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Abstract: This paper proposes a new fractional Poisson process through a recursive fractional
differential governing equation. Unlike the homogeneous Poison process, the Caputo derivative on
the probability distribution of k jumps with respect to time is linked to all probability distribution
functions of j jumps, where j is a non-negative integer less than or equal to k. The distribution
functions of arrival times are derived, while the inter-arrival times are no longer independent
and identically distributed. Further, this new fractional Poisson process can be interpreted as a
homogeneous Poisson process whose natural time flow has been randomized, and the underlying
time randomizing process has been studied. Finally, the conditional distribution of the kth order
statistic from random number samples, counted by this fractional Poisson process, is also discussed.

Keywords: fractional differential equations; Mittag–Leffler functions; Fox H function; subordinator
and inverse stable subordinator; Lamperti law; order statistic

1. Introduction

Since the inter-arrival times of a Poisson process being independent and exponentially
distributed are not supported by real data (see [1,2] and references therein), the fractional
Poisson processes have received various attention. There are several different approaches
to this concept. Jumarie [3] studies the fractional version of the Poisson process through
the fractional master equation. Laskin [4] modifies the differential equation governing the
probability distribution function of a homogeneous Poisson process through the Riemann–
Liouville fractional derivative.

Another approach, followed by [5] is to generalize the inter-arrival times of a homoge-
neous Poisson process through the Mittag–Leffler distribution (see [6]). Later, Reference [7]
shows that this fractional version is a true renewal process, without the independent and
stationary increments.

If we denote the homogeneous Poisson process as {Nt}t≥0 with intensity λ, where
λ > 0, and ∂β

∂tβ as the Caputo fractional derivative, where β ∈ (0, 1), i.e.,

∂β

∂tβ
f (t) =

1
Γ(1− α)

∫ t

0
(t− s)−α

(
d
ds

f (s)
)

ds,

then one fractional method, proposed by [8] and denoted as {Mβ
t }t≥0, is to generalize the

probability distribution function of Nt from

∂

∂t
P(Nt = k) = −λ(P(Nt = k)− P(Nt = k− 1)), k ∈ N0, (1)

to

∂β

∂tβ
P(Mβ

t = k) = −λ
(
P(Mβ

t = k)− P(Mβ
t = k− 1)

)
, k ∈ N0, (2)
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i.e., it is the time being fictionalized from a calculus point of view. More interestingly, if we
consider the inverse β-stable subordinator {Eβ

t }t≥0, where β ∈ (0, 1), i.e.,

E[e−qEβ
t ] = Eβ(−qtβ), (3)

where

Eβ(z) =
∞

∑
j=0

zj

Γ(βj + 1)
, β ∈ C, <(β) > 0

is the Mittag–Leffler function of one variable, and assume that {Nt}t≥0 and {Eβ
t }t≥0 are

independent, then

Mβ
t

d
= N

Eβ
t
, (4)

i.e., it is the time being randomized from a probability point of view. Beghin and Orsingher [9],
Meerschaert et al. [10] prove that {Mβ

t }t≥0 is still a renewal process with inter-arrival
times being independent and identically Mittag–Leffler distributed random variables, and
study the case where Equation (2) is generalized to the nth order differential equation. The
probability distribution function of {Mβ

t }t≥0 is,

P
(

Mβ
t = k

)
=
(

λtβ
)k

Ek+1
β,βk+1

(
−λtβ

)
, k ∈ N0,

where

Eδ
β,γ(z) =

∞

∑
k=0

(δ)k
Γ(βk + γ)

zk

k!
, β, γ, δ ∈ C, <(β) > 0

is the Mittag–Leffler function of three variables. Later, [11] describe the non-homogeneous
version of this fractional Poisson process through its non-local governing equation. This
fractional Poisson process has been applied in various fields. We refer to [12] for its
applications in the transport of charged carriers, and [13] for its applications in risk theory.

