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1. Introduction

The Banach contraction principle (for short, BCP), the most celebrated theorem in
metric fixed point theory, has undergone many extensions and generalizations due to its
simple nature and wide range of applicability. Some significant generalizations of BCP
are seen in [1–4]. Generally speaking, these generalizations usually contain two sides. On
the one hand, BCP is extended from metric space to generalized metric space, such as
b-metirc space [1], partial metric space [5], ordered Banach space [6], b-metric-like space [7],
etc. One of the most prevalent spaces is b-metric-like space, which was introduced by
Alghmandi et al. [7] in 2013. In 2014, Hussain et al. [8] obtained fixed point results for Ćirić
type contraction and φ-contraction in b-metric-like spaces. Afterwards, Joshi et al. [9] in
2017 presented fixed point theorems for generalized F-contractions in b-metric-like spaces.
In the same year, Zoto et al. [10] offered some generalizations for (α-ψ, φ)-contractions in
b-metric-like spaces. Whereafter, Zoto et al. [11] in 2018 obtained fixed point theorems
for (s, p, α)-contractive mappings in b-metric-like spaces. Subsequently, Zoto et al. [12] in
2019 investigated common fixed point theorems for a class of (s,q)-contractive mappings
in b-metric-like spaces. In the meanwhile, De la Sen et al. [13] in 2019 gave fixed point
results for (s-q)-graphic contraction in b-metric-like spaces. Later in 2020, Fabiano et al. [14]
discussed fixed point theorems for (s, q)-Dass–Gupta–Jaggi type contraction in b-metric-
like spaces. Recently in 2021, Mitrović et al. [15] established fixed point theorems for
Jaggi-W-contraction in b-metric-like spaces.

On the other hand, BCP is extended for different contractive mappings. One of the
most important contractions, is F-contraction on metric space, which was introduced by
Wardowski [16] in 2012. Shukla et al. in 2014 established ordered F-contraction in [17]
from metric spaces to partial metric spaces. In 2018, Kadelburg and Radenović in [18]
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extended F-contraction in [16] from metric spaces to b-metric spaces. In 2019, Hammad
and De la Sen [19] considered fixed point theorem for the generalized almost (s, q)-Jaggi
F-contraction-type in b-metric-like spaces. As followed by them, Huang et al. in [20]
introduced the notion of convex F-contraction and proved fixed point theorems for both
continuous and discontinuous mappings.

Among these extensions cited above, throughout this paper, first and foremost, we initiate
several generalized F-contractions, such as (s, q, F)-contraction, general (s, q, F)-contraction
and r-order (s, q, F)-contraction. We give several fixed point theorems for such contractions
in b-metric-like spaces. As compared with previous contractions from [8–10,12–14,19], our
contractions mainly aim at generalized F-contractions, which are the sharp generalizations
of F-contraction introduced by Wardowski [16]. As we know, F-contraction is one of the
generalizations of Banach type contraction, whereas generalized F-contractions greatly extend
F-contractions. As a result, our conclusions related to generalized F-contractions have strong
theoretical significance and practical influence. It is worth mentioning that we demonstrate our
assertions by much fewer conditions and more straightforward proofs than the counterpart
from previous results. In addition, we illustrate the vitality of our conclusions by some
supportive examples. As an application, we obtain the existence and uniqueness of solution
to a class of integral equations. Regarding finding the solutions for such equations, there have
emerged numerous versions in the existing literature; our method used in this paper is very
easy to be understood since it contains simple conditions and comes straight to the point with
short proof.

2. Preliminaries

It is customary for a paper to firstly list some useful definitions, lemmas and other
contributed results.

In the following, unless otherwise specified, we always assume R as the set of all real
numbers, N the set of all nonnegative integers, and N∗ the set of all positive integers.

Definition 1 ([7]). Let M be a nonempty set and s ≥ 1 a constant. The mapping b: M×M →
[0,+∞) is called a b-metric-like if for all ξ, η, ζ ∈ M, the following conditions are satisfied:

(b1) b(ξ, η) = 0 implies ξ = η;
(b2) b(ξ, η) = b(η, ξ);
(b3) b(ξ, η) ≤ s[b(ξ, ζ) + b(ζ, η)].

The pair (M, b, s) is called a b-metric-like space with parameter s ≥ 1.

In a b-metric-like space (M, b, s), if ξ, η ∈ M and b(ξ, η) = 0, then ξ = η; however, the
converse need not be true, since b(η, η) may be positive for some η ∈ M.

