part (ii) of Theorem 4.
Statement (ii) is obtained by applying (i) to the function g(x+ y)− g(x)− g′(x)y and noting
that the integrals containing g′(x) vanish. To prove (iii), we follow the line of arguments of
part (iii) of Theorem 4 and start by writing∫

Rd
[g(x + h1/β(y−m))− g(x)]p(y) dy =

∫
Rd
[g(x + h1/βz)− g(x)]p(m + z) dz.

Then we apply Statement (ii) to this integral with respect to the probability density pm(z) =
p(m + z). Notice that if |z| ∈ [B̃m, B̃M], then |z + m| ∈ [Bm, BM]. At the same time, if
|z| ∈ [B̃m, B̃M], then |z| > 2|m|, and therefore

|z|
|z + m| < 2,

∣∣∣∣∣
(
|z|
|z + m|

)1+β

− 1

∣∣∣∣∣ ≤ 2β+2(1 + β)
|m|
|z| ,

implying the required estimate for ε̃0.

4. Technical Estimates II: Stable Generators from Stable Semigroups

In this section, we supply the second group of inequalities needed for the application
of Proposition A1 in our setting, namely estimates (A2). Thus the main results are given
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by Propositions 3, 5 and 7. Preliminary Lemmas 1 and 2 must be essentially known to
specialists, but explicit constants for the corresponding estimates are not easy to find in the
literature, and we sketch proofs for the convenience of readers.

Lemma 1. Let β ∈ (0, 1). Then

‖Lβ f ‖ ≤ 2α− β

β(α− β)
‖ f ‖α, (41)

for any α ∈ (β, 1].
Furthermore, if α ∈ (0, 1− β] and f ∈ Hα+β, then Lβ f ∈ Hα and

(Lβ f )α ≤
1
2

(
1
β
+

1
α

)
fα+β. (42)

In particular,

‖Lβ f ‖1−β ≤
1

β(1− β)
max(1/2, 2− β)‖ f ‖1. (43)

Proof. Estimate (41) is straightforward from dividing the integral in (10) in two parts, over
the interval [0, 1] and over the rest of R+ (more details are given below for the analogous
case of β ∈ (1, 2)).

To prove (42), let us write

|Lβ f (x)− Lβ f (y)| ≤
∫ ∞

ε

∣∣∣∣ [ f (x + z)− f (y + z)]− [ f (x)− f (y)]
z1+β

∣∣∣∣dz

+
∫ ε

0

∣∣∣∣ [ f (x + z)− f (x)]− [ f (y + z)− f (y)]
z1+β

∣∣∣∣dz.

We can estimate the first term in magnitude by

2 fα+β|x− y|α+β
∫ ∞

ε

dz
z1+β

= 2 fα+β|x− y|α+β 1
βεβ

,

and the second term by

2 fα+β

∫ ε

0
zα−1 dz = 2 fα+β

εα

α
.

Choosing ε = |x− y| yields the result required.
Finally, to obtain (43) we use (42) with α = 1− β and (41) with α = 1.

Let Tt
β be the Feller semigroup of the β-stable Lévy process generated by operator Lβ.

Proposition 2. (i) If α ∈ (β, 1], then

‖Th
β f − f ‖ ≤ 2α− β

β(α− β)
h‖ f ‖α. (44)

(ii) For any α ∈ (0, 1) and γ ∈ (max{α, β}, 1],

‖Th
β f − f ‖ ≤ 4

β(γ− β)
hα/(γ+α)‖ f ‖α. (45)

Proof. (i) Since

(Th
β − 1) f =

∫ h

0
Tt

βLβ f dt,

estimate (44) is a direct consequence of (41).
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(ii) Let φ be an even nonnegative smooth function on R with support in [−1, 1]
such that φ(0) = 1, φ is increasing on [−1, 0] and

∫
φ(x) dx = 1. For δ ∈ (0, 1], let

φδ(x) = δ−1φ(x/δ). For an f ∈ C(R), let

( f ? φδ)(x) =
∫

f (y)φδ(x− y) dy =
∫

f (x− y)φδ(y) dy.

If f ∈ Hα, then

‖ f − f ? φδ‖ ≤ sup
x

∫
| f (x)− f (y)|φ((x− y)/δ)

dy
δ
≤ fα sup

x

∫
|x− y|αφ((x− y)/δ)

dy
δ

= fαδα
∫
|z|αφ(z) dz ≤ fαδα.