Another type of fractional Poisson process, proposed by [14,15], is constructed through
the integral representation, by replacing the Gaussian measure in the definition of fractional
Brownian motion with the Poisson counting measure. This fractional version displays long
range dependence, has a fatter tail than the Gaussian process, and converges to fractional
Brownian motion in distribution. Wang et al. [16] study the non-homogeneous versions of
this fractional process.

This paper defines a new fractional Poisson process, denoted as {Nβ
t }t≥0, through a

governing equation, which generalizes Equation (1) by connecting P(Nβ
t = k) to P(Nβ

t = j)
for all j ≤ k through Caputo fractional derivative, i.e.,

∂β

∂tβ
P
(

Nβ
t = k

)
= −λβ

k

∑
j=0

(−β)j

j!
P
(

Nβ
t = k− j

)
, j, k ∈ N0.

Since P(Nβ
t = k) = 0 for k /∈ N0, then the upper bound of the summation on the right

hand side can be extended to infinity. Thus, the fractional differentiation on the time of
the probability distribution function is related to the probabilities of all possible values
this new process could take. Particularly, when β = 1, the above equation goes back to
Equation (1).

We first study the probability properties of this fractional Poisson process. Later,
we find this fractional process can be interpreted as a homogeneous Poisson process
whose natural time flow has been randomized, and the underlying time process at time
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one follows a Lamperti distribution. The transforms of this underlying time process
have also been studied. Finally, we discuss the order statistics counted by this fractional
Poisson process.

2. Main Results

Theorem 1. Let {Nβ
t }t≥0 be a fractional Poisson process with parameter λ > 0 and β ∈ (0, 1),

which satisfies the governing equation

∂β

∂tβ
P
(

Nβ
t = k

)
= −λβ

k

∑
j=0

(−β)j

j!
P
(

Nβ
t = k− j

)
, j, k ∈ N0, (5)

where P(Nβ
t = k) = 0 for k /∈ N0. Then the probability distribution function of this process is

P
(

Nβ
t = k

)
=

(−1)k

k!
Eβ,1−k

(
−λβtβ

)
, k ∈ N0, (6)

where

Eβ,γ(z) =
∞

∑
j=0

zj

Γ(βj + γ)
, β, γ ∈ C, <(β) > 0,

is the Mittag–Leffler function of two variables, and the probability density function of its arrival
times {Tk}k∈N is

fTk (t) =
(−1)k+1

Γ(k)
λ(λt)β−1Eβ,β+1−k

(
−λβtβ

)
, k ∈ N. (7)

Proof. From the definition, we may write the right hand side of the governing equation
into an infinite series,

∂β

∂tβ
P
(

Nβ
t = k

)
= −λβ

∞

∑
j=0

(−β)j

j!
P
(

Nβ
t = k− j

)
,

and therefore the Laplace transform of Nβ
t is

∂β

∂tβ
E
[

e−qNβ
t

]
=− λβ

∞

∑
j=0

(−β)j

j!
E
[

e−q
(

Nβ
t +j

)]

=− λβ
∞

∑
j=0

(−β)j

j!
e−qjE

[
e−qNβ

t

]
=− λβ

(
1− e−q)βE

[
e−qNβ

t

]
.

Taking Laplace transform from t to s gives

sβLs

{
E
[

e−qNβ
t

]}
− sβ−1E

[
e−qNβ

0

]
=− λβ

(
1− e−q)βLs

{
E
[

e−qNβ
t

]}
Ls

{
E
[

e−qNβ
t

]}
=

sβ−1

sβ + λβ(1− e−q)β
.
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This leads to

E
[

e−qNβ
t

]
=Eβ,1

(
−λβ

(
1− e−q)βtβ

)
(8)

=
∞

∑
n=0

(
−λβtβ

)n

Γ(βn + 1)
(
1− e−q)βn

=
∞

∑
k=0

e−qk
∞

∑
n=0

(
−λβtβ

)n

Γ(βn + 1)
(−βn)k

k!
,

and therefore

P
(

Nβ
t = k

)
=

1
k!

∞

∑
n=0

(
−λβtβ

)n
(−βn)k

Γ(βn + 1)

=
1
k!

