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Abstract: Fractals with different levels of self-similarity and magnification are defined as reduced
fractals. It is shown that spectra of these reduced fractals can be constructed and used to describe
levels of complexity of natural phenomena. Specific applications to biological systems, such as
green algae, are performed, and it is suggested that the obtained spectra can be used to classify
the considered algae by identifying spectra associated with them. The ranges of these spectra for
green algae are determined and their extension to other biological as well as other natural systems
is proposed.
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1. Introduction

Mandelbrot [1] originally defined fractals as objects that are self-similar on all scales
and whose dimensions are different than their topological dimensions. From a mathe-
matical perspective, fractals are defined by listing their four basic characteristics [1–3],
which are: self-similarity at all scales, fine structure at all magnifications, too irregular to
be described by Euclidean geometry, and have non-topological (Hausdorff) dimension;
mathematical objects that have these characteristics are called classical fractals [4]. To
make fractals applicable to Nature, Mandelbrot [1] changed the definition to a more casual:
“A fractal is a shape made of parts similar to the whole in some way”. Thus, the main
difference between classical fractals and fractals that obey Mandelbrot’s casual definition is
that their self-similarity is exact for the former and non-exact for the latter [3,4].

Fractals have been used in numerous research topics ranging from biology and
biomedicine to physics, astronomy, geology, computer science, and in epidemiology, emerg-
ing diseases as well as in comparative studies [1–6]. In the previous applications of
fractals to biology [7–11], the main emphasis was given to population biology [12], plant
structures [13], gene expression [14], heart rates [15], cardiovascular system [16], kidney
structure [17], cellular differentiation [18], neuron branching [19], and image rendering,
image processing, mammography, images of human brains [20,21], as well as to the classifi-
cation of strokes in brains [22]. Since fractals in Nature are directly related to some growth
process, therefore, methods such as the Multiple Reduction Copy Machine (MRCM) and
the L-systems have also been used to generate plants, trees and bushes [4].

Attempts have been made to introduce and use practical fractals [2], which basically
refer to fractals with a limited range of self-similarity. On the other hand, multi-fractals
are used to describe phenomena whose different components may have different scaling
exponents, which may require a spectrum of exponents [2–4]. Moreover, it was also shown
that a different family of fractals can also be defined by removing one fractal property
from the list of fractal basic characteristics; for example, in intelligent processing systems, a
fractal of limited scale range and partial symmetry is called semi-fractal [23]. Similar ideas
were used in studies of images, structures and even sounds [24,25], but to the best of our
knowledge, they have never been applied to biology and its systems.
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Despite a broad range of applications of fractals to biology and bio medicine, we
propose here to refine the idea of fractals by introducing the concept of reduced fractals
with specific limited scale range and only partial self-similarity (see Section 2). Moreover,
we demonstrate how to construct spectra of these reduced fractals and apply them to
determine different levels of complexity of natural phenomena. Our specific application
involves green algae [26,27], whose scales and self-similarities show significant variations.
The main purpose of this paper is not to perform detailed studies of all known algae, but
instead use selected green algae to justify the need for spectra of reduced fractals and
demonstrate their advantage over the previous use of fractals in biology. We also suggest
that the obtained spectra can be used to classify the considered algae by identifying spectra
associated with them.

Our paper is organized as follows: in Section 2, reduced fractals are defined and
applied to selected biological systems; fractal dimensions for the considered biological
systems and the resulting spectra of reduced fractals for these systems are presented in
Section 3; our conclusions are given in Section 4.

2. Reduced Fractals in Biology

As first pointed out by Mandelbrot [1], most natural structures do not show self-
similarity at infinitely many stages, as classical fractals do, but instead their self-similarity
occurs only at a finite number of stages. Moreover, there can be imperfections in self-
similarity resulting from the fact that a smaller cluster is unlikely to be exactly the same
as a larger cluster, in other words, self-similarity is only approximate [3–6]. If there are
variations in miniature copies, then self-similarity is statistical [2,3]; however, if miniature
copies are distorted (skewed), then self-similarity becomes self-affinity [2]. This shows that
in natural structures the range of magnification is also finite [4].