On the other hand, ‖( f ? φδ)
′‖ ≤ 2‖ f ‖/δ and therefore

‖( f ? φδ)‖Lip ≤ 2‖ f ‖/δ, ‖ f ? φδ‖α ≤ 2‖ f ‖/δα,

for any α ∈ (0, 1).
Writing

‖(Th
β − 1) f ‖ ≤ ‖(Th

β − 1)( f − f ?φδ)‖+ ‖(Th
β − 1)( f ?φδ)‖ ≤ 2‖ f − f ?φδ‖+ h‖Lβ( f ?φδ)‖

and estimating

‖Lβ( f ? φδ)‖ ≤
2γ− β

β(γ− β)
‖ f ? φδ‖γ ≤

2γ− β

β(γ− β)

2
δγ
‖ f ‖

yields

‖(Th
β − 1) f ‖ ≤ 2‖ f ‖α

(
δα +

2γ− β

β(γ− β)

h
δγ

)
.

Choosing δ = h1/(γ+α) yields

‖(Th
β − 1) f ‖ ≤ 2‖ f ‖αhα/(α+γ)(1 +

2γ− β

β(γ− β)
) ≤ 4

β(γ− β)
‖ f ‖αhα/(α+γ).

Since (
Tt

β − 1

t
− Lβ

)
f =

1
t

∫ t

0
(Ts

β − 1)Lβ f ds,

it follows that

‖
(

Tt
β − 1

t
− Lβ

)
f ‖ ≤ sup

s∈[0,t]
‖(Ts

β − 1)Lβ f ‖.

Varying α in (42) and Proposition 2, we can obtain, as direct corollaries, various
estimates for the l.h.s. of this inequality. A particular choice of α = 1− β and γ = 1 leads
to the following result.

Proposition 3. Under assumptions of Proposition 2,

‖
(

Th
β − 1

h
− Lβ

)
f ‖ ≤


4h

β2(1− β)(1− 2β)
‖ f ‖1, β < 1/2,

6
β2(1− β)2 h(1−β)/(2−β)‖ f ‖1, β ≥ 1/2.

(46)
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Proof. If β < 1/2, then α = 1− β > β and we can use (43) and (44) to obtain

‖
(

Th
β − 1

h
− Lβ

)
f ‖ ≤ 2− 3β

β(1− 2β)
h

2− β

β(1− β)
‖ f ‖1 ≤

4h
β2(1− β)(1− 2β)

‖ f ‖1.

If β ≥ 1/2, then α = 1− β ≤ β and we use (43) and (45) to obtain the required estimate.

Remark 6. Using arbitrary γ from(45), the second line of the r.h.s. of (46) can be substituted by a
more general expression

6γ

β2(1− β)(γ− β)
h(1−β)/(1+γ−β)‖ f ‖1, β ≥ 1/2, γ > β.

Thus the power of h can be made arbitrary close to 1− β, which is bigger than (1− β)/(2− β)
used in (46).

Let us turn to the case β ∈ (1, 2).

Lemma 2. Let β ∈ (1, 2). Then

‖Lβ f ‖ ≤ 4
(α + 1)(α− β + 1)(β− 1)

‖ f ′‖α, (47)

for α ∈ (β− 1, 1].
Furthermore, if α ∈ (0, 2− β] and f ′ ∈ Hα+β−1, then

(Lβ f )α ≤
4

α(α + β)(β− 1)
f ′α+β−1 (48)

and
‖Lβ f ‖α ≤

4
α(α + β)(β− 1)

‖ f ′‖α+β−1. (49)

Proof. Let α ∈ (β− 1, 1]. Then

Lβ f (x) =
∫ 1

0

∫ y

0
( f ′(w + x)− f ′(x)) dw

dy
y1+β

+
∫ ∞

1

∫ y

0
( f ′(w + x)− f ′(x)) dw

dy
y1+β

,

and

|Lβ f (x)| ≤ f ′α
∫ 1

0

∫ y

0
wα dw

dy
y1+β

+ 2‖ f ′‖
∫ ∞

1

y dy
y1+β

= ‖ f ′‖α

[
1

(α + 1)(α− β + 1)
+

2
β− 1

]
≤ ‖ f ′‖α

4
(α + 1)(α− β + 1)(β− 1)

,

proving (47).
Proof of (48) is analogous to the proof of (42). Namely, we decompose the integral in

(11) in two parts, over the interval [0, ε] and the rest of R leading to the estimate

|Lβ f (x)− Lβ f (y)| ≤ 2 f ′α+β−1

(
εα

α(α + β)
+
|x− y|α+β−1

(β− 1)εβ−1

)
.