∞

∑
n=0

(−1)k(−λβtβ
)n

Γ(βn + 1− k)

=
(−1)k

k!
Eβ,1−k

(
−λβtβ

)
.

For the arrival times {Tk}k∈N, since
{

Nβ
t ≥ k

}
and {Tk ≤ t} are equivalent, then

we have

P(Tk ≤ t) =
∞

∑
j=k

P
(

Nβ
t = j

)
=

∞

∑
j=k

(−1)j

j!
Eβ,1−j

(
−λβtβ

)
=

∞

∑
n=0

(
−λβtβ

)n

Γ(βn + 1)

∞

∑
j=k

1
j!

Γ(−βn + j)
Γ(−βn)

=
∞

∑
n=0

(
−λβtβ

)n

Γ(βn + 1)
(−βn)k

k! 2F1(1, k− nβ, 1 + k, 1)

=
∞

∑
n=1

(
−λβtβ

)n

Γ(βn + 1)
(−βn)k

k!
Γ(1 + k)Γ(βn)
Γ(k)Γ(1 + βn)

=
(−1)k

Γ(k)

∞

∑
n=1

(
−λβtβ

)n

Γ(βn + 1− k)
1

βn
,

where 2F1(α, β, γ, z) is the Hypergeometric function; see [17] (Chapter 9). The proof is
completed after differentiating it with respect to t once.

Remark 1. 1. When β = 1,

E
[

e−qNβ
t

]
=

∞

∑
n=0

(−λ(1− e−q)t)n

Γ(n + 1)
= exp

{
λt
(
e−q − 1

)}
P
(

Nβ
t = k

)
=

1
k!

∞

∑
n=0

(−1)k(−λt)n

Γ(n + 1− k)
=

1
k!

∞

∑
n=k

(−1)k(−λβtβ
)n

Γ(n + 1− k)
=

(λt)k

k!
e−λt,

which goes back to a homogeneous Poisson process.
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2. Since β ∈ (0, 1), the integral representation of the Mittag–Leffler function remains [18]
(Lemma 2.2.2), and we have

P
(

Nβ
t = k

)
=
(−1)k

k!
1

2πi

∫ c+i∞

c−i∞

Γ(s)Γ(1− s)
Γ(1− k− βs)

(
λβtβ

)s
ds

=
(−1)k

k!
H1,1

1,2

[
λβtβ

∣∣∣∣ (0, 1)
(0, 1) (k, β)

]
,

where Hm,n
p,q

[
z
∣∣∣∣ (ai, Ai)1,p(

bj, Bj
)

1,q

]
is the Fox’s H function. The convergence of this contour

integral can be checked by [19] (Equation (1.13)) The integral representation, by closing the
contour in two different directions, leads to

Eβ,γ(z) =
∞

∑
j=0

zj

Γ(βj + γ)
= −

∞

∑
j=1

z−j

Γ(γ− βj)
,

which determines the asymptotic behavior of these probability functions.
3. Equation (8) indicates that

E
[

e−qNβ
t1+t2

]
=Eβ,1

(
−λβ

(
1− e−q)β

(t1 + t2)
β
)

6=Eβ,1

(
−λβ

(
1− e−q)βtβ

1

)
Eβ,1

(
−λβ

(
1− e−q)βtβ

2

)
=E
[

e−qNβ
t1

]
E
[

e−qNβ
t2

]
,

i.e., {Nβ
t }t≥0 no longer possesses independent increments and therefore loses the lack of

memory property of the homogeneous Poisson process.
4. Since

d
dq

E
[

e−qNβ
t

]
= −e−q(1− e−q)β−1tβλβEβ,β

(
−λβ

(
1− e−q)βtβ

)
,

which tends to ∞ as q tends to 0, then E
[(

Nβ
t

)n]
does not exist for all n ∈ N, unlike

E
[(

Mβ
t

)n]
.

Given Equation (6), Equation (5) can be verified directly.

∂β

∂tβ
P
(

Nβ
t = k

)
=

1
k!

∞

∑
n=1

(−1)k(−λβ
)n

Γ(βn + 1− k)
Γ(βn + 1)

Γ(βn− β + 1)
tβ(n−1)

=− λβ 1
k!

