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Abstract: As an essential low-level computer vision task for remotely operated underwater robots
and unmanned underwater vehicles to detect and understand the underwater environment, under-
water image enhancement is facing challenges of light scattering, absorption, and distortion. Instead
of using a specific underwater imaging model to mitigate the degradation of underwater images,
we propose an end-to-end underwater-image-enhancement framework that combines fractional
integral-based Retinex and an encoder–decoder network. The proposed variant of Retinex aims
to alleviate haze and color distortion in the input image while preserving edges to a large extent
by utilizing a modified fractional integral filter. The encoder–decoder network with channel-wise
attention modules trained in an unsupervised manner to overcome the lack of paired underwater
image datasets is designed to refine the output of the Retinex. Our framework was evaluated un-
der qualitative and quantitative metrics on several public underwater image datasets and yielded
satisfactory enhancement results on the evaluation set.

Keywords: underwater image enhancement; fractional integral Retinex; unsupervised autoencoder

1. Introduction

About 70% of the earth’s surface is covered by water, so exploring and utilizing marine
resources benefits humankind greatly. However, vision-based underwater detection tasks
face many challenges caused by the poor quality of underwater images. On the one hand,
underwater images always present awful visibility due to the scattering and absorption
of light while it propagates in the water. On the other hand, the more rapid attenuation
of red light than the green and blue light in the water results in severe distortion of color
rendition in digital images.

Similar to the physical dehazing model [1,2] on land, there are some classical under-
water image restoration algorithms based on physical models, for example, methods based
on the Jaffe–McGlamery underwater imaging model [3,4]. Sea-thru [5] is a representative
algorithm that combines the physical model and the principle of digital image processing.
Researchers from the Univ. of Haifa developed a model that takes an RGB-D image as input,
estimates backscatter in a way inspired by the dark channel prior, and uses an optimization
framework to obtain the range-dependent attenuation coefficient. However, some models
based on the physical assumption of underwater imaging rely on extra devices, such as
the Laser Underwater Camera Imaging Enhancer [6] and Coulter Counter [7], to acquire
specific parameters, and even the Sea-thru requires an additional depth sensor. Thus,
computer-vision algorithms that are independent of expensive measurements are preferred
for general underwater image enhancement tasks.

First introduced by Land and McCann [8], the Retinex theory has been extensively
applied in multiple research areas such as dehazing, enhancement of remote sensing images,
and underwater images. One of the most noted variants of Retinex, called Multi-Scale
Reinex [9], captured light changes under different scales and removed the light from the
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input image to simultaneously achieve dynamic range compression, color consistency,
and lightness rendition. A color restoration function based on empirical parameters was
applied to the output after Retinex processing to recover authentic color from the degraded
image. As most Retinex algorithms employ Gaussian operators to estimate the light
image, note that underwater images are generally used for close-range detection of the
reef, shellfish, ancient ruins, and underwater vehicles, and sharp edges naturally exist in
them. Hence, the Gaussian filtering operator used by classical MSR algorithms may cause
over-smoothing and a lack of details. According to Qi Wang et al. [10], fractional calculus
operators excel at processing information with weak derivatives that the texture structure
contains. More specifically, the fractional differential operator has the characteristics of
memorizing and a higher signal-to-noise ratio than the integer differential operator, which
enables the fractional operator to capture more detailed information. For the fractional
integral operator, it attenuates the high-frequency portion of the signal dramatically while
enhancing the low part to a large extent. The denoising method based on fractional integral
was first proposed by Huang et al. [11], who constructed an eight-direction fractional
integral operator to filter input noise from the original image directionally. We noticed that
most of the fractional integral-based filters were limited to a 3× 3 or 5× 5 size, which was
not compatible with the Retinex theory that the light image should be estimated by a much
larger filter to capture a trend of slow change of the light. In the Multi-Scale Retinex, a
three-scale parallel Retinex network always uses 15, 80, and 250 as sigma values for the
Gaussian filter to predict the light, leading to filters of size 45× 45, 240× 240, 750× 750,
respectively. For such a considerable filter size, the fractional method could either expand
the filter kernel size or carry out recurrent filtering. However, the former will not work
because the filter became sparse and resulted in a “fringe phenomenon” on the image,
while the latter required significant time cost.

With the development of the use of deep learning theory in image processing, ap-
proaches based on convolutional neural networks have shown potential for image enhance-
ment tasks. For underwater image dehazing, J. Perez et al. introduced a model based on
classical CNN architecture [12]. This work utilized a dataset of pairs of raw and restored
images for training a network so that clear images could be restored from degraded in-
puts. Based on the multi-branch design, the UIE-Net proposed by Yang Wang et al. [13]
firstly extracts features from the input image using a sharing network and then uses two
subnets—the color correction network (CC-Net) and the haze removal network (HR-Net)—
to simultaneously achieving color correction and haze removal. Taking into account that
pretraining is necessary for these supervised deep learning-based approaches, a problem
occurred, namely that there were limited underwater image datasets available for training
the networks. To overcome the lack of paired underwater images, an amount of paired
datasets for image enhancement tasks were proposed, for example, the UIEB dataset [14]
proposed by Li et al. Containing 950 authentic underwater images under various light
conditions with 890 paired images in them, the UIEB dataset uses classical enhancement
methods and artificial selection to generate reference underwater images. Although paired
image-based datasets boost supervised methods, we should be aware that acquiring abso-
lute ground truth for underwater image enhancement tasks is practically impossible. In
fact, since a significant portion of the paired datasets were synthetic, models trained on
these datasets yielded undesirable generalization performance and sometimes failed on
authentic underwater images.