Choosing ε = |x− y| yields

(Lβ f )α ≤ 2 f ′α+β−1

(
1

α(α + β)
+

1
β− 1

)
= 2 f ′α+β−1

β− 1 + α(α + β)

α(α + β)(β− 1)
.

Since α ≤ 2− β the numerator in the fraction is bounded by 3− β ≤ 2 yielding (48).
To obtain (49) we apply (48) and then (47) with α + β− 1 instead of α.
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Proposition 4. Let β ∈ (1, 2) and α ∈ (β− 1, 1]. Then

‖Th
β f − f ‖ ≤ 4

(α + 1)(α− β + 1)(β− 1)
h ‖ f ′‖α, (50)

‖Th
β f − f ‖ ≤ 9

2(α + 1)(α− β + 1)(β− 1)
h1/(1+α) ‖ f ′‖. (51)

and
‖Th

β f − f ‖ ≤ 9
2(α + 1)(α− β + 1)(β− 1)

hα/(1+α) ‖ f ‖α. (52)

Remark 7. One sees from Proposition 4 that for an effective estimate of ‖Th
β f − f ‖ one either uses

higher regularity of f with better behaviour in small h, or less regularity in f resulting in worse
estimate in h. Different versions can be used depending on the regularity requirement.

Proof. Estimate (50) is a direct consequence of (47). To prove the second inequality, we
work as if in the proof of (45) exploiting the approximation f ? φδ to an arbitrary f .

Writing

‖(Th
β − 1) f ‖ ≤ ‖(Th

β − 1)( f − f ?φδ)‖+ ‖(Th
β − 1)( f ?φδ)‖ ≤ 2‖ f − f ?φδ‖+ h‖Lβ( f ?φδ)‖

and estimating
‖ f − f ? φδ‖ ≤ ‖ f ′‖δ,

and, for α ∈ (β− 1, 1],

‖Lβ( f ? φδ)‖ ≤
4

(α + 1)(α− β + 1)(β− 1)
‖( f ? φδ)

′‖α ≤
4

(α + 1)(α− β + 1)(β− 1)
‖ f ′‖ 2

δα
,

yields

‖(Th
β − 1) f ‖ ≤ 2‖ f ′‖

(
δ +

4
(α + 1)(α− β + 1)(β− 1)

h
δα

)
.

Choosing δ = h1/(α+1) yields

‖(Th
β − 1) f ‖ ≤ 2‖ f ′‖h1/(1+α)

(
1 +

4
(α + 1)(α− β + 1)(β− 1)

)
,

implying (51) by a rough estimate of the term in the bracket.
Alternatively, we can estimate

‖ f − f ? φδ‖ ≤ fαδα,

and, for α ∈ (β− 1, 1],

‖Lβ( f ? φδ)‖ ≤
4

(α + 1)(α− β + 1)(β− 1)
‖( f ? φδ)

′‖α ≤
4

(α + 1)(α− β + 1)(β− 1)
‖ f ‖α

2
δ

,

yields

‖(Th
β − 1) f ‖ ≤ 2‖ f ‖α

(
δα +

4
(α + 1)(α− β + 1)(β− 1)

h
δ

)
.

Choosing again δ = h1/(α+1) yields

‖(Th
β − 1) f ‖ ≤ 2‖ f ‖αhα/(1+α)

(
1 +

4
(α + 1)(α− β + 1)(β− 1)

)
,

implying (51).

As above, for the case of β ∈ (0, 1), we obtain the following as a direct corollary.
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Proposition 5. Let β ∈ (1, 2) and α ∈ (β− 1, 1]. Then

‖
(

Th
β − 1

h
− Lβ

)
f ‖ ≤ 18

(α + 1)2(α− β + 1)2(β− 1)2 h1/(1+α)‖ f ′′‖α. (53)

If β ∈ (1, 3/2) and α ∈ (β− 1, 2− β], then also

‖
(

Th
β − 1

h
− Lβ

)
f ‖ ≤


18

α(α + 1)(α + β)(α− β + 1)(β− 1)2 hα/(1+α)‖ f ′‖α+β−1,

16
α(α + 1)(α + β)(α− β + 1)(β− 1)2 h‖ f ′′‖α+β−1.

(54)

Proof. Estimate (53) is obtained by combining estimates (51) and (47). Estimate (54) is
obtained by combining estimates (50), (52) and (49).

Choosing α = 1 in the first case and α = 2− β in the second (also estimating 2− β ≥
1/2, 3− β ≥ 3/2 in the second case) we obtain the following consequence.