The presence of these limitations leads us to believe that it is necessary to provide an
integrated framework towards a definition of fractals applicable to natural structures, and
such a framework is established in this paper by introducing the concepts of reduced fractals
and their corresponding spectra, which for practical reasons must be discrete. The reduced
fractals considered in this paper all have four basic characteristics described in Section 1,
but two of them, namely, self-similarity and range of magnification, are finite; this makes
our definition consistent with practical fractals introduced earlier [2], but different than
the concept of semi-fractal [23]. Our definition also allows for wild fractal or fractals whose
self-similarity is limited to 1 or 2 stages; nevertheless, some scaling properties of these
fractals can still be identified [4]. In the following, we identify reduced fractals in selected
biological systems.

3. Applications to Biology
3.1. Selected Biological Systems and Their Self-Similarity

Algae are very simple plants that can range from the microscopic, to large seaweeds.
It’s very diverse and found everywhere, from being the ingredient used to thicken ice
cream to producing 70% of the air we breathe. This diversity is reflected in the enormous
variation exhibited by their morphological and physiological traits.There are several meth-
ods for algae identification such as genetic methods. However, such approach require
time-consuming operations and becomes impractical for large-scale identification in fields
such as food authentication. It becomes critically important to identify algae without
compromising food safety and to meet the economic demands. With 37,000 algae species,
using fractals makes it possible.

As examples of biological systems considered in his paper, we select green algae
(Division: Charophyta and Chlorophyta), and consider two classes of Charophyta, namely,
Charophyceae and Zygnematophyceae, and three classes of Chlorophyta, namely, Chloro-
phyceae, Ulvophyceae and Trebouxiophyceae [26,27]. In Figure 1, we present nine selected
algae of the class Zygnematophyceae, and Figure 2 shows eight selected algae of Chloro-
phyceae; algae of other classes are used in the spectra of reduced fractals described in
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Section 3.3. As shown by the images presented in Figures 1 and 2, we consider only green
algae that mainly inhabit in freshwater, but five different classes, with each class containing
algae of different sizes, shapes and nature. The considered sample of algae is diversified
and rich in its structure, and thus it is sufficient to illustrate all the main concepts and
objectives of this paper.

Figure 1. DIC microscopy images of unicellular algae of the class Zygnematophyceae. (a) Euastrum
bidentatum Fd = 1.8408, (b) Euastrum oblongum Fd = 1.8598, (c) Euastrum verrucosum Fd = 1.8739,
(d) Euastrum ansatum Fd = 1.8801, (e) Euastrum humerosum Fd = 1.8907, (f) Euastrum crassum
Fd = 1.8948, (g) Micrasterias americana Fd = 1.8117, (h) Micrasterias truncata Fd = 1.8703 and
(i) Micrasterias rotata Fd = 1.8749.

Figure 2. DIC microscopy images of algae of class Chlorophyceae. (a) Volvox globator Fd = 1.2288,
(b) Volvox aureus Fd = 1.3701, (c) Eudorina elegans Fd = 1.6975, (d) Scenedesmus granlulatas Fd = 1.7097,
(e) Pediastrum clothratum Fd = 1.7182, (f) Pediastrum angulosum Fd = 1.7806, (g) Desmodesmus magnus
Fd = 1.7447 and (h) Tetraedron minimum Fd = 1.7087.