To surmount the challenges, methods based on unsupervised learning could be a
possible solution. One direction for unsupervised underwater image enhancement is to
utilize depth-guided networks, represented by the WaterGAN [15]. While the first part of
the WaterGAN aims to generate underwater images from the in-air ones, the second part
restores underwater images by successively passing the input through a depth estimation
network and a color correction network. Taking an underwater image and corresponding
output relative depth map of the depth estimation network as input, the color-correction
network restores the color of the input image. The other direction is based on pure computer
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vision, independent of any specific underwater imaging model. Inspired by unsupervised
methods on low-light image enhancement, image translation, and style transfer, Lu et
al. proposed an adaptive algorithm with multi-scale cycle GAN and dark channel prior
(MCycleGAN) [16]. By using the dark channel prior to obtain the transmission map of an
image and designing an adaptive loss function to improve underwater image quality, the
raw images being multi-scale calculated were able to convert to clear results. The TACL [17]
proposed by Risheng Liu et al. utilized a bilateral constrained closed-loop adversarial
enhancement module to preserve more informative features and embedded a task-aware
feedback module in the enhancement process to narrow the gap between visually-oriented
and detection-favorable target images.

Rather than the above-mentioned unsupervised methods, which mostly used GAN
to generate enhancement results or classical underwater image restoration algorithms
based on specific physical models, in this paper, by combining the Retinex algorithm and
unsupervised image enhancement approaches, we propose an end-to-end underwater-
image-enhancement framework which generates the enhanced image primarily using the
Retinex. The underwater image pre-enhanced by the Retinex will be further improved by
an encoder–decoder network trained in an unsupervised style to yield better contrast and
luminance enhancement, as well as more satisfactory perceptual performance.

The main contributions of this paper are as follows:

• A fractional integral-based Retinex and an improved fractional-order integral operator,
which eliminated the drawback of classical fractional integral operator for large-kernel
filtering and resulted in more accurate estimation for light images, was proposed in
this paper.

• An effective unsupervised encoder–decoder network requiring no adversarial training
and yielding perceptually pleasing results was employed to refine the output of the
previous Retinex model.

• Combining the fractional integral-based Retinex and unsupervised autoencoder men-
tioned above, the proposed end-to-end framework for underwater image enhancement
was evaluated on several public datasets and produced impressive results.

The rest of this paper is organized as follows: In Section 2, the mathematical back-
ground of fractional double integral, on which the proposed variant of Retinex is based,
is briefly introduced. In Section 3, we first propose the FDIF-MSR algorithm and then
illustrate an end-to-end framework based on FDIF-MSR and the unsupervised encoder–
decoder network. In Section 4, the proposed image enhancement model is evaluated on
three public datasets, and some of the results are shown in this paper. In Section 5, the
conclusion is given.

2. Mathematical Background
2.1. The Definition of Fractional Derivatives

There are many definitions of fractional-order derivatives. However, Riemann–Liouville
(R-L), Grünwald–Letnikov (G-L), and Caputo gave the three most commonly used def-
initions of fractional derivatives. The Grünwald–Letnikov definition is deduced from
the expression of integer-order differential, whereas the other two are derived from the
integer-order integral Cauchy formula.

1. Let α be a positive real number. When n− 1 6 α < n, where n is a positive integer,
the left-hand Riemann–Liouville fractional derivatives can be written as:

aDα
t f (t) =

dn

dtn (
1

Γ(n− α)

∫ t

a

f (τ)
(t− τ)α−n+1 dx) (1)

where α is called the order of the R-L derivative.
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2. The Grünwald–Letnikov definition of fractional derivatives is defined as

aDα
t f (t) = lim

h→0
h−α

[(t−a)/h]

∑
j=0

(−1)j
(

α

j

)
f (t− jh) (2)

where (α
j) are the binomial coefficients, [·] denotes the integer part.

3. We have Caputo’s definition of fractional derivatives, which is defined as:

C
a Dα

t f (t) =
1

Γ(n− α)

∫ t

a

f (n)(τ)
(t− τ)α−n+1 dx (3)

There is an equivalent relation between Caputo and R-L derivatives such that for a
positive real number α, satisfied 0 6 n− 1 < α < n, if function f (t) defined on the interval
[a, b] has continuous derivatives of n− 1 order and integrable, we have

aDα
t f (t) =C

a Dα
t f (t) +

n−1

∑
j=0

f (j)(a)(t− a)j−α

Γ(1 + j− α)
(4)

Similarly, R-L and G-L derivatives are also equivalent when f (t) satisfies the above con-
ditions. The G-L definition is the most commonly used for the numerical calculation of
fractional derivatives. By extending the binomial coefficients to the field of real numbers, a
more general form of the G-L derivatives can be written:

aDα
t = lim

h→0
h−α

[(t−a)h]

∑
j=0

(−1)j Γ(1 + α)

Γ(α− j + 1)Γ(j + 1)
f (t− jh) (5)

Note that all definitions of fractional derivatives above are left-handed; the corresponding
right-hand derivative of the G-L definition is defined similarly by the expression

aDα
t = lim

h→0
h−α

[(t−a)h]

