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Abstract: This study examines the dynamics of a stochastic prey–predator model using a functional
response function driven by Lévy noise and a mixed Holling-II and Beddington–DeAngelis functional
response. The proposed model presents a computational analysis between two prey and one predator
population dynamics. First, we show that the suggested model admits a unique positive solution.
Second, we prove the extinction of all the studied populations, the extinction of only the predator,
and the persistence of all the considered populations under several sufficient conditions. Finally,
a special Runge–Kutta method for the stochastic model is illustrated and implemented in order to
show the behavior of the two prey and one predator subpopulations.

Keywords: prey–predator; stochastic model; Lévy jump; Holling-II functional; Beddington–DeAngelis
functional; Runge–Kutta method

1. Introduction

Prey–predator dynamics remain a highly fruitful and attractive ecological subject [1–4].
The basic prey–predator model was proposed by Lotka and Volterra in 1956 [5]; this basic
ecological problem was one of the earliest to model competition between prey and predator.
One study devoted to the dynamics of fishing illustrated the mathematical and ecological
properties of marine fish [6]. Another application of these mathematical tools sought to
understand the interaction between wildebeest, zebra, and lion [7] in Kruger National
Park in South-Africa. The natural or more realistic growth rate is a logistic suggested by
Verhulst [8] for new recruitment of either prey, predators, or both. This logistic growth rate
charmed several scientists in various disciplines [9–14]. Other studies have been devoted to
the type of competition between prey and predators; for example, the basic prey–predator
model uses a mass action computational rate [5]. In another study [15], Yavuz and Sene
performed a stability analysis for the fractional predator–prey model with harvesting rate.
In [16], the authors provided an analysis of the prey–predator model using the Crowley–
Martin type functional response. Their main object was to study the stability behavior of
the considered population. The Holling-type functional impact on the dynamics of the
prey–predator relationship was studied in [17,18]. The starting predator–prey model is
based on the assumption that the reaction is between one predator and one prey species.
Recently, the authors of [19,20] considered two prey and one predator species under a
mixed Holling-II and Beddington–DeAngelis functional response, as follows:
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dX1

dt
(t) = X1(t)

(
υ1 − $1X1(t)− y(t)

ι1+X1(t)

)
,

dX2

dt
(t) = X2(t)

(
υ2 − $2X2(t)− y(t)

ι2+X2(t)+βy(t)

)
,

dy
dt

(t) = y(t)
(
−d− $3y(t) + ϑ1X1(t)

ι1+X1(t)
+ ϑ2X2(t)

ι2+X2(t)+βy(t)

)
,

(1)

where the two prey and one predator populations are presented by X1, X2, and y, respec-
tively. The parameters of (1) and their meanings are provided in Table 1.

Table 1. The parameters of (1) and their meanings.

Parameters Description

υ1 The intrinsic growth rate of prey X1

υ2 The intrinsic growth rate for X2

$1 The intra-specific competition for prey X1

$2 The intra-specific competition for prey X2

ι1 The half-saturation due to X1

ι2 The half-saturation due to X2

β The impact of the predator interference

δ The death rates of predator

$3 The rate of intra-species competition for predator

ϑ1 The average of the transformation of predator from prey X1

ϑ2 The average of the transformation of predator from prey X2

d The natural mortality of the predator y

Deterministic modeling lacks one of the most important properties in prey and preda-
tor, that of randomness; for this reason, the stochastic model is preferred in modeling such
problems. This is because the stochastic model takes into account the variance aspect, not
just the mean, as in the deterministic case. In addition, the stochastic model may offer dif-
ferent predicted results for the same initial data. Certain stochastic prey–predator systems
can be established by taking into consideration only the white noise for the studied popula-
tion [21,22]. Recently, a Brownian random walk perturbation on model (1) was proposed
in [20] by studying the persistence and extinction of the prey and predator population. A
more basic modification to the modeling technique is to immediately take into account
more realistic distributions in order to maintain the model’s straightforward analytic form.
This naturally leads to Lévy jumps, a broader class of driving processes [23–35]. In fact,
the dynamical model may encounter abrupt and significant disturbances in predator–prey
development due to the intrinsic stochastic features of the related processes [36]. Here, we
add the jumps to the model from [20] in response to the results of earlier research. Thus,
the model becomes

dX1(t) = X1(t)
(

υ1 − $1X1(t)− y(t)
ι1+X1(t)