Proposition 6. Let β ∈ (1, 2). Then

‖
(

Th
β − 1

h
− Lβ

)
f ‖ ≤ 9

2(2− β)2(β− 1)2

√
h‖ f ′′‖Lip.

If β ∈ (1, 3/2), then also

‖
(

Th
β − 1

h
− Lβ

)
f ‖ ≤


12

(3− 2β)(β− 1)2 h(2−β)/(3−β)‖ f ′‖Lip,

11
(3− 2β)(β− 1)2 h‖ f ′′‖Lip.

(55)

All these estimates and their proofs extend automatically to the d-dimensional case
leading to the following result.

Proposition 7. Let A(ȳ) be a continuous nonnegative function on Sd−1 and A =
∫

A(ȳ)dȳ. Then
operators (22) and (23) generate Feller semigroups on C∞(Rd) satisfying estimates of Lemmas 1 and
2, Proposition 2 with an additional multiplier A on the r.h.s. and Proposition 3 with an additional
multiplier A2 on the r.h.s.

5. Conclusions

In this paper, we proved various rates of convergence for functional limit theorems
with stable laws. In particular, we paid attention to some kind of quasi convergence,
where stable approximation holds for large, but not too large n, and in fact, it can vary in
different regions of these large n. The method of proof was based essentially on the theory
of semigroups.

Let us draw some further perspective.
First of all, our results have more or less straightforward extensions for the convergence

of position-dependent random walks to stable-like processes. Unlike the method of Fourier
transform, which is tailored to the analysis of constant-coefficient equations, our approach
is more robust. To extend our main theorems to variable coefficients, one just has to use
general estimate (A3), rather than its simplified version (A4).

Next, we excluded the case β = 1 that requires certain additional efforts. Bringing this
case to the theory is also connected to working out the best rates available for various β
and various distances (Kolmogorov, Wasserstein, etc.). As seen from our proofs, several
possibilities arise in choosing various intermediate parameters, and our choice here was
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motivated by simplicity and not by proper consideration of optimality. One can also
weaken the assumption (P) on an asymptotic similarity of p(y) with an exact power.

Essential improvement of the results of [6] on functional CLT with stable laws (as per-
formed here) would naturally imply improvements in the results of [6] for the convergence
of continuous time random walks (CTRW), which we did not touch here at all.

Finally, the author believes that the methods developed here can be successfully
applied to many other related models, as described, for instance, in [20].

Funding: The paper was published with the financial support of the Ministry of Education and
Science of the Russian Federation as part of the program of the Moscow Center for Fundamental and
Applied Mathematics under the agreement 075-15-2022-284.

Data Availability Statement: Not applicable.
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Appendix A. Rates of Convergence for Scaled Markov Chains

Our proofs are all derived from a general estimate for the difference between a Feller
semigroup and its discrete (random walk) approximation. The following result was proved
essentially in Theorem 8.1.1 of [21] (see also [22]), though here we modify it by stating that
all estimates hold only for h ∈ [h0, 1] (rather than all positive h in [21]), which does not
affect the proof.

Proposition A1. Let Ft = etL be a Feller semigroup in the Banach space B = C∞(Rd), generated
by an operator L, having a core D, which is itself a Banach space with a norm ‖.‖D ≥ ‖.‖B. Let Ft
be also a bounded semigroup in D such that

max
s∈[0,t]

‖Ft‖D→D ≤ emt,

with a constant m ≥ 0 (the growth rate of the semigroup).
Let Uh be a family of contractions in B, and let

‖
(

Uh − 1
h
− L

)
f ‖B ≤ εh‖ f ‖D, (A1)

‖
(

Fh − 1
h
− L

)
f ‖B ≤ κh‖ f ‖D, (A2)

for h ∈ [h0, 1] with some constant h0 ∈ (0, 1) and with some positive continuous functions εh and
κh on [h0, 1]. Then the scaled discrete semigroups (Uh)

[t/h] are close to the semigroup Ft in the
sense that

sup
s≤t
‖(Uh)

[s/h] f − Fs f ‖B ≤ (κh + εh)‖ f ‖D

∫ t

0
ems ds (A3)

for h ∈ [h0, 1].

In all our examples, we deal with spatially homogeneous Feller processes and with D
being spaces of differentiable or Hölder continuous functions. In these cases, functions and
all their derivatives satisfy the same evolution equations and therefore Ft are contractions
in all these spaces. Hence (A3) reduces to the simpler relation

sup
s≤t
‖(Uh)

[s/h] f − Fs f ‖B ≤ t(κh + εh)‖ f ‖D (A4)

for h ∈ [h0, 1].
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