∑
j=0

(−1)j Γ(1 + α)

Γ(α− j + 1)Γ(j + 1)
f (t + jh) (6)

2.2. Fractional Integral

To extend fractional differential to integral, according to fractional operator theory,
we use integral operator I−1 instead of the differential operator D and fractional order −ν
instead of α. For the G-L definition, the fractional integral of order ν can be written as:

a Iν
t = lim

h→0
hν

[(t−a)h]

∑
j=0

(−1)j Γ(1− ν)

Γ(1− ν− j)Γ(j + 1)
f (t− jh)

= lim
h→0

hν( f (t) + ν f (t− h) +
ν(ν + 1)

0
f (t− 2h) + · · · )

(7)

Replace the coefficients of f (t− jh) with ω
(ν)
j ; the equation becomes

a Iν
t = lim

h→0
hν

[(t−a)h]

∑
j=0

ω
(ν)
j f (t− jh) (8)

while ω
(ν)
j can be recurrently calculated by{

ω
(ν)
0 = 1

ω
(ν)
j = (1− 1−ν

j )ω
(ν)
j−1

(9)
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2.3. Fractional Double Integral

The fractional integral can be enlarged for a double integral. Assuming that x ∈ (a, c)
and y ∈ (b, d), for rectangular domain (a, c) × (b, d) in R2, consider α-order fractional
integral derived from the left-hand G-L definition:

b Iα
y (a Iα

x f (x, y)XL)YL = lim
hy→0

hα
[(y−b)/hy ]

∑
k=0

{ω(α)
k [ lim

hx→0
hα

[(x−a)/hx ]

∑
j=0

ω
(α)
j f (x− jh, y− kh)]} (10)

For casual signal f (x, y), divide the interval (a, c) and (b, d) into equal parts using step
hx = hy = 1, which also conforms to the fact that the sampling step on a 2-D image matrix
is one unit; then, we can eliminate the limit sign and obtain

b Iα
y (a Iα

x f (x, y)XL)YL =
[y−b]

∑
k=0
{ω(α)

k [
[x−a]

∑
j=0

ω
(α)
j f (x− jh, y− kh)]} (11)

where ω
(α)
j and ω

(α)
k can be calculated by Equation (9), respectively.

3. Proposed Method

In this section, we first put forward an improved fractional integral filter and then
combine it with the MSRCR algorithm. Furthermore, an unsupervised encoder–decoder
network is utilized to improve the quality of images processed by the Retinex. The pipeline
of the proposed method is shown in Figure 1.

Figure 1. Diagram of the proposed end-to-end underwater-image-enhancement framework.

3.1. Fractional Double Integral Filter (FDIF)

A classical eight-direction fractional integral filter is constructed as shown in Figure 2.
Recalling Equation (8), we can note that a more simplified version of left fractional single
integral by replacing variable h with unit one can be written as:

a Iα
t =

t−a

∑
j=0

ω
(α)
j f (t− jh) (12)

Generalizing this simplified equation to eight directions, involving directions along the
positive and negative x-axis, positive and negativey -axis, and the 45°, 135°, 225°, and 315°
directions along the positive x-axis in the counter-clockwise direction, we were able to
construct the eight-direction fractional integral operator.
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Figure 2. The classical 8-direction fractional integral filter on a 2-D grid.

The coefficients of the classical eight-direction filter are as follows:

W f 0 = 1
W f 1 = ν(ν+1)

2

W f 2 = ν(ν+1)(ν+2)
6

. . .
W f m = ν(ν+1)(ν+2)...(ν+m−1)

m!

(13)

Specifically when ν = 1, W f i = 1 where i = 0, 1, . . . , m.
As we mentioned above and show in Figure 3, such a filter presents a “fringe phe-

nomenon” when the filter matrix size grows and becomes sparse.

Figure 3. The fringe phenomenon caused by a sparse filter matrix. A sparse filter could only
capture changes of pixels in the 8 directions; therefore starlike artifacts were found in the denoised
image. The rightmost image patch shows the result of the FDI filter, and the artifacts were perfectly
removed. We also made a quantitative comparison between the input image and filtered images:
SSIM(FI, input) = 0.939 and SSIM(FDI, input) = 0.947. This image is from the RUIE dataset [18],
and the SSIM can be calculated by Equation (23).

To address the issue, we replace the fractional integral filter by introducing a fractional
double integral. According to Equation (11), the coefficients in fractional integral filter
kernel are rearranged as in Figure 4. Considering the upper left part of the fractional filter
deduced from the lefthand G-L definition of the fractional integral, it is obvious that along
the x-axis and y-axis, coefficients are consistent with those used in the eight-direction filter,
while they decay exponentially along the diagonal. Mathematically, the upper right part
can be obtained by using the right-hand and left-hand fractional integral formula for x and
y, and the Equation (11) becomes

b Iα
y a Iα

x f (x, y)XR,YL =
y−b

∑
k=0

ω
(α)
k

x−a

∑
j=0

ω
(α)
j f (x + jh, y− kh) (14)
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The other two parts can be obtained similarly. By using the additivity property of the
convolution operation and assuming the four parts of the filter be Fi, i = 1, 2, 3, 4, four
quadrants of integral can be calculated by one single kernel

FFDIF =
4

∑
i=1

Fi (15)

A normalization operation is performed after the FDIF kernel is calculated to avoid in-
troducing extra energy into the image matrix. A visualized version of the FDIF kernel is
shown in Figure 4.