∞

∑
n=0

(
−λβ

)n

Γ(βn + 1)
(−βn− β)ktβn

=− λβ 1
k!

∞

∑
n=0

(
−λβ

)n

Γ(βn + 1)

k

∑
j=0

(
k
j

)
(−β)j(−βn)k−jtβn

=− λβ
k

∑
j=0

k!
j!(k− j)!

(−β)j
1
k!

∞

∑
n=0

(
−λβ

)n

Γ(βn + 1)
(−1)k−jΓ(βn + 1)

Γ(βn + 1− (k− j))
tβn

=− λβ
k

∑
j=0

(−β)j

j!
1

(k− j)!

∞

∑
n=0

(−1)k−j(−λβ
)n

Γ(βn + 1− (k− j))
tβn

=− λβ
k

∑
j=0

(−β)j

j!
P
(

Nβ
t = k

)
.



Fractal Fract. 2022, 6, 418 6 of 15

We present a few numerical examples of P
(

Nβ
t = k

)
and fTk (t) from Figures 1–6.

10 20 30 40 50
t

0.05

0.10

0.15

0.20

(N
t

β
=k)

β=0.5

β=0.7

β=0.9

β=1

Figure 1. P
(

Nβ
t = 3

)
with λ = 1.

5 10 15 20 25 30
t

0.05

0.10

0.15

0.20

0.25

0.30

(N
t

β
=k)

k=1

k=3

k=5

k=7

Figure 2. P
(

N0.9
t = k

)
with λ = 1.

5 10 15 20 25 30
t

0.05

0.10

0.15

(N
t

β
=k)

λ 0.7

λ 1

λ 2

λ 4

Figure 3. P
(

N0.9
t = 3

)
.

2 4 6 8 10 12 14
t

0.1

0.2

0.3

0.4

0.5

0.6

fTk
(t)

=0.5

=0.7

=0.9

=1

Figure 4. fT3 (t) with λ = 1.
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1 2 3 4 5
t

0.5

1.0

1.5

fTk
(t)

k=1

k=3

k=5

k=7

Figure 5. fTk (t) with λ = 1 and β = 0.9.

1 2 3 4 5
t

0.2

0.4

0.6

0.8

fTk
(t)

=0.7

=1

=2

=4

Figure 6. fT3 (t) with β = 0.9.

The Laplace transform of Tk is

E
[
e−qTk

]
= qLq{P(Tk ≤ t)} = (−1)k

Γ(k)

∞

∑
n=1

Γ(βn)
Γ(βn + 1− k)

(
−λβ

qβ

)n

, (9)

which allows us to determine whether {Nβ
t }t≥0 is still a renewal process. For k = 1,

E
[
e−qT1

]
=

λβ

qβ + λβ
= E

[
e−qτ1

]
,

i.e., τ1 is Mittag–Leffler distributed with survival function

P(τ1 > t) = Eβ,1

(
−λβtβ

)
.

For k = 2,

E
[
e−qT2

]
=

λβ
(
qβ(1− β) + λβ

)(
qβ + λβ

)2 =

(
λβ

qβ + λβ

)2

+ (1− β)
λβqβ(

qβ + λβ
)2 .

If τ1 and τ2 are independent, then

E
[
e−qτ2

]
=

E
[
e−qT2

]
E
[
e−qT1

] =
(

λβ

qβ+λβ

)2
+ (1− β)

(
λβqβ

(qβ+λβ)
2

)
λβ

qβ+λβ

= β
λβ

qβ + λβ
+ (1− β),

which implies that τ2 is a mixture of Mittag–Leffler distributed random variable with prob-
ability β and a mass point at zero with probability 1− β. So, if τ1 and τ2 are independent,
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then they are not equal in distribution and the mass point at zero implies the multiple
jumps at one time. Particularly, when β = 1, Equation (9) turns out to be

E
[
e−qTk

]
=

(−1)k

Γ(k)

∞

∑
n=k

Γ(n)
Γ(n + 1− k)

(
−λ

q

)n
=

(
λ

q + λ

)k
,

which is the Laplace transform of a gamma distribution and goes back to a homogeneous
Poisson process.