All considered algae of the class Zygnematophyceae are unicellular and they belong to
the family Desmidiaceae; each one of them splits into two parts that have perfect symmetry;
however, if we scale down, then they show no self-similarity. Nevertheless, these algae are
examples of reduced fractals defined in Section 2. On the other hand, two selected algae of
the class Chlorophyceae that are multicellular show more prominent self-similarity than the
unicellular algae, but still their self-similarity is limited, and their range of magnification is
finite, which means that these algae can also be represented by reduced fractals.
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The limits on self-similarity and on the range of magnification in the class Chloro-
phyceae of colonial algae are presented in Table 1, which contains algae of different families,
namely, Eudorina elegans belongs to the family Volvocaceae, the next two algae belong to
the family Scenedesmaceae, and the remaining three algae are from the family Hydro-
dictyaceae. For the algae in Table 1, it is seen that the replication of colony (shown by
magnification) is an indicator of limited self-similarity. Since both self-similarity and the
range of magnification are finite, these algae can also be described by reduced fractals.

Table 1. Fractal dimension of unicellular algae of the class Zygnematophyceae and its family Desmidiaceae.

Genus sp. Colony Size Magnification

Eudorina elegans 16, 32 2
Desmodesmus magnus 4, 8, 16 3

Scenedesmus granlulatas 2, 4, 8, 16, 32 5
Pediastrum angulosum 4, 8, 32, 64, 128 5
Pediastrum clothratum 8, 16, 32, 64 4
Tetraedron minimum 2, 4, 8, 16 4

The above description shows that the algae selected for this paper have self-similarities
ranging from very limited, as is in the case of the unicellular algae of the class Zygnemato-
phyceae, to more moderate, as observed in the multicellular algae of the same class and
in the colonial algae of the class Chlorophyceae; similar limitations and variations are
observed in the range of magnification. The observed self-similarity is limited, and it is
not perfect, as there are variations in miniature copies, so self-similarity observed in the
selected algae is limited and statistical. For these reasons, the algae considered in this paper
are well represented by reduced fractals.

3.2. Fractal Dimension and Box-Counting Method

The sample of selected algae allowed us to identify reduced fractals as the best way to
represent them and describe their physical properties; one such property is the irregularity,
or complexity, of their surface and structure. According to Mandelbrot [1], the complexity
can be measured by the so-called fractal dimension, FD, which is a bounded set S in Euclidean
n-space and is defined as

FD = lim
r→0

log10(Nr)

log10(1/r)
, (1)

where Nr represents a number of distinct copies of S in the scale r [28]. Moreover, the
union of Nr copies must cover the set S completely.

The FD can be calculated for deterministic fractals and if an object has deterministic
self-similarity, its FD is the same as its box-counting dimension BCD [28]. However,
biological systems are not ideal deterministic fractals. Therefore, BCD computed by the
box-counting method is only an estimate of FD. Nevertheless, the box-counting method is
one of the most commonly used techniques to calculate FD for images [28]. The method is
also adapted in this paper to perform calculations of the fractal dimension for images of
the selected green algae (see Section 3.1).

The images of the considered green algae are planes with the pixel position denoted
by the coordinates (x, y), and with the third coordinate (z) denoting pixel gray level. In
the box-counting method, the plane (x, y) is partitioned into separate blocks of size λ× λ
with λ being an integer and λ = r. As shown by Equation (1), the box-counting method
requires Nr, which is found in the following way [28]. Boxes of size λ× λ× λ′, where λ′ is
the height of each box associated with the gray level, are stuck on top of each other above
each block. Then, the number of boxes, nr, covering each block is given by

nr(i, j) = 1− k + l , (2)
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where k and l represent the minimum and maximum gray levels in the (i, j)th block that go
in the kth and lth boxes, respectively [28]. Then, Nr is calculated for different values of r by
taking into account the contributions from all the blocks

Nr = ∑
i,j

nr(i, j) , (3)

which allows estimating the FD from the least squares linear fit of log10(Nr) plotted versus
log10(1/r). In the specific practical implementation of the box-counting method in this
paper, we followed [29].

Now, in this approach, the slope of the line equals FD and it is defined as the amount of
change along the log10(Nr)-axis, divided by the amount of change along the log10(1/r)-axis.
The resulting slopes and fractal dimensions range between 1 and 2 for this kind of analysis,
which corresponds to the range between a line that is straight with its dimension = 1 and
a line that is so wiggly that it completely fills up a 2-dimensional plane. This means that
when the slope becomes steeper, then the FD of such an image is larger because of its
higher complexity. On the other hand, when the slope is flatter (closer to a straight-line),
then the fractal dimension is smaller, as it reflects the image of lower complexity, which
implies that the amount of detail grows slowly with increasing magnification.