(a) (b)

Figure 4. FDIF kernel based on the fractional double integral. (a): Coefficients in the kernel; (b):
Visualized version of the kernel by Matplotlib [19]. Unlike in the 8-direction operator, all of the
coefficients in the kernel are unequal to zero as long as 1− α 6= j. Since we assume α > 0 and

ω
(α)
0 = 1, the coefficients are all nonzero. In particular, the coefficients all become one when the

fractional order α equals 1, and the filter becomes an average filter. Coincidentally, some of the Retinex
implementations use average filtering in practice to estimate the light to lower computational costs.

3.2. Multi-Scale Retinex with FDIF

In this section, let us briefly recall the basic structure of the MSRCR algorithm and
then optimize it with our FDIF filter.

3.2.1. Retinex Theory

Briefly, the Retinex models the imaging process to show that objects in the image have
particular reflection properties, and therefore, it can be found that incident light led to
various color performances. The essential purpose of the Retinex model is to remove the
influence of the light so that objects’ characteristics can be recovered from the noised image.
The primitive Retinex modeled the light as multiplicative noise such that

R(x, y) = I(x, y)× L(x, y) (16)

The single-scale Retinex process is given by

log R(x, y) = log I(x, y)− log L(x, y) = log I(x, y)− log[F(x, y) ∗ I(x, y)] (17)

where R(x, y) represents the enhanced image, I(x, y) represents the original input image,
and L(x, y) denotes the light image, which is also considered as noised image, and the light
image can be estimated by F(x, y) ∗ I(x, y). Most of the time, assuming the light changes
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slowly, the Gaussian kernel consequently becomes an appropriate implementation of the
light estimation operator. The Gaussian surround function is given by Jobson [9] as

FGaussian(x, y) = Ke−
r2

c2 (18)

where c denotes Gaussian surround space constant, r denotes the distance from current
pixel (x, y) to the center (x0, y0), and K is chosen so that the kernel brings in no extra
gain. The MSR integrates Gaussian surround functions or, more generally, light estimation
operators under various scales. The multi-scale calculation can be expressed by

R =
n

∑
i=1

Ri (19)

where n denotes the number of scales, and the overall R can be obtained by summation of
images enhanced by different scales of a basic Retinex process.

In Retinex theory, a small-scale Gaussian kernel can achieve dynamic range compres-
sion, while a sizeable Gaussian kernel specializes in tonal and color rendition. A third
intermediate scale combines both advantages of the small kernel and the large kernel; mean-
while, it eliminates the “halo” artifacts near sharp edges. The principle for choosing the
Gaussian surround scale, proposed by Jobson [9], is that the sigma values of the Gaussian
filter are 15, 80, and 250, corresponding to the three scales. According to the three-sigma
rule, the filters’ kernel size should be 45× 45, 240× 240, and 750× 750.

3.2.2. Combination of FDIF and MSR

In this section, a modified MSRCR algorithm based on the fractional double integral
filter is proposed. By directly superseding the Gaussian filter in the single-scale Retinex
process, the FDIF operator estimates the light image while preserving edges in the original
noised image. As shown in Figure 5, when using the same scale of the filtering kernel,
the FDIF implements similar light estimation results to the Gaussian filter, which means
our FDIF is effective in the light-estimation aspect. Moreover, the FDIF version of light
estimation preserves edges better, while the Gaussian filter blurs them and therefore causes
“over-smoothing” on the estimation image.

The Gaussian version of single-scale Retinex

FDIF version of single scale Retinex when α = 0.5

Figure 5. Comparison between the Gaussian and FDIF-based light estimation, kernel_size =

45, 243, 753 from left to the right. The kernel size is chosen to be as close to the original MSR
framework as possible to ensure accuracy, while the size must be odd for FDIF. In the first column, we
can see that the FDIF version has kept the texture of the metal connector at the end of the breathing
hoses, while the edges could barely be seen in the Gaussian version.
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3.2.3. Color Restoration

Since underwater images often present disastrous color distortion, a color restoration
method is decisive to the algorithm’s overall performance. One of the classical color restora-
tion approaches, gray-world white balancing, shows stability and validity in underwater
color restoration tasks [20]. However, the Retinex processing of images sometimes brings
about local or global violations for the gray-world theory, which assumes that the average
intensities for R, G, and B channels tend to be constant. Physically, the assumption sup-
poses the average reflection of light from natural objects is a constant. A logarithmic color
restoration function (CRF) is therefore proposed by Jobson [9]:

Ci(x, y) = β log[αI′i (x, y)] = β{log[αIi(x, y)]− log[
S

∑
i=1

Ii(x, y)]} (20)

where Ci(x, y) denotes the CRF for channel i, Ii(x, y) denotes the intensity on channel i,
S = 3 representsan RGB image, and α = 125 and β = 46 are empirical parameters for
the underwater scene. In fact, I′i (x, y) represents a gray-world white balancing process.
Different values of empirical parameters α and β were also tested in Figure 6, and the
chosen values are believed to be optimal.

(a) (b) (c)

Figure 6. Empirical parameters for (a): α = 20, β = 20; (b): α = 125, β = 46; (c): α = 219,
β = 69. Compared to the optimal parameters in (b), small values for (a) brought about unsatisfactory
correction for color distortion, while large values for (c) resulted in gray-out.