)
dt + σ1X1(t)dW1(t)

+
∫

U
Ξ1(u)X1(t−)Ñ(dt, du),

dX2(t) = X2(t)
(

υ2 − $2X2(t)− y(t)
ι2+X2(t)+βy(t)

)
dt + σ2X2(t)dW2(t)

+
∫

U
Ξ2(u)X2(t−)Ñ(dt, du),

dy(t) = y(t)
(
−d− $3y(t) + ϑ1X1(t)

ι1+X1(t)
+ ϑ2X2(t)

ι2+X2(t)+βy(t)

)
dt + σ3y(t)dW3(t)

+
∫

U
Ξ3(u)y(t−)Ñ(dt, du).

(2)
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where the left limits of X1(t), X2(t), and y(t) are denoted by x(t−), y(t−), and z(t−),
respectively, the standard Brownian motion Wi(t) is defined on the space (Ω,F , (Ft)t≥0,P)
as a complete probability, and (Ft)t≥0 is the filtration verifying the usual conditions. We
define the finite stationary compensator ν on U as the measurable subset of the non-negative
half-line; then, N(dt, du) is the Poisson counting ν(du)dt, σi is the intensity of Wi(t), and
the jumping intensities are represented by qi(u) for i = 1, 2, 3.

The remaining parts of this study are organized as follows. In Section 2, we provide
several properties of the solution of the model (2). The stochastic extinction of both the
prey and the predator is established in Section 3. In Section 4, we prove the persistence of
the prey and the extinction of the predator. The stochastic persistence of both the predator
and prey is illustrated in Section 5. Finally, Section 6 of this paper is devoted to numerical
simulations that validate our theoretical findings.

2. The Well-Posedness of the Solution

The following theorem ensures the well-posedness of the solution of the model (2).

Theorem 1. For all initial conditions that are positive, model (2) admits a unique positive global
solution a.s.

Proof. Using the local Lipschitz of the diffusion and drift, for all initial positive data
the problem (2) admits a local unique solution (X1(t),X2(t), y(t)) for t ∈ [0, Te), with Te

representing the time of explosion.
Proving the existence globality of the solution amounts to showing that Te = ∞ a.s.

For a given a large number n′0 > 0, for any integer n′ ≥ n′0 the stopping time is defined as

Tn′ = inf{t ∈ [0, Te)/X1(t) /∈ (
1
n′

, n′) or X2(t) /∈ (
1
n′

, n′) or y(t) /∈ (
1
n′

, n′)},

and when n′ ↑ ∞, the number Tn′ increases. Using T∞ = limn′→∞ Tn′ , with T∞ ≤ Te a.s., it
is sufficient to prove that T∞ = ∞, which is signified Te = ∞, and (X1(t),X2(t), y(t)) ∈ R3

+
a.s. Suppose the contrary, i.e., T∞ < ∞ a.s. This means that there exists some T > 0 and
0 < ε < 1 such that P(T∞ ≤ T) ≥ ε.

Considering the functional

V(X1(t),X2(t), y(t)) =(X1 − 1− log(X1)) + (X2 − 1− log(X2)) + (y− 1− log(y)),

from Itô’s formula [37], we obtain

dV(X1,X2, y) =LV dt + σ1(X1 − 1) dW1 + σ2(X2 − 1) dW2 + σ3(y− 1) dW3

+
∫

U
[Ξ1(u)X1 − log(1 + Ξ1(u)X1)]

+
∫

U
[Ξ2(u)X2 − log(1 + Ξ2(u)X2)]

+
∫

U
[Ξ3(u)y− log(1 + Ξ3(u)y)],

(3)

with

LV =

(
1− 1
X1

)(
X1(t)

(
υ1 − $1X1 −

y
ι1 +X1

))
+

σ2
1
2

+

(
1− 1
X2

)(
X2(t)

(
υ2 − $2X2 −

y
ι2 +X2 + βy

))
+

σ2
2
2

+

(
1− 1

y

)(
y
(
−d− $3y +

ϑ1X1

ι1 +X1
+

ϑ2X2

ι2 +X2 + βy

))
+

ρσ2
3

2

+
∫

U
[Ξ1(u)− log(1 + Ξ1(u))]ν(du)