Since in this paper, we consider some algae that show very limited self-similarity,
all results presented below are obtained by performing calculations of FD by using the
box-counting method. The computed fractal dimension by this method is a metric that
characterizes algae complexity or space-filling characteristic. As already pointed out [4,30],
most previous studies failed to evaluate the assumption of statistical self-similarity that
underlies the validity of the method. Another source of error is arbitrary grid placement,
which is strictly positive and varies as a function of scale, which may make the procedure’s
slope estimation step non-unique [4]. In our calculations performed in this paper, both
errors are eliminated by the box-counting method described above.

3.3. Fractal Dimension for Selected Algae

The results presented in Table 2 show that the unicellular algae of the the class Zygne-
matophyceae and the family Desmidiaceae have high fractal dimensions ranging approxi-
mately from 1.8 to 1.9; this narrow range of the FDs implies that the level of complexity
(or irregularity) of surfaces and structures is very similar for all these selected objects. The
results are also consistent with the fact that the unicellular algae have very limited ranges
of self-similarity and magnification that are observed in these objects as is already pointed
out in Section 3.1. It must also be noted that the unicellular algae in Table 2 are separated
into two groups called here Euastrum and Micrasterias, and that within each group, algae
are ordered based on their increasing fractal dimension. Since all algae shown in Table 2
belong to the same family Desmidiaceae, similar ordering can be made for other families of
green algae.

Table 2. Fractal dimension of unicellular algae of the class Zygnematophyceae and its family Desmidiaceae.

Genus Species Cell Shape Fractal Dimension

Euastrum oblongum Ellipsoid 1.8598
Euastrum verrucosum Ellipsoid 1.8739

Euastrum ansatum Ellipsoid 1.8801
Euastrum humerosum Ellipsoid 1.8907

Euastrum crissum Ellipsoid 1.8948
Micrasterias americana Spherical 1.8117
Micrasterias truncata Spherical 1.8703

Micrasterias rotata Spherical 1.8749

The fractal dimension in Table 3 is computed for multicellular and colonial algae of
three families (Volvocaceae, Scenedesmaceae and Hydrodictyaceae) of the class Chloro-
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phyceae, and the results are presented for the selected members of each class, which are
ordered based on their increasing fractal dimension. The presented results show that
the FD of the two multicellular algae (Volvox globator and Volvox aureus) are the lowest,
which means that the complexity of these two algae is the highest among the selected
objects. Interestingly, the FD of Eudorina elegans is more similar to one member of the family
Scenedesmaceae and one member of the family Hydrodictyaceae, which is caused by the
fact that these algae are colonial despite being members of different families.

Similarly, fractal dimension of Tetraedron minimum, which belongs to the family Hy-
drodictyaceae, is closer to that of the members of the family Scenedesmaceae. The reason
is likely caused by the fact that these algae are colonial, but also by similarities in their
cell shapes. However, the two remaining members of the family Hydrodictyaceae have
significantly higher fractal dimensions that may be caused by both different cell and colony
shapes between Tetraedron minimum and these two members.

Table 3. Fractal dimension of colonial and multicellular algae of the class Chlorophyceae and its three
different families.