Example 1 ([11]). Let M = [0,+∞) and p > 1 be a constant. Define a function b : M×M→
[0,+∞) by b(ξ, η) = (ξ + η)p or b(ξ, η) = (max{ξ, η})p. Then, (M, b, s) is a b-metric-like
space with parameter s = 2p−1. Clearly, (M, b, s) is neither a b-metric (see [1]), nor a metric-like
space (see [5]), nor a partial b-metric space (see [21]).

Definition 2 ([7]). Let (M, b, s) be a b-metric-like space with parameter s ≥ 1, {ηn} a sequence
in M and η ∈ M. We say:

(i) {ηn} is said to be a b-convergent sequence if lim
n→∞

b(ηn, η) = b(η, η);

(ii) {ηn} is said to be a b-Cauchy sequence if lim
n,m→∞

b(ηn, ηm) exists and is finite;

(iii) (M, b, s) is called b-complete, if, for every b-Cauchy sequence {ηn} in M, there exists
η ∈ M such that lim

n,m→∞
b(ηn, ηm) = lim

n→∞
b(ηn, η) = b(η, η).

Definition 3 ([7]). Let (M, b, s) be a b-metric-like space with parameter s ≥ 1 and f : M→ M a
function. We say that f is b-continuous if for each sequence {ηn} in M with b(ηn, η)→ b(η, η) as
n→ ∞, then b( f ηn, f η)→ b( f η, f η) as n→ ∞.
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Remark 1 ([14]). In a b-metric-like space, if lim
n,m→∞

b(ηn, ηm) = 0 and the limit of {ηn} exists,

then the limit is unique.

Lemma 1 ([22]). Let (M, b, s) be a b-metric-like space with parameter s ≥ 1 and {ηn} a sequence
in M such that

b(ηn+1, ηn+2) ≤ λb(ηn, ηn+1)

for some λ ∈ [0, 1) and each n ∈ N∗. Then, {ηn} is a b-Cauchy sequence with lim
n,m→∞

b(ηn, ηm) = 0.

In 2012, Wardowski [16] defined the F-contraction in metric spaces as follows:

Definition 4 ([16]). Let (M, d) be a metric space. The mapping f : M → M is called an
F-contraction if there exists a function F : (0,+∞)→ R such that

(F1) F is strictly increasing on (0,+∞);
(F2) for each sequence {αn} of positive numbers, lim

n→∞
αn = 0⇔ lim

n→∞
F(αn) = −∞;

(F3) there exists c ∈ (0, 1) such that lim
α→0+

αcF(α) = 0;

(F4) there exists τ > 0 such that

τ + F(d( f ξ, f η)) ≤ F(d(ξ, η)),

for all ξ, η ∈ M with f ξ 6= f η.

Huang et al. [20] modified Definition 4 and defined the notion of convex F-contraction
in the framework of b-metric spaces.

Definition 5 ([20]). Let (M, d, s ≥ 1) be a b-metric space and f a self-mapping on M. We say that
f is a convex F-contraction if there exists a function F : (0,+∞)→ R such that (F1) holds and:

(i) for each sequence {αn} of positive numbers, if lim
n→∞

F(αn) = −∞, then lim
n→∞

αn = 0;

(ii) there exists c ∈
(

0, 1
1+log2 s

)
such that lim

α→0+
αcF(α) = 0;

(iii) there exist τ > 0 and λ ∈ [0, 1) such that

τ + F(dn) ≤ F(λdn + (1− λ)dn−1),

for all dn > 0 where n ∈ N∗.

Remark 2. Condition (iii) yields that dn < dn−1 for all n ∈ N. Hence, the sequence {dn} is a
decreasing sequence.

Definition 6 ([23]). Let (M, b, s) be a b-metric-like space, f a self-mapping on M and {ηn} a
sequence in M. We say {ηn} is a Picard iterative sequence generated by f if for any η0 ∈ M,
ηn+1 = f ηn holds for all n ∈ N.

Inspired by the above notions, we provide some new definitions and theorems in
the sequel.

3. Main Results

In this section, we introduce the notion of (s, q, F)-contraction, general (s, q, F)-contraction
and r-order (s, q, F)-contraction and give some fixed point theorems based on them. We
also provide three examples to support our conclusions.

First of all, motivated by Definitions 4 and 5, we present the following concept.
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Definition 7. Let f be a self-mapping on b-metric-like space (M, b, s) with parameter s ≥ 1, {ηn}
be a Picard iterative sequence generated by f and F : (0,+∞)→ R be an increasing function. We
say that f is an (s, q, F)-contraction if:

τ + F(sqbn) ≤ F(αbn + βbn−1), (1)

for all bn := b(ηn, ηn+1) > 0, where τ, q > 0, α, β ≥ 0 are constants with 0 < α + β < 1.