+
∫

U
[Ξ2(u)− log(1 + Ξ2(u))]ν(du)

+
∫

U
[Ξ3(u)− log(1 + Ξ3(u))]ν(du),
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then,

LV ≤υ1X1 − $1X 2
1 + $1X1 +

σ2
1

2

+ υ2X2 − $1X 2
2 + $2X2 +

σ2
2

2

+ d + (ϑ1 + ϑ2)y− $3y2 +
σ3

2
2

+ M,

LV ≤(υ1 + $1)X1 − $1X 2
1 +

σ2
1

2
+ (υ2 + $2)X2 − $2X 2

2 +
σ2

2
2

+ d + (ϑ1 + ϑ2)y− $3y2 +
σ2

3
2

+ 3C′,

LV ≤ (υ1 + $1)
2

4$1
+

(υ2 + $2)
2

4$2
+ d +

(ϑ1 + ϑ2)
2

4$3
+

σ2
1

2
+

σ2
2

2
+

σ2
3

2
+ M,

LV ≤M′,

with

M =3 max
{ ∫

U

[
Ξ1(u)− log(1 + Ξ1(u))

]
ν(du),

∫
U

[
Ξ2(u)− log(1 + Ξ2(u))

]
ν(du),∫

U

[
Ξ3(u)− log(1 + Ξ3(u))

]
ν(du)

}
.

M =
(υ1 + $1)

2

4$1
+

(υ2 + $2)
2

4$2
+ d +

(ϑ1 + ϑ2)
2

4$3
+

σ2
1

2
+

σ2
2

2
+

σ2
3

2
+ M′.

Integrating Equation (3) between 0 and Tn′ ∧ T, we obtain

0 ≤ E
(

V
(
X1(Tn′ ∧ T),X2(Tn′ ∧ T), y(Tn′ ∧ T)

))
≤ V(X1(0),X2(0), y(0)) + M′T.

Thus, if n′ → ∞, then

∞ > V(X1(0),X2(0), y(0)) + M′CT = ∞,

which is in contradiction with the previous supposition. Thus, T∞ = ∞ and the solution
(X1(t),X2(t), y(t)) is unique and global a.s.

3. Stochastic Extinction

Now, we prove the extinction of the three subpopulations a.s. First, we define

m1 = υ1 +
∫

U
log(1 + Ξ1(u))− Ξ1(u)ν(du)−

σ2
1

2
,

m2 = υ2 +
∫

U
log(1 + Ξ2(u))− Ξ2(u)ν(du)−

σ2
2

2
,

m3 =
ϑ1

$1

(
υ1 +

∫
U

log(1 + Ξ1(u))− Ξ1(u)ν(du)−
σ2

1
2

)

+
ϑ2

$2

(
υ2 +

∫
U

log(1 + Ξ2(u))− Ξ2(u)ν(du)−
σ2

2
2

)
− d

+
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du)−

σ2
3

2
.



Fractal Fract. 2023, 7, 751 5 of 19

Theorem 2. If max{m1, m2, m3} < 0, then for any initial positive condition we have

lim
t→+∞

< X1 >t = 0,

lim
t→+∞

< X2 >t = 0,

lim
t→+∞

< y >t = 0.

Proof. Considering
F (X1) = log(X1(t)),

from Itô’s formula we have

dF =LF dt + σ1dW1(t) +
∫

U
log(1 + Ξ1(u))Ñ(dt, du), (4)

with

LF =υ1 − $1X1 −
y

ι1 +X1
−

σ2
1

2
+
∫

U
log(1 + Ξ1(u))− Ξ1(u)ν(du),

then,

LF ≤ υ1 − $1X1 −
σ2

1
2

+
∫

U
log(1 + Ξ1(u))− Ξ1(u)ν(du),

and,

log(X1(t))− log(X1(0))
t

≤ υ1 −
σ2

1
2

+
∫

U
log(1 + Ξ1(u))− Ξ1(u)ν(du)

− $1 < X1 >t +
∫ t

0

σ1dW1(s)
t

ds

+
1
t

∫ t

0

∫
U

log(1 + Ξ1(u))Ñ(ds, du)ds,

therefore,

< X1 >t≤
1
$1

(
υ1 +

∫
U

log(1 + Ξ1(u))− Ξ1(u)ν(du)−
σ2

1
2

)

+
1
$1

(∫ t

0

σ1dW1(s)
t

ds +
1
t

∫ t

0

∫
U

log(1 + Ξ1(u))Ñ(ds, du)ds
)

− 1
$1

(log(X1(t))− log(X1(0)))
t

.