Family Genus sp. Form Cell Shape Fractal
Dimension

Volvocaceae Volvox globator Multicellular Spherical 1.2288
Volvocaceae Volvox aureus Multicellular Spherical 1.3701
Volvocaceae Eudorina elegans Colonial Spherical 1.6975

Scenedesmaceae Scenedesmus
granulatus Colonial Ellipsoid 1.7097

Crescent

Scenedesmaceae Desmodesmus
magnus Colonial Ellipsoid 1.7447

Hydrodictyaceae Tetraedron
minimum Colonial Ellipsoid 1.7087

Spherical

Hydrodictyaceae Pediastrum
clothratum Colonial Oval 1.7182

Hydrodictyaceae Pediastrum
angulosum Colonial Cylindrical 1.7806

The results presented in Tables 2 and 3 demonstrate that algae can be ordered within
each family by using their FD. This may be useful in classification of algae and their studies,
since typically algae within a given family are neither ordered nor organized [28]. The
proposed order of decreasing complexity (see Tables 2 and 3) can be replaced by increasing
complexity, which would require us to reverse the orders in Tables 2 and 3.

The validity of the computed fractal dimensions must be verified by comparing
our results to those obtained before, specifically, for different algae. To the best of our
knowledge, no FDs were calculated for the set of algae selected for this paper. However,
for Cladophora rupestris of the class Chlorophyceae, FD = 1.76 was obtained [31], which is
consistent with the values of Table 3 for the colonial forms. Independent calculations of FD
for Cladophora rupestris done in [32] gave FD = 1.59, which slightly differs from the results
obtained in [31] and in Table 3; the main reasons for the difference are improvements in
modern computations as compared to those preformed almost 25 years ago [32].

The calculations of FDs were also done for Laminaria digitata and Fucus serratus of the
class Phaeophyceae, for which FD = 1.23 and 1.11 were obtained, respectively [31]. These
values are close to the FDs of Table 3 found by us for the multicellular forms. Moreover,
the computations of FDs for 16 selected brown algae were also done [33], and the obtained
results range between FD = 1.3 and FD = 1.7, which is consistent with the results of
Table 3. Thus, there is an agreement between the previously obtained results [31–33] and
the results presented in this paper. However, it must be pointed out that direct comparisons
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cannot be done because there are no computations of FDs for green algae selected by us for
our investigation.

3.4. Spectra of Reduced Fractals for Selected Green Algae

The fractal dimensions calculated for different green algae can now be used to obtain
spectra of reduced fractals (SRFs). The spectra are generated by plotting the fractal dimen-
sions versus selected characteristics of algae. Among different characteristics, we consider
forms and shapes of algae described in Section 3.1. Moreover, we also demonstrate how
to generate SRFs for algae of different classes and families. In the panels A, B, C and D
of Figure 3, we show the SRFs for algae of different forms, classes, shapes and families.
Let us now describe each panel of Figure 3 and discuss the biological implications of the
presented SRFs.

Figure 3. Spectra of reduced fractals for algae of different form (panel (A)), class (panel (B)), shape
(panel (C)), and family (panel (D)).

Panel A of Figure 3 shows the form of the SRF for one unicellular alga of the class
Zygnematophyceae and the family Desmidiaceae, and one colonial and one multicellular
algae of the class Chlorophyceae, whose families are Scenedesmaceae and Volvocaceae,
respectively. As expected, the presented SRF demonstrates a rapid decrease of fractal
dimension with increasing algae’s complexity. The observed almost linear spectrum allows
us to establish the following criteria for classifying green algae: FD > 1.8 for unicellular,
FD > 1.6 for colonial, and FD < 1.4 for multicellular.

The SRF presented in panel B of Figure 3 shows high fractal dimensions FD > 1.7
for all considered algae, which are two algae of the class Charophyceae, one alga of the
class Ulvophyceae, and two algae of the class Trebouxiophyceae. The resulting spectrum
shows that differences between freshwater and saltwater (or land) within the same class
are practically negligible, which is shown by flat parts of the SRF. Moreover, the entire
spectrum remains practically flat, which implies that differences in the fractal dimension
(or complexity) between the considered three classes are small.

The fact that algae have different shapes is well-known [26,27]. Using several most
commonly known shapes of green algae (see also Figures 1 and 2, and Table 3), we obtained
the RFS shown in panel C of Figure 3. The spectrum shows its maximum for cylindrical
algae, and smaller values of the fractal dimension for oval and ellipsoid algae; both oval and
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ellipsoid algae have comparable fractal dimensions. An interesting result is that spherical
algae have the lowest fractal dimensions, which implies that their complexity is the highest
among algae considered for this spectrum.