If we denote a β-stable subordinator as {Dβ
t }t≥0, i.e.,

E
[

e−qDβ
t

]
= e−tqβ

,

then based on the definition,

Eβ
t = inf

{
u ≥ 0 : Dβ

u > t
}

, t ≥ 0.

{Eβ
t }t≥0 is non-decreasing and its sample paths are almost surely continuous if {Dβ

t }t≥0 is
strictly increasing. From Equation (3), it can be seen that {Eβ

t }t≥0 possesses non-Markovian
with non-stationary and non-independent increments. The probability functions of {Dβ

t }t≥0

and {Eβ
t }t≥0 are usually in complicated forms, and [20] find the densities of the product,

quotient, and power of them in terms of the Fox’s H function. Since

E
[(

Dβ
t

)ρ]
= t

ρ
β

Γ(1− ρ
β )

Γ(1− ρ)
, <(ρ) < β,

then for two independent β-stable processes {Dβ
1,t}t≥0 and {Dβ

2,t}t≥0, we have

E

Dβ
1,t

Dβ
2,t

ρ =
Γ(1− ρ

β )Γ(1 +
ρ
β )

Γ(1− ρ)Γ(1 + ρ)
, <(ρ) ∈ (−β, β). (10)

If we denote L =

(
Dβ

1,t

Dβ
2,t

)β

, then L is a Lamperti random variable and its probability

density function with respect to the Lebesgue measure on R is

fL(x) =
sin(πβ)

πβ

1
x2 + 2x cos(πβ) + 1

, x > 0. (11)

See [21,22] for a detailed discussion on the Lamperti law and the stable law. Meanwhile,
the Mellin transform of {Eβ

t }t≥0 is

E
[(

Eβ
t

)ρ]
= tβρ Γ(1 + ρ)

Γ(1 + βρ)
.

From [23], for ρ ∈ (0, 1), the Mellin transform and the Laplace transform of a positive
random variable can be connected through

E[Xρ] =
ρ

Γ(1− ρ)

∫ ∞

0
q−ρ−1

(
1−E

[
e−qX

])
dq, ρ ∈ (0, 1).

Replacing X with Eβ
t gives∫ ∞

0
q−ρ−1

(
1− Eβ,1

(
−qtβ

))
dq = tβρ Γ(ρ)Γ(1− ρ)

Γ(1 + βρ)
. (12)
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The next theorem gives a parallel result to distributional equality Equation 4.

Theorem 2. Let {Nβ
t }t≥0 be a fractional Poisson process with parameter λ > 0 and β ∈ (0, 1). If

{Uβ
t }t≥0 is a non-negative process such that

f
Uβ

t
(x) =

1
β

1
t

H1,1
2,2

 x
t

∣∣∣∣
(

1− 1
β , 1

β

)
(0, 1)(

1− 1
β , 1

β

)
(0, 1)

, x > 0, (13)

and independent with {Nβ
t }t≥0, then

Nβ
t

d
= N

Uβ
t
, (14)

Proof. If Equation (14) is true, then

E
[

e−qNβ
t

]
= E

[
E
[

e−qNβ
t |Uβ

t

]]
= E

[
e−λ(1−e−q)Uβ

t

]
= Eβ,1

(
−λβ

(
1− e−q)βtβ

)
,

which gives

E
[

e−qUβ
t

]
= Eβ,1

(
−qβtβ

)
. (15)

Applying Equation (12) gives

E
[(

Uβ
t

)ρ]
=

ρ

Γ(1− ρ)

∫ ∞

0
q−ρ−1

(
1− Eβ,1

(
−qβtβ

))
dq

=
ρ

Γ(1− ρ)

1
β

∫ ∞

0
s−

ρ
β−1
(

1− Eβ,1

(
−stβ

))
ds

=
ρ

Γ(1− ρ)