As an image enhancement method based on the domain transform, the Retinex en-
hanced the image by converting the pixel matrix to the logarithmic domain and reducing
noise. After the Retinex process, an inverse transformation called quantization, which
converts the continuous logarithmic pixels back to RGB space, should be imposed, and the
process determines the performance to a large extent. Due to the wide dynamic range of
the logarithmic images, most Retinex-based frameworks apply a canonical gain method for
inverse transform instead of linear quantization:

Rout(x, y) = G× Ci(x, y)× log R(x, y) + b (21)

Here, G and b are empirical parameters, which are chosen to be 192 and −30, and Rout(x, y)
presents the final output of the MSRCR. However, for underwater images, this canonical gain
measure results in gray-out, which means the output image appears to turn gray and lacks fresh
colors. To refine the algorithm, Parthasarathy’s method [21] has been proven to be effective for
underwater images. By clipping the largest and smallest pixels of the logarithmic image to fixed
values, the highly deviated maximum and minimum values are excluded from the quantization
process. Then, the linear quantization method is used to transform the other values to RGB
space, and the excluded largest and smallest parts of the pixels are set to 255 and 0, respectively.
Furthermore, we utilize a gamma correction to the transformed pixel matrix, and compared to
Parthasarathy’s method, ours accomplished better color rendition.
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3.3. Unsupervised Encoder–Decoder Network

After the Retinex with FDIF preliminarily enhanced the input underwater image, an
unsupervised autoencoder network was employed to improve the image quality. For the
impossibility of obtaining both raw data of an underwater image and its ground truth
simultaneously in the real-world environment, the network is designed to be trained in an
unsupervised manner.

3.3.1. Network Architecture

Based on the prevailing U-Net [22] architecture, our encoder–decoder network takes
a pre-enhanced underwater image as its input and generates a further improved output
image. As depicted in Figure 7, the model is composed of the basic U-Net structure and
attention modules. Four loss functions were taken into account so the training could
converge.

Figure 7. The structure of the proposed end-to-end underwater-image-enhancement framework.

First, the proposed framework takes an underwater image as input and applies the
FDIF-MSR to the image. Then, the enhanced image will be refined by the unsupervised
encoder–decoder network to alleviate noise brought in by the Retinex algorithm and
improve detailed performance. The overall pipeline is shown in Figure 7.

3.3.2. Attention Module

In this paper, a squeeze-and-excitation module [23] first proposed by Jie Hu et al. was
integrated into our network. By squeezing each input feature channel into a descriptor, the
SE-Block concentrates on exploiting channel-wise dependency and therefore expresses the
whole image. The excitation operator maps the descriptors into channel weights to extend
conventional local receptive fields to a representation for a cross-channel fusion of features,
which can be regarded as a self-attention function.

3.3.3. Loss Function

As for unsupervised learning, the loss function largely determines whether the neural
network can effectively fit the data features. Based on the proposed encoder–decoder
network, we introduce four losses to guide the training process.

• Color Loss. To mitigate the color difference between pre-enhanced and post-enhanced
underwater images, color loss was introduced into our model. The color loss function
is defined by the angle between the input and output pixel vectors:

Lcolor = ∑
i,j

∠(Ii,j, F(Ii,j)) (22)

where F denotes a pixel matrix transform, and Ii,j represents a single pixel in the
matrix. As L2 distance is widely used in image-processing tasks, a disadvantage has
shown that the L2 norm only calculates the numerical difference between the pixels,
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but the directional difference of the pixel vectors cannot be measured. In the proposed
model, the color loss aims to narrow the gap of the angle between pixel vectors but
not introduce too much computational cost.

• Mix-L1-SSIM Loss. Since the network is designed to learn to produce visually pleasing
images, it is natural that a perceptually motivated loss function should be adopted in
the training pipeline. Structural Similarity, also known as SSIM, is defined as:

SSIM(Ix, Iy) =
2µxµy + C1

µ2
x + µ2

y + C1
·

2σxy + C2

σ2
x + σ2

y + C2
(23)

where µx and σx denote mean and variance of pixel matrix x, respectively. Constants
C1 and C2 are determined by the dynamic range of the pixel. Consequently, the loss
function of SSIM can be written as:

LSSIM = 1− SSIM(Iinput, Ioutput) (24)

By fine-tuning constants in Equation (23), multi-scale SSIM can be expressed by

LMS_SSIM = 1−MS_SSIM(Iinput, Ioutput) (25)

where the multi-scale SSIM is defined as:

MS_SSIM(Ix, Iy) =
M

∏
m=1

(
2µxµy + C1

µ2
x + µ2

y + C1
)βm · (

2σxy + C2

σ2
x + σ2

y + C2
)γm (26)

According to Zhou Wang et al. [24], the MS-SSIM excels at preserving the contrast
in high-frequency areas and supplies more flexibility than SSIM in incorporating the
variations of viewing conditions. However, shifting of colors can be introduced by
MS-SSIM loss, which may result in monotonous color rendition. To achieve better
color and luminance performance, the L1 loss, which aims to maintain color and
luminance stability, is combined with the MS-SSIM loss, and the Mix-L1-SSIM Loss
can be written as