Let us now take

Mt =
∫ t

0
σ1dW1(s),

then,

lim sup
t→+∞

< Mt, Mt >

t
= lim sup

t→+∞

σ2
1
t

< ∞.

Using Martingale’s theorem (the strong law of large numbers), we obtain

lim sup
t→+∞

Mt

t
= 0.
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Thus,

lim
t→+∞

< X1 >t≤
1
$1

(
υ1 +

∫
U

log(1 + Ξ1(u))− Ξ1(u)ν(du)−
σ2

1
2

)
.

Following the same technique, we obtain

lim inf
t→+∞

< X2 >t≤
1
$2

(
$2 +

∫
U

log(1 + Ξ2(u))− Ξ2(u)ν(du)−
σ2

2
2

)
.

We next consider
V(t) = log(y).

Itô’s formula implies that

dV =LV dt + σ3dW3(t) +
∫

U
log(1 + Ξ3(u))Ñ(dt, du), (5)

with

LV =− d− $3z +
ϑ1X1

ι1 +X1
+

ϑ2X2

ι2 +X2 + βy
−

σ2
3

2
+
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du)

≤− d− $3y + ϑ1X1 + ϑ2X2 +
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du)−

σ2
3

2
,

then,

V(t)− V(0)
t

≤ϑ1 < X1 > +ϑ2 < X2 > −d− $3 < y >t +
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du)

−
σ2

3
2

+
1
t

∫ t

0

(
σ3dW3(t) +

∫
U

log(1 + Ξ3(u))Ñ(dt, du)
)

,

then,

< y >t≤
1
$3

(
ϑ1 < X1 > +ϑ2 < X2 > −d−

σ2
3

2
+
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du)

)

− 1
$3

V(t)− V(0)
t

+
1
α3

1
t

∫ t

0

(
σ3dW3(t) +

∫
U

log(1 + Ξ3(u))Ñ(dt, du)
)

.

Similar to < X1 >t, we have

lim
t→+∞

< y >t≤
1
$3

(
ϑ1

$1

(
υ1 +

∫
U

log(1 + Ξ1(u))− Ξ1(u)ν(du)−
σ2

1
2

)

+
ϑ2

$2

(
υ2 +

∫
U

log(1 + Ξ2(u))− Ξ2(u)ν(du)−
σ2

2
2

)

+
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du)− d−

σ2
3

2

)
.
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4. Stochastic Extinction of Predator

In order to prove the extinction of the predator, we need to define

m′1 =
m1

2$1 − υ1
,

m′2 =
m2

2$2 − υ2
,

m4 = ϑ1 + ϑ2 − d +
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du)−

σ2
3

2
.

Theorem 3. Suppose that m4 ≤ 0 and min{m′1, m′2} > 0; then,

lim
t→∞

< y >t= 0,

and

lim inf
t→∞

< X1 >t≥m′1 a.s.

lim inf
t→∞

< X2 >t≥m′2 a.s.

Proof. The first Equation of (2) implies that

X1(t)−X1(0)
t

=
1
t

∫ t

0

(
X1(s)(υ1 − $1X1(s))−

y(s)
ι1 +X1(s)

)
ds + σ1x(s)dW1(s)

+
1
t

∫ t

0

(∫
U

Ξ1(u)X1(s−)Ñ(ds, du)
)

ds.