1
β

tβ
ρ
β

Γ
(

ρ
β

)
Γ
(

1− ρ
β

)
Γ
(

1 + β
ρ
β

)
=tρ

Γ
(

1− ρ
β

)
Γ
(

1 + ρ
β

)
Γ(1− ρ)Γ(1 + ρ)

, <(ρ) ∈ (−β, β). (16)

Finally, applying the inverse Mellin transform gives

f
Uβ

t
(x) =

1
2πi

∫ c+i∞

c−i∞
E
[(

Uβ
t

)ρ]
x−1−ρdρ

=
1
β

1
2πi

∫ c+i∞

c−i∞
tρ

Γ
(
− ρ

β

)
Γ
(

1 + ρ
β

)
Γ(−ρ)Γ(1 + ρ)

x−1−ρdρ

=
1
β

1
t

1
2πi

∫ c1+i∞

c1−i∞

Γ
(

1
β −

1
β s
)

Γ
(

1− 1
β + 1

β s
)

Γ(1− s)Γ(s)

( x
t

)−s
ds

=
1
β

1
t

H1,1
2,2

 x
t

∣∣∣∣
(

1− 1
β , 1

β

)
(0, 1)(

1− 1
β , 1

β

)
(0, 1)

.

Remark 2. 1. From Equation (15), {Uβ
t }t≥0 does not possess independent and stationary

increments.
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2. Comparing Equation (10) and Equation (16), it can be seen that

Uβ
t

d
= t

Dβ
1,t

Dβ
2,t

d
= tL

1
β

d
= t

Eβ
1,t

Eβ
2,t

 1
β

,

which leads to a simpler form of Equation (13) after a change of variable in Equation (11),

f
Uβ

t
(x) =

tβ

π

xβ−1 sin(πβ)

x2β + 2xβtβ cos(πβ) + t2β
, x > 0. (17)

Meanwhile, this expression can be seen from Equation (13) directly,

f
Uβ

t
(x) =

1
β

1
t

H1,1
2,2

 x
t

∣∣∣∣
(

1− 1
β , 1

β

)
(0, 1)(

1− 1
β , 1

β

)
(0, 1)


=

1
t

1
2πi

∫ c+i∞

c−i∞

Γ
(

1
β − y

)
Γ
(

1− 1
β + y

)
Γ(1− βy)Γ(βy)

( x
t

)−βy
dy

=
1
t

∞

∑
n=0

lim
y→ 1

β +n

(
y− 1

β
− n

)
Γ
(

1
β
− y
) Γ

(
1− 1

β + y
)

Γ(1− βy)Γ(βy)

( x
t

)−βy

=
1
t

∞

∑
n=0

(−1)n

Γ(−βn)Γ(1 + β n)

(
t
x

)(1+βn)

=− 1
t

∞

∑
n=0

(−1)n sin(nπβ)

π

(
t
x

)(1+βn)

=− 1
πt

(
t
x

) ∞

∑
n=0

sin(nπβ)

(
−
( x

t

)β
)−n

=
1
π

1
x

( x
t
)β sin(πβ)( x

t
)2β

+ 2
( x

t
)β cos(πβ) + 1

=
tβ

π

xβ−1 sin(πβ)

x2β + 2xβtβ cos(πβ) + t2β
.

With this simplified expression, we can see that when t→ 0, f
Uβ

t
(x)→ 0 and when x → 0,

f
Uβ

t
(x)→ ∞.

3. From Equation (16), the Mellin transform only exists for <(ρ) ∈ (−β, β), and therefore Uβ
t

does not have the first moment for t > 0. This fits our observation in Theorem 1 that Nβ
t does

not have the first moment for t > 0 either.

We give a few numerical examples of f
Uβ

t
(x) from Figures 7–10. In the first two figures,

there is a clear sign that the density functions approach to infinity as the variable x tends to
zero. In the last two figures, the density functions approach to zero as the variable t tends
to zero. These behaviors fit the theoretical analysis on Equation (17).
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Equation (13) can be checked through the Laplace transform directly

E
[

e−qUβ
t

]
=

1
β

1
t

tH2,1
2,3

qt
∣∣∣∣
(

0, 1
β

)
(0, 1)

(0, 1)
(

0, 1
β

)
(0, 1)


=

1
β

H1,1
1,2

qt
∣∣∣∣
(

0, 1
β

)(
0, 1

β

)
(0, 1)


=H1,1

1,2

[
(qt)β

∣∣∣ (0, 1)
(0, 1) (0, β)

]
=Eβ,1

(
−(qt)β

)
.