LMix_L1_SSIM = αLMS_SSIM + (1− α)L1 (27)

where empirical parameter α is chosen to be 0.7 in our model.
• Perceptual Loss. First proposed by Justin Johnson et al., perceptual loss has been

proved to be valuable by numerous unsupervised models on image super-resolution
and style transfer tasks. Instead of L1 or L2 loss, which exactly matches pixels of
target image ŷ with input y, the perceptual loss encourages ŷ to have a similar feature
representation to y, which can be regarded as constraining semantic changes during
the image-enhancement process. The feature reconstruction loss can be defined as:

Lperceptual(ŷ, y) =
1

Cj × Hj ×Wj
‖φj(ŷ)− φj(y)‖2

2 (28)

where Cj, Hj, and Wj represent the channel, height, and width of the feature map,
respectively, and φj denotes a feature extraction operator. We utilize a VGG-19 pre-
trained model to extract features of multiple layers from the image ŷ and y and then
calculate the Euclidean distance between them to measure the difference. By mini-
mizing feature-reconstruction perceptual loss, the model is able to produce visually
indistinguishable output image ŷ from y.

• Total Variation Loss. To prevent over-fitting and encourage the model to have better
generalization capability, we use total variation loss in addition. In a two-dimensional
continuous framework, the total variation loss is defined by:

LTV =
∫

Ω

√
u2

x + u2
ydxdy (29)
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where ux = ∂u
x , uy = ∂u

y and u denotes the image, x, y ∈ Ω. As ux represents derivative
along the x-axis, by minimizing ux, we can constrain the luminance difference between
two adjacent pixels, and therefore, the overall noise of the output image can be
suppressed.

4. Experiments

Elaborate experiments were conducted on public underwater image datasets, and
both qualitative methods and quantitative methods were used for evaluating our algorithm.
The datasets we used in this paper and some implementation details should be explained
before we show the performance of our framework.

4.1. Datasets and Implementation Details

Three public underwater image datasets were used in our paper: Underwater Image
Enhancement Benchmark (UIEB) [14], which includes 890 raw underwater images, Ocean-
Dark [25] for low-light underwater image enhancement, including 183 images of low-light
or unbalanced-light condition, and Stereo Underwater Image Dataset [26] by Katherine A.
Skinner et al.

Firstly, to train our unsupervised model, we inspected the entire UIEB and subjectively
picked 782 high-quality samples from the 890 images as our training set, which contains
about 88% data of the original UIEB. The training set was expanded to four times that of
the original selected images by simply rotating the images 90◦, 180◦, and 270◦.

Secondly, the FDIF-MSR was applied to the pre-processed dataset to attain preliminary
enhanced images. Since most parameters of the FDIF-MSR algorithm comprising fractional
orders are determined empirically and independent of the subsequent encoder–decoder
network, we saved the preliminary enhanced images from the training set after the FDIF-
MSR parameters were decided and the parameters were believed to be optimal.

Next, for one particular unsupervised training process, we utilized the saved en-
hanced images as input and fine-tuned the network hyper-parameters. All alterable
hyper-parameters in our framework are shown in Table 1.

Table 1. Alterable hyper-parameters in the proposed model.

Hyper-Parameter Value

training epoch 200
initial learning rate 0.01

λTV 0.5
λcolor 0.2

λperceptual 1.0
λmix 0.4
α f rac 0.75

σ 45,81,251
α 125
β 46

high clip 0.01
low clip 0.01

γ 0.7

The unsupervised encoder–decoder network was trained on a single RTX-3090 GPU,
with two Xeon Silver 4210 CPUs and 128 GB memory. We implemented the algorithm in
Python 3.8.12 and used PyTorch framework version 1.11.0.

4.2. Evaluation

The evaluation of image enhancement has always been a significant challenge in that
the human visual system is quite different from that of machines, and it is of great difficulty
to measure what a visually pleasing image is by discrete calculation. To tackle this issue,
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we tried to evaluate our model in both qualitative and quantitative ways, and we obtained
the conclusion that it achieves excellent performance on the validation set.

Qualitative Evaluation

As mentioned above, underwater images face two major challenges, one that light
scattering and absorption cause poor visibility, and another that various attenuation char-
acteristics of different frequencies of light result in terrible color distortion. In Figure 8, and
Figure 9, our algorithm is tested on both hazy and color distortion examples.

Such hazy images in Figure 8 are common in real underwater images taken by un-
manned undersea vehicles (UUV), and our framework achieved remarkable results on
these images in that heavy haze brought in by light scattering and absorption was removed
while unnatural color deviation was mitigated as well.

Figure 8. The hazy examples were chosen from the Stereo Underwater Image Dataset [26]. Although
the dataset provided paired images taken by stereo cameras, we treat the images as if they were
taken by monocular cameras in our work. Top row: hazy images; Bottom row: corresponding
enhanced images.

In the first and second columns of Figure 9, the entire images suffered from color casts
of blue and green, respectively, but our framework has effectively corrected the distortion.
As for the third and fourth columns, the framework mainly focuses on eliminating color
distortion of the foreground object in the images; thereby, the divers’ and their equipment’s
natural color has been recovered observably.

Figure 9. Some color distortion examples from the UIEB dataset. Top row: images with color casts;
Bottom row: corresponding enhanced images.