Let us consider the following:

F (X1) = log(X1(t)),

from It’ô’s formula, we have

dF =υ1 − $1X1 −
σ2

1
2

+
∫

U
log(1 + Ξ1(u))− Ξ1(u)ν(du)

− y
ι1 +X1

dt + σ1dW1(t) +
∫

U
log(1 + Ξ1(u))Ñ(dt, du),

then,

X1(t)−X1(0)
t

+
F (t)−F (0)

t
≥υ1 < X1 >t −2$1 < X1 >t −

1
t

∫ t

0

(X1 + 1)y
ι1 +X1

ds

+ υ1 −
σ2

1
2

+
∫ t

0

∫
U

log(1 + Ξ1(u))− Ξ1(u)ν(du)ds

+
1
t

∫ t

0
σ1(1 +X1(s))dW1(s)

+
1
t

∫ t

0

(∫
U

log(1 + Ξ1(u)) + Ξ1(u)X1(s−)Ñ(ds, du)
)

ds

and we know that

lim
t→+∞

1
t

∫ t

0

(X1 + 1)y
ι1 +X1

ds ≤ lim
t→+∞

1
t

(∫ t

0

(
(X1 + 1)
ι1 +X1

)2

ds

)1/2

×
(∫ t

0
y2ds

)1/2
= 0.
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Thus,

lim inf
t→+∞

< X1 >t≥
υ1 +

∫
U log(1 + Ξ1(u))− Ξ1(u)ν(du)− σ2

1
2

2$1 − υ1
.

Using the same technique, we can show that

lim inf
t→+∞

< X2 >t≥
υ2 +

∫
U log(1 + Ξ2(u))− Ξ2(u)ν(du)− σ2

2
2

2$2 − υ2
.

Let us now take
V(t) = log(y),

from Itô’s formula, we have

dV =LV dt + σ3dW3(t) +
∫

U
log(1 + Ξ3(u))Ñ(dt, du), (6)

with

LV =− d− $3y +
ϑ1X1

ι1 +X1
+

ϑ2X2

ι2 +X2 + βy
−

σ2
3

2
+
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du)

≤− d− $3y + υ1 + υ2 −
σ2

3
2

,

therefore,

V(t)− V(0)
t

≤ϑ1 + ϑ2 − d− $3 < y >t +
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du)−

σ2
3

2

+
1
t

∫ t

0

(
σ3dW3(t) +

∫
U

log(1 + Ξ3(u))Ñ(dt, du)
)

,

then,

< y >t≤
1
$3

(
ϑ1 + ϑ2 − d +

∫
U

log(1 + Ξ3(u))− Ξ3(u)ν(du)−
σ2

3
2

)
− 1

$3

V(t)− V(0)
t

+
1
$3

1
t

∫ t

0

(
σ3dW3(t) +

∫
U

log(1 + Ξ3(u))Ñ(dt, du)
)

,

and

lim
t→+∞

< y >t≤
1
$3

(
ϑ1 + ϑ2 − d +

∫
U

log(1 + Ξ3(u))− Ξ3(u)ν(du)−
σ2

3
2

)
.
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5. Stochastic Persistence

In this section, we show that all three subpopulations persist.

Theorem 4. For m′1 > 0, m′2 > 0, and

1
$3

(
υ1ϑ1 + ϑ1

∫
U log(1 + Ξ1(u))− Ξ1(u)ν(du)− ϑ1σ2

1
2

(ι1 +
υ1

2$1
)(υ1 − 2$1)

+
υ2ϑ2 + ϑ2

∫
U log(1 + Ξ2(u))− Ξ2(u)ν(du)− ϑ2σ2

2
2

(ι2 +
υ2

2$2
+ β

υ2

2$2
)(υ2 − 2$2)

− d +
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du)−

σ2
3

2

)
> 0,

which means that all of the subpopulations persist in the mean. In addition,

lim inf
t→+∞

< X1 >t≥
υ1 +

∫
U log(1 + Ξ1(u))− Ξ1(u)ν(du)− σ2

1
2

2$1 − υ1
a.s.

lim inf
t→+∞

< X2 >t≥
υ2 +

∫
U log(1 + Ξ2(u))− Ξ2(u)ν(du)− σ2

2
2

2$2 − υ2
a.s.

lim inf
t→+∞

< y >t≥
1
$3

(
υ1ϑ1 + ϑ1

∫
U log(1 + Ξ1(u))− Ξ1(u)ν(du)− ϑ1σ2

1
2

(ι1 +
υ1

2$1
)(υ1 − 2$1)

+
υ2ϑ2 + ϑ2

∫
U log(1 + Ξ2(u))− Ξ2(u)ν(du)− ϑ2σ2

2
2

(ι2 +
υ2

2$2
+ β

υ2

2$2
)(υ2 − 2$2)

− d +
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du)−

σ2
3

2

)
a.s.