With the distributional equality Equation (14), Equation (6) can be calculated directly,

P
(

Nβ
t = k

)
=P
(

N
Uβ

t
= k

)
=
∫ ∞

0

(λx)k

k!
e−λxP

(
Uβ

t ∈ dx
)

=
∫ ∞

0

(λx)k

k!
e−λx 1

β

1
t

1
2πi

∫ c+i∞

c−i∞

Γ
(

1
β −

1
β s
)

Γ
(

1− 1
β + 1

β s
)

Γ(1− s)Γ(s)

( x
t

)−s
dsdx

=
1
k!

1
β

1
2πi

∫ c1+i∞

c1−i∞

Γ
(

1
β u
)

Γ
(

1− 1
β u
)

Γ(k + u)

Γ(u)Γ(1− u)
(λt)−udu

=
1
k!

1
β

1
2πi

∫ c1+i∞

c1−i∞

Γ
(

1
β u
)

Γ
(

1− 1
β u
)

Γ(1− u)
(−1)k Γ(−u + 1)

Γ(−u + 1− k)
(λt)−udu

=
(−1)k

k!
1
β

1
2πi

∫ c1+i∞

c1−i∞

Γ
(

1
β u
)

Γ
(

1− 1
β u
)

Γ(1− k− u)
(λt)−udu

=
(−1)k

k!
1

2πi

∫ c2+i∞

c2−i∞

Γ(s)Γ(1− s)
Γ(1− k− βs)

(λt)−βsds

=
(−1)k

k!
Eβ,1−k

(
−λβtβ

)
.

Corollary 1. The Laplace and Mellin transforms of the density function of {Uβ
t }t≥0, where

β ∈ (0, 1), with respect to the time variable are

∫ ∞

0
e−st f

Uβ
t
(x)dt =H1,1

1,2

(sx)β

∣∣∣∣
(

1− 1
β , 1
)(

1− 1
β , 1
)

(0, β)

, x > 0,

and

∫ ∞

0
tρ f

Uβ
t
(x)dt =xρ

Γ
(

1− ρ+1
β

)
Γ
(

1 + ρ+1
β

)
Γ(2 + ρ)Γ(−ρ)

, x > 0.
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Proof. We first rewrite the density function of Uβ
t as

f
Uβ

t
(x) =

1
βt

H1,1
2,2

 x
t

∣∣∣∣
(

1− 1
β , 1

β

)
(0, 1)(

1− 1
β , 1

β

)
(0, 1)


=

1
βx

H1,1
2,2

 x
t

∣∣∣∣
(

1, 1
β

)
(1, 1)(

1, 1
β

)
(1, 1)


=

1
βx

H1,1
2,2

 t
x

∣∣∣∣
(

0, 1
β

)
(0, 1)(

0, 1
β

)
(0, 1)

.

Then, the Laplace transform is

∫ ∞

0
e−st f

Uβ
t
(x)dt =

∫ ∞

0
e−st 1

βx
H1,1

2,2

 t
x

∣∣∣∣
(

0, 1
β

)
(0, 1)(

0, 1
β

)
(0, 1)

dt

=
1

βx
xH2,1

2,3

sx
∣∣∣∣
(

1− 1
β , 1

β

)
(0, 1)

(0, 1)
(

1− 1
β , 1

β

)
(0, 1)


=

1
β

H1,1
1,2

sx
∣∣∣∣
(

1− 1
β , 1

β

)(
1− 1

β , 1
β

)
(0, 1)


=H1,1

1,2

(sx)β

∣∣∣∣
(

1− 1
β , 1
)(

1− 1
β , 1
)

(0, β)

,

and the Mellin transform is

∫ ∞

0
ts−1 f

Uβ
t
(x)dt =

∫ ∞

0
ts−1 1

βx
H1,1

2,2

 t
x

∣∣∣∣
(

0, 1
β

)
(0, 1)(

0, 1
β

)
(0, 1)

dt

=
xs

βx

Γ
(

1− s
β

)
Γ
(

s
β

)
Γ(s)Γ(1− s)

=xs−1
Γ
(

1− s
β

)
Γ
(

1 + s
β

)
Γ(1 + s)Γ(1− s)

,

which completes the proof.