The panel D of Figure 3 shows the SRF for different families. The presented results are
consistent with the SRFs given in the previous panels, specifically, in panel A, as the SRF of
panel D mainly reflects differences between algae being unicellular (Desmidiaceae), colonial
(Hydrodictyaceae and Scenedesmaceae) or multicellular (Volvocaceae). The spectrum
demonstrates (similar to the SRF of panel A) a rapid decrease in the fractal dimension, and
related increase in algae complexity, for colonial algae as compared to unicellular ones.
An even sharper decrease in the fractal dimension is observed for multicellular algae as
compared to colonial. As expected, there is only a small difference in the fractal dimension
between the families Hydrodictyaceae and Scenedesmaceae as members of these families
are mainly colonial (see Table 3).

3.5. Discussion of the Obtained Results

The main results of this paper are fractal dimensions (FDs) given in Tables 1 and 2, and
the spectra of reduced fractals (SRFs) presented in Figure 3. The results were obtained for
the selected green algae shown in Figures 1 and 2, and our computations were performed
using the box-counting method that is described in Section 3.2. A similar method was used
in some previous studies to compute fractal dimensions for known images of different bio-
logical systems to determine their complexity, structure, function and organization [34–36],
as well as for medical images [37]. This common use of the fractal dimension in the work
cited above as well as in this work has been motivated by the fact that the FD captures and
describes the complexity of an object by providing one unique number that corresponds
to this object, and its value determines the change in complexity in detail with the change
in scale.

We have also calculated the SRFs and demonstrated that they can be used as a new
tool to investigate properties of green algae and also to classify them, based on the form of
their SRF, within their families as currently algae of a given family are neither ordered nor
organized [26,27]. Moreover, the SRFs can also be generated for other types of algae, namely,
Macroalgae (red and brown) or Microalgae [26,27], as well as for many other diversified
biological systems, such as the roots of plants [30] and their complexity [34], scaling time
in biochemical networks [35], organization of ecosystems [36], human physiology and
well-being [37], and microbial colonies [38]. We do hope that biologists working in different
areas, and other natural scientists, find the SRFs useful in their work and apply them to
different natural systems.

The main advantage of using SRFs is that the shapes of these spectra change from
one biological system to another, which makes it easy to identify different systems by the
characteristic shapes of their spectra. As a result, it is suggested that the spectra may be
used as a tool to classify different systems, and also to make comparisons between different
biological systems. In other words, the spectra uniquely show differences and similarities
between diverse systems, which was not the case in the previous studies that were limited
to one particular object of a certain class or family, and a certain shape or form. It must
also be pointed out that the SRFs are an efficient and low-cost tool compared to other more
advanced techniques, like machine learning or detailed digital analysis of images.

Finally, our suggestion that the SRFs can be used to classify different biological systems
requires more studies. Specifically, a test analysis and a confusion matrix analysis are
needed to formally demonstrate the validity of our suggestion; however, these topics are of
the scope of this paper and they will be considered elsewhere.

4. Conclusions

The concept of reduced fractals, with a specific limited scale range and only partial self-
similarity, is introduced and used to generate spectra of reduced fractals. To demonstrate
the applicability of these spectra to biology, the spectra are generated for selected green
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algae, which include Charophyta and Chlorophyta algae, and their classes Charophyceae,
Zygnematophyceae, Chlorophyceae, Ulvophyceae and Trebouxiophyceae. By showing
how these spectra can be used to investigate physical properties of algae and to classify
them within their families, we hope that the spectra will become a new tool to study algae,
including also red and brown algae, as well as microalgae. It is also suggested that the
spectra can be used for other biological systems, whose images are known, and that they
may provide biologists with a tool to bridge over to physics, electro-sensory artificial life
and synthetic biology. The spectra may also become a useful tool in other natural sciences.
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