Proof. The first Equation of (2) implies that

X1(t)−X1(0)
t

=
1
t

∫ t

0

(
X1(s)(υ1 − $1X1(s))−

y(s)
ι1 +X1(s)

)
ds + σ1x(s)dW1(s)

+
1
t

∫ t

0

(∫
U

Ξ1(u)X1(s−)Ñ(ds, du)
)

ds.

Let us consider the following:

F (X1) = log(X1(t)),

from Itô’s formula, we have

dF =υ1 − $1X1 −
σ2

1
2

+
∫

U
log(1 + Ξ1(u))− Ξ1(u)ν(du)

− y
ι1 +X1

dt + σ1dW1(t) +
∫

U
log(1 + Ξ1(u))Ñ(dt, du),

then,
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X1(t)−X1(0)
t

+
F (t)−F (0)

t
≥υ1 < X1 >t −2$1 < X1 >t −

1
t

∫ t

0

(X1 + 1)y
ι1 +X1

ds

+ υ1 −
σ2

1
2

+
∫ t

0

∫
U

log(1 + Ξ1(u))− Ξ1(u)ν(du)ds

+
1
t

∫ t

0
σ1(1 +X1(s))dW1(s)

+
1
t

∫ t

0

(∫
U

log(1 + Ξ1(u)) + Ξ1(u)X1(s−)Ñ(ds, du)
)

ds.

We know that

lim
t→+∞

1
t

∫ t

0

(X1 + 1)y
ι1 +X1

ds ≤ lim
t→+∞

1
t

(∫ t

0

(
(X1 + 1)
ι1 +X1

)2

ds

)1/2

×
(∫ t

0
y2ds

)1/2
= 0.

Thus,

lim inf
t→+∞

< X1 >t≥
υ1 +

∫
U log(1 + Ξ1(u))− Ξ1(u)ν(du)− σ2

1
2

2$1 − υ1
.

Using the same technique, we can show that

lim inf
t→+∞

< X2 >t≥
υ2 +

∫
U log(1 + Ξ2(u))− Ξ2(u)ν(du)− σ2

2
2

2$2 − υ2
.

Now, we need to take into account that

V(t) = log(y),

where Itô’s formula implies that

dV =LV dt + σ3dW3(t) +
∫

U
log(1 + Ξ3(u))Ñ(dt, du), (7)

with

LV =− d− $3y +
ϑ1X1

ι1 +X1
+

ϑ2X2

ι2 +X2 + βy
−

σ2
3

2
+
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du),

and,

V(t)− V(0)
t

≥ ϑ1

ι1 +
υ1

2$1

υ1 +
∫

U log(1 + Ξ1(u))− Ξ1(u)ν(du)− σ2
1
2

υ1 − 2$1


+

ϑ1

ι2 +
υ2

2$2
+ β υ2

2$2

υ2 +
∫

U log(1 + Ξ2(u))− Ξ2(u)ν(du)− σ2
2
2

υ2 − 2$2


− d− $3 < y >t +

∫
U

log(1 + Ξ3(u))− Ξ3(u)ν(du)−
σ2

3
2

+
1
t

∫ t

0

(
σ3dW3(t) +

∫
U

log(1 + Ξ3(u))Ñ(dt, du)
)

,
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therefore,

< y >t≥
1
$3

ϑ1υ1 + ϑ1
∫

U log(1 + Ξ1(u))− Ξ1(u)ν(du)− ϑ1σ2
1

2
(ι1 + N)(υ1 − 2$1)


+

1
$3

ϑ2υ2 + ϑ2
∫

U log(1 + Ξ2(u))− Ξ2(u)ν(du)− ϑ2σ2
2

2

(ι2 +
υ2

2$2
+ β

υ2

2$2
)(υ2 − 2$2)


− 1

$3

(
d +

∫
U

log(1 + Ξ3(u))− Ξ3(u)ν(du)−
σ2

3
2
− V(t)−V(0)

t

)

+
1
$3

1
t

∫ t

0

(
σ3dW3(t) +

∫
U

log(1 + Ξ3(u))Ñ(dt, du)
)

,

and

lim inf
t→+∞

< y >t ≥
1
$3

(
υ1ϑ1 + ϑ1

∫
U log(1 + Ξ1(u))− Ξ1(u)ν(du)− ϑ1σ2

1
2

(ι1 +
υ1

2$1
)(υ1 − 2$1)

+
υ2ϑ2 + ϑ2

∫
U log(1 + Ξ2(u))− Ξ2(u)ν(du)− ϑ2σ2

2
2

(ι2 +
υ2

2$2
+ β

υ2

2$2
)(υ2 − 2$2)

− d +
∫

U
log(1 + Ξ3(u))− Ξ3(u)ν(du)−

σ2
3

2

)
.