Let (X1, X2, . . . , Xn) be a series of n independent and identically distributed random
variables with probability density function fX . Denote

(
X(1), X(2), . . . , X(n)

)
as the order

statistics of this series if X(1) ≤ . . . ≤ X(k) ≤ . . . ≤ X(n), and XNβ
t

(k) as the kth order statistic

from Nβ
t samples, for k ∈ {1, . . . , Nβ

t }. The following result is an application of {Nβ
t }t≥0 on

the order statistics, which shows that the probability of {XNβ
t

(k) | Nβ
t ≥ k} can be expressed

as the ratio of probabilities of a fractional Poisson process.

Theorem 3. Let {Nβ
t }t≥0 be a fractional Poisson process with parameter λ > 0, β ∈ (0, 1) and

{Xi}i∈N be a sequence of i.i.d. random variables with probability distribution function FX ,

P
(

XNβ
t

(k) < x | Nβ
t ≥ k

)
=

P
(

Ñβ
t ≥ k

)
P
(

Nβ
t ≥ k

) , k ∈ N,
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where {Ñβ
t }t≥0 is a fractional Poisson process with parameter λFX > 0 and β ∈ (0, 1).

Proof. By the conditional probability law,

P
(

XNβ
t

(k) < x | Nβ
t ≥ k

)
=

∑∞
n=k P

(
XNβ

t
(k) < x, Nβ

t = n
)

P
(

Nβ
t ≥ k

)

=
∑∞

n=k P
(

XNβ
t

(k) < x | Nβ
t = n

)
P
(

Nβ
t = n

)
P
(

Nβ
t ≥ k

) .

The numerator could be computed as

∞

∑
n=k

P
(

XNβ
t

(k) < x | Nβ
t = n

)
P
(

Nβ
t = n

)
=

∞

∑
n=k

n

∑
j=k

(
n
j

)
Fj

X(x)(1− FX(x))n−j (−1)n

n!

∞

∑
m=0

(−λβtβ)m

Γ(βm + 1− n)

=
∞

∑
j=k

∞

∑
m=0

∞

∑
n=j

1
(n− j)!j!

Fj
X(x)(1− FX(x))n−j(−1)n (−λβtβ)m

Γ(βm + 1− n)

=
∞

∑
j=k

Fj
X(x)
j!

∞

∑
m=0

(−λβtβ)m
∞

∑
n=0

(1− FX(x))n

n!
(−1)n+j

Γ(βm + 1− n− j)

=
∞

∑
j=k

Fj
X(x)
j!

∞

∑
m=0

(−λβtβ)m (−1)jFβm−j
X (x)

Γ(βm + 1− j)

=
∞

∑
j=k

(−1)j

j!

∞

∑
m=0

(
−λβFβ

X(x)tβ
)m

Γ(βm + 1− j)

= P(Ñβ
t ≥ k).

This completes the proof.

3. Conclusions and Future Work

In this paper, we discuss a new fractional Poisson process governed by a recursive
fractional differential governing equation. The probability distribution function and the
Laplace transform of this process are derived. Moreover, this process is equivalent in
distribution with a homogeneous Poisson process whose natural time flow is randomized
by a Lamperti process. Finally, order statistic from random number samples counted by
this fractional Poisson process is studied.

Further research may focus on investigating the distribution properties of the inter-
arrival times, generalizing from the first-order differential equation to the nth-order differ-
ential equation, and the applications in the risk theory, e.g., the discounted sum counted by
this point process.
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