Furthermore, as most underwater images were photographed under extremely low-
light conditions, we tested our model for that as well, and some of the results are shown in
Figure 10.
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Figure 10. Three low-light examples on the left were chosen from the OceanDark dataset, and the
other one was from the UIEB. Top row: images with unbalanced light; Bottom row: corresponding
enhanced images.

In the case of the low-light condition, our framework achieves terrific results in that
details in dark areas were enhanced vastly, while objects in bright areas were not over-
enhanced and retained normal brightness.

As shown in Figure 11, we selected some images from the three above-mentioned
public datasets for conducting the visual comparison. The chosen images were taken
from diverse and challenging underwater scenes that include underwater haze, distortion
of color, and low-light conditions. One can observe that our algorithm presented high
robustness and satisfactory results under various underwater environments. Compared to
the state-of-the-art method, TACL, our model shows equal effectiveness in color correction
and low-light enhancement and performs with better haze-removal results (the sixth row)
with clear details and sharp structures. Specifically, among the third row of the images,
Chen’s method did not enhance the input image much; the UWCNN blurred objects in the
shadows; the FUnIE-GAN brought undesirable color distortion; and the TACL failed to
balance objects under different lighting conditions. However, our model has successfully
overcome these problems.

4.3. Quantitative Evaluation

To make our analysis more convincing, some of the widely used full-reference image
quality evaluation metrics were applied to our algorithm. Firstly, we considered the PSNR
metric. The PSNR, also known as peak signal-to-noise ratio, is defined as

PSNR = 10× log10(
2552

MSE
) (30)

where the MSE represents the pixel-wise difference between the input and output images
by the expression

MSE =
1

MN

M

∑
i=1

N

∑
j=1

(I′ij − Iij)
2 (31)

where M and N represent the height and width of the image, respectively, and I′ij indicates
a specific pixel at (i, j).
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(a) (b) (c) (d) (e) (f)

Figure 11. Images for qualitative comparison between our method and others, including a method
based on deep learning and image formation model by Chen et al., UWCNN, FUnIE-GAN and TACL.
(a) Input image. (b) Chen et al. [27]. (c) UWCNN [28]. (d) FUnIE-GAN [29]. (e) TACL [17]. (f) Ours.

Secondly, we utilize the SSIM metric, which was defined above by Equation (23).
The SSIM is based on the hypothesis that the human’s visual system excels at perceiving
structural information from real scenes, and hence the structural similarity can be an
appropriate approximation to the image quality. Furthermore, two significant image
properties, contrast and luminance, were also considered in our evaluation process.

Since not all of the images in the datasets we used are of high quality in terms of both
color and texture, and quite a few images from the datasets were monotonous in the scene
and tonality, we only show the evaluation results on a subset of the typical and high-quality
samples instead of evaluating on the entire datasets. Each image we subjectively selected
for the evaluation is based on the fact that most of the underwater images that required an
enhancement were taken by underwater vehicles or divers in areas of poor visibility, so we
specifically excluded those photographed near the surface of the water with strong natural
uniform light.

The evaluation results are shown in Figure 12 and Table 2.
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Table 2. Quantitative evaluation results on the datasets.

Image Number PSNR CER 1 LER SSIM

UIEB-65 27.624 0.827 5.471 0.692
UIEB-66 27.627 0.924 3.653 0.772
UIEB-99 28.125 2.192 1.451 0.692

UIEB-416 27.756 1.626 1.732 0.568
UIEB-715 27.809 −0.607 1.195 0.803
HIMB-1 27.819 2.004 1.192 0.632
HIMB-2 27.833 3.081 1.309 0.427
HIMB-3 27.751 1.877 1.255 0.435
HIMB-4 27.946 0.701 1.150 0.890
HIMB-5 27.797 2.728 1.092 0.625

OceanDark-2 27.768 −0.358 0.839 0.899
OceanDark-5 27.929 −0.663 1.244 0.910

OceanDark-145 27.969 −0.267 0.776 0.905
OceanDark-155 27.666 −0.287 1.778 0.797
OceanDark-164 27.703 −0.232 1.771 0.803

1 CER and LER in Equations (32) and (33) refer to contrast enhancement rate and luminance enhancement rate,
respectively. They can be calculated by the contrast and luminance difference between input and output images,
respectively. The values are normalized by the input.

Figure 12. Images for quantitative evaluation. Top two rows: UIEB-65, UIEB-66, UIEB-99, UIEB-
416, UIEB-715 from the UIEB dataset and corresponding post-enhancement images; Middle two
rows: images numbered HIMB-1 to HIMB-5 from the Stereo Underwater Image Dataset and
their corresponding post-enhancement images; Bottom two rows: OceanDark-2, OceanDark-5,
OceanDark-145, OceanDark-155, OceanDark-164 from the OceanDark dataset and corresponding
post-enhancement images.

CER =
1
C

C

∑
c=1

Var(Ic) (32)

where C denotes the number of channels and Var(Ic) denotes the variance of the image
luminance on channel c.