6. Numerical Analysis

In this section, we illustrate the algorithm used in the numerical analysis of the
considered model (2). First, we use the following equation:

dZ(t) = G
(
t, Z(t)

)
dt + σ

(
t, Z(t)

)
dWt +

∫
U

Π(t, u)H
(
t−, Z(t−)

)
Ň(dt, du). (8)

Thus,

Z(t) = Z(0) +
∫ t

0
G
(
ξ, Z(ξ)

)
dξ +

∫ t

0
σ
(
ξ, Z(ξ)

)
dWξ︸ ︷︷ ︸

Part I

+H
(
t−, Y(t−)

) ∫ t

0

∫
U

Π(ξ, u)Ň(dξ, du)︸ ︷︷ ︸
Part II

. (9)

Using the Runge–Kutta method, we can provide an approximation of part I in (8):

Zj+1 = Zj +
1
6
(M1 + 2M2 + 2M3 + M4),

with

M1 = G(tj, Zj)ht + σ(tj, Zj)(Wj+1 −Wj),

M2 = G(tj +
ht

2
t, Zj +

M1

2
)ht + σ(tj +

ht

2
, Zj +

M1

2
)(Wj+1 −Wj),

M3 = G(tj +
ht

2
, Zj +

M2

2
)ht + σ(tj +

ht

2
, Zj +

M2

2
)(Wj+1 −Wj),

M4 = G(tj + ht, Zj + M3)ht + σ(tj + ht, Zj + M3)(Wj+1 −Wj).
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We consider the infinitesimal interval [Tj, Tj+1) ⊂ (tj, tj+1); then, for the second part,
we have the following:

With no jumping on [Tj, Tj+1), we obtain

H
(
t−, Z(t−)

) ∫ Tj+1

Tj

∫
U

Π(ξ, u)Ň(dξ, du) = 0.

With one jump at the point ti ∈ [Ti, Ti+1), we obtain

H
(
t−, Z(t−)

) ∫ Tj+1

Tj

∫
U

Π(u)Ň(dξ, du) = H
(
tj−, Z(tj−)

)
Π
(
tj, ς(tj)

)
,

and,

H
(
t−, Z(t−)

) ∫ t

0

∫
U

Π(ξ, u)Ň(dξ, du) =
j=n

∑
j=0
H
(
ti−, Z(tj−)

)
Π
(
tj, ς(tj)

)
.

Therefore,

Zj+1 = Zj +
1
6
(

M′1 + 2M′2 + 2M′3 + M′4
)

is the Runge–Kutta version of Equation (8), with

M′1 = G(tj, Zj)ht + σ(tj, Zj)(Wj+1 −Wj)

+H(tj−, Z(tj))Π(tj, ς(tj)),

M′2 = G(tj +
ht

2
, Zj +

M′1
2

)ht + σ(tj +
ht

2
, Zj +

M′1
2

)(Wj+1 −Wj)

+H(tj +
ht

2
, Z(tj) +

M′1
2

)Π(tj +
ht

2
, ς(tj +

ht

2
)),

M′3 = G(tj +
ht

2
, Zj +

M′2
2

)ht + σ(tj +
ht

2
, Yj +

M′2
2

)(Wj+1 −Wj)

+H(tJ +
ht

2
, Z(tj) +

M′2
2

)Π(tj +
ht

2
, ς(tj +

ht

2
)),

M′4 = G(tj + ht, Zj + M′3)ht + σ(tj + ht, Zj + M′3)(Wj+1 −Wj)

+ f (tj + ht, Z(tj) + M′3)Π(tj + ht, ς(tj + ht)).

The different values used for the numerical results are provided in Table 2.

Table 2. Values of the parameters used in the numerical simulations.

Parameters Figure 1 Figure 2 Figure 3

υ1 0.7 1.7 2
$1 2 3 3
υ2 0.65 1.8 2.3
$2 1 4 4
ϑ1 0.1 0.15 0.2
ϑ2 0.12 0.17 0.3
$3 2 2 1.5
β 0.002 0.0015 0.001
d 0.4 0.35 0.1
σ1 10−3 10−3 10−2

σ2 2× 10−5 2× 10−4 2× 10−3

σ3 2× 10−5 2× 10−3 2× 10−2

Ξ1(u) 0.006 0.005 0.005
Ξ2(u) 0.03 0.03 0.03
Ξ3(u) 0.07 0.06 0.05
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The dynamics of the two prey subpopulations X1 and X2 and the predator subpopula-
tion y can be seen in Figure 1, where the extinction of both prey species and the predator
species can be observed.
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Figure 1. The behavior of the prey and predator subpopulations in the extinction situation.

Figure 2 illustrates the behavior of X1, X2 and y; it can be observed that the prey
subpopulations remain strictly positive and the predator subpopulation vanishes, indicates
the extinction of the predator and is opposite to the scenario in which the predator and
prey populations persist.
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Figure 2. The behavior of the prey and predator populations in the extinction–persistence situation.

The behavior of X1, X2 and y is illustrated in Figure 3, observing that all the considered
populations persist, which coincides with our theoretical result in the case of persistence.
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Figure 3. The behavior of the prey and predator populations in the case of persistence.

In Figure 4, we show a comparison between the stochastic model (2) and deterministic
model (1) in the persistence case. It can be observed that the curve of the stochastic case
has perturbations around the deterministic curve, which proves that the stochastic model
can more efficiently describe the dynamics of the prey–predator model.
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Figure 4. Comparison of the behavior of the prey and predator populations the deterministic model
and stochastic model in the case of persistence between.

Figure 5 shows a comparison of the stochastic model (2) in the persistence case with
and without Lévy jumps. It is notable that the curve of the stochastic model with jumping
has a number of jumped-up perturbations, while the curve without Lévy jumps has normal
perturbations. This observation demonstrates that certain cases can lead to Lévy jumps in
the behavior of the prey–predator model.
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Figure 5. Comparison of the behavior of the prey and predator populations in the case of persistence
with and without Lévy jumps.

7. Conclusions and Discussion

This paper has investigated a stochastic prey–predator model driven by Lévy noise in
the presence of two prey subpopulations and one predator subpopulation. The model under

consideration uses two forms of functional responses, namely, Holling-II
yX2

ι2 +X2 + βy

and Beddington–DeAngelis
yX1

ι1 +X1
, due to the saturation behavior. These two mixed

functionals can better describe the reality of the computation between the prey and predator
subpopulations. First, we have established the well-posedness of the solution of the
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model (2). An analysis of persistence and extinction led us to three possible cases: the first
is devoted to the extinction of all the considered population when max{m1, m2, m3} ≤ 0;
the second case is dedicated to the persistence of the two prey species and the extinction
of the predator species when min{m′1, m′2} ≥ 0 and m4 ≤ 0; and in the last case, we
show the persistence of all the studied populations under several conditions. In our
numerical analysis, we illustrate a special Runge–Kutta method for the stochastic model
under Brownian and Lévy jump perturbations as implemented in Matlab R2019b software.

In this way, we considered the three cases with respect to extinction (persistence
of the two prey species, extinction of the predator, and persistence of all three species)
in simulations in order to validate our theoretical findings. Finally, we present several
numerical comparisons. The first is between the deterministic and stochastic cases, which
shows the usefulness of considering the stochastic model. The second comparison is
between the cases with and without Lévy jumps, which proves that certain cases naturally
lead to Lévy jumping in the behavior of the prey–predator model. Future efforts should
address remaining issues; one of these is how the presented predator-prey model spreads
via Levy jumps. In addition, we intend to study the chaotic behavior of the stochastic
predator–prey system. Moreover, it is possible to model the prey–predator relationship
using the space–time spectral order Sinc-collocation method (see [36] for example) and to
illustrate a new modified stochastic predictor–corrector compact difference method, such
as the one suggested in [38].
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