LER =
1

MN

M

∑
i=1

N

∑
j=1

Iout(i, j)− Iin(i, j)
Iin(i, j)

(33)
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As shown in Figure 11, the proposed model performed better than many other popular
methods on underwater images. In Table 3, we provide the average PSNR, LER, CER, and
SSIM values over the evaluation set used in Figure 11 for comparing the results of our
model and the state-of-the-art methods. Since the four metrics are independent and lack a
uniform representation of the enhancement performance, to quantitatively evaluate the
image enhancement performances better, here, we introduced a uniform overall score that
takes all four impact factors into account. The score is calculated by:

Score = α× PSNR + β× |LER− CER|2 + γ× SSIM (34)

where weight coefficients α = 0.6, β = −0.5, and γ = 2 were selected so the overall
score could better represent the image enhancement performance. In Equation (34), we
designed |LER− CER|2 to be a penalty term because unmatched luminance and contrast
enhancement harm the visual quality of the image such that the images may have good
results on quantitative values but fail on the human perceptual system. The results indicate
that our model has similar LER and CER performance to the TACL but higher PSNR and
SSIM and that our model presented even better results than TACL, the SOTA. Although
the UWCNN and FUnIE-GAN yield better luminance enhancement rates, the two methods
have bad results in terms of contrast enhancement, so they result in less pleasing enhanced
images, as shown in Figure 11. Among all five methods, our model yielded the best overall
score and presented visually pleasing results.

Table 3. Quantitative comparison between the proposed model and other methods in Figure 11.

Model PSNR LER CER SSIM Score

Chen et al. 27.281 1.699 1.965 0.825 17.983
UWCNN 27.026 2.026 −0.105 0.784 15.513

FUnIE-GAN 27.313 2.029 0.698 0.777 17.056
TACL 27.246 1.590 1.986 0.770 17.809
Ours 27.802 1.583 1.955 0.849 18.310

Best 27.802 (Ours) 2.029
(FUnIE-GAN) 1.986 (TACL) 0.849 (Ours) 18.310 (Ours)

To make our paper more convincing, an ablation study was imposed on the proposed
model. Models were evaluated on the dataset we used in Figure 12. Experiments were
organized as follows:

(1) Model No. 1: No encoder–decoder network is used for refining the result of the
proposed FDIF-Retinex;

(2) Model No. 2 to 5: The network is trained by the specific combination of loss function;
(3) Model No. 6: The SE-Block is replaced with direct residual connections.
(4) Model No. 7: The proposed full model.

As shown in Table 4, the FDIF-Retinex without post-enhancement (No. 1) has higher
PSNR, LER, and CER but lower SSIM and overall score compared to the full model. This in-
dicates that a post-enhancement network benefits the enhancement process by suppressing
over-enhancement, which brings about more visually pleasing results. Through the results
of the ablation study, we can see that if the model is trained by TV loss only or color loss
with perceptual loss, the models perform poorly on the evaluation set and have a negative
impact on the contrast enhancement rate. The models trained by perceptual loss only or
perceptual loss and mixed loss have better performance than the above, but we want more
natural results to be achieved=. To train the network, by combining the four loss functions,
we can achieve a balance between luminance and contrast enhancement performance so
that the output images will not be too bright or unnatural. Considering replacing resid-
ual connections with the SE-Block, the proposed model yielded better results on contrast
enhancement and remained equal luminance enhancement capability, SSIM, and a higher
PSNR. According to the experiments’ results, our method adopted an appropriate loss
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function group for training and an influential network architecture to improve underwater
image quality.

Table 4. Ablation study results on network architecture and loss functions 1.

Model
No.

TV
Loss

Color
Loss

Percep.
Loss

Mix
Loss

SE-
Block PSNR LER CER SSIM Score

1 - - - - - 27.884 1.865 2.102 0.605 17.912
2 X - - - X 27.979 2.239 −1.000 0.664 12.870
3 - X X - X 27.824 3.385 −0.390 0.574 10.717
4 - - X - X 27.859 1.638 1.126 0.634 17.852
5 - - X X X 27.748 1.730 1.769 0.625 17.898
6 X X X X - 27.777 1.705 1.107 0.662 17.811

7 2 X X X X X 27.811 1.657 1.395 0.647 17.946
1 The results are reported for the dataset we used in Figure 12. 2 The No. 7 model refers to enhancing the image
by FDIF-Retinex only without a post-enhancement network.

5. Conclusions

In this paper, we proposed an end-to-end underwater-image-enhancement framework
that excels at color restoration and haze removal for underwater scenes. Based on the
fractional double integral filter, the proposed FDIF algorithm yielded better results on
edge preservation than the widely used Gaussian version of multi-scale Retinex. An
unsupervised encoder–decoder network that integrates an advanced attention mechanism
and well-designed loss functions was utilized to further improve the quality of the enhanced
images. Both qualitative evaluation and quantitative evaluation showed the effectiveness
of the proposed framework, which achieved superb performance across multiple datasets
and various underwater environments. In the future, we are planning to deploy the
proposed underwater-image-enhancement model on embedded devices and test it in a
real-world environment. We hope the model will provide a brand new view of underwater-
images-enhancement methods, and we believe that the proposed model could benefit other
downstream tasks such as object detection and 3D reconstruction.
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Abbreviations
The following abbreviations are used in this manuscript:

MSR Multi-Scale Retinex
MSRCR Multi-Scale Retinex with Color Restoration
CNN Convolutional Neural Network
GAN Generative Adversarial Network
FDIF Fractional Double Integral Filter
SSIM Structural Similarity
TV Total Variation
UUV Unmanned Underwater Vehicle
PSNR Peak Signal-to-Noise Ratio
MSE Mean Square Error
LER Luminance Enhancement Rate
CER Contrast Enhancement Rate
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