Remark 3. Definition 7 improves the corresponding definitions given in [13,20,24]. It contains a
fewer conditions compared with the previous ones. It covers many contractive conditions since the
set of all increasing functions F is a very broad set.

Remark 4. If s = 1, then we get the case in metric spaces. If α = 0, then we get the definition of
(s, q, λ)-contraction in [11].

Remark 5. Although the conditions of Definition 7 look strong since it involves the Picard iteration,
to the best of our knowledge, the Picard iteration is one of the most frequently used iterations in
fixed point theory. Hence, our object is more targeted for the convenience of applications. Otherwise,
since τ > 0 and F is increasing, then by (1), we speculate:

F(sqbn) < τ + F(sqbn) ≤ F(αbn + βbn−1).

Then by the monotonicity of F, we get:

sqbn < αbn + βbn−1,

which implies that

bn <
β

sq − α
bn−1. (2)

Clearly, β
sq−α ∈ [0, 1). As a consequence, (s, q, F)-contraction generalizes usual contractions

in general.

Example 2. Let M = [0,+∞) and define a mapping on M×M by b(η, ξ) = (η + ξ)2. Then,
(M, b, s) is a b-complete b-metric-like space with parameter s = 2. Suppose that F(t) = ln t is
a function on (0,+∞) and f : M → M is a mapping by f η = 1

3 η. It is easy to see that f is an
(s, q, F)-contraction. Indeed, it is easy to show that (1) is satisfied for all bn = b(ηn, ηn+1) > 0,
where τ = ln 2, q = 1, α = 0, β = 4

5 and {ηn} is a Picard iterative sequence generated by f .

The following lemma will be used in our main results.

Lemma 2. Let (M, b, s) be a b-metric-like space with parameter s ≥ 1, f an (s, q, F)-contraction
on M and {ηn} a Picard iterative sequence generated by f . Then, {ηn} is a b-Cauchy sequence
with lim

n,m→∞
b(ηn, ηm) = 0.

Proof. The proof is clear if there exists n0 ∈ N such that ηn0+1 = ηn0 . Without loss of
generality, we assume that ηn+1 6= ηn for all n ∈ N. Thus, bn := b(ηn, ηn+1) > 0 for all
n ∈ N. Notice (2) and β

sq−α ∈ [0, 1), via Lemma 1, the sequence {ηn} is a b-Cauchy sequence
in M with lim

n,m→∞
b(ηn, ηm) = 0.

Now, our first theorem becomes valid for presentation, which generalizes many
recent results.
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Theorem 1. Let (M, b, s) be a b-complete b-metric-like space with parameter s ≥ 1 and f a b-
continuous (s, q, F)-contraction on M. Then, f has a fixed point in M provided that b( f η, f η) ≤
b(η, η) for all η ∈ M.

Proof. For any η0 ∈ M, by Lemma 2, we can obtain that the Picard iterative sequence
{ηn} generated by f is a b-Cauchy sequence with lim

n,m→∞
b(ηn, ηm) = 0. Since (M, b, s) is

b-complete, then there exists η∗ ∈ M such that:

0 = lim
n,m→∞

b(ηn,ηm) = lim
n→∞

b(ηn, η∗) = b(η∗, η∗).

Now that f is b-continuous, one has:

lim
n→∞

b( f ηn, f η∗) = b( f η∗, f η∗) ≤ b(η∗, η∗) = 0.

By virtue of
b(η∗, f η∗) ≤ s[b(η∗, ηn+1) + b( f ηn, f η∗)],

letting n→ ∞ in the above inequality, we obtain b(η∗, f η∗) = 0. Therefore, f η∗ = η∗. That
is to say, η∗ is a fixed point of f .

Example 3. Under the hypotheses of Example 2, it is not hard to verify that b( f η, f η) ≤ b(η, η)
for all η ∈ M. Therefore, all the conditions of Theorem 1 are satisfied and hence f has a fixed point
η∗ = 0 in M.

The following definition is the extension of (s, q)-Jaggi F-contractions related
to [8,11,13,14,19,20,25,26].

Definition 8. Let (M, b, s) be a b-metric-like space with parameter s ≥ 1, f be a self-mapping
on M, F : (0,+∞) → R be an increasing mapping and Γ : [0,+∞)× (0,+∞) → (0,+∞) be
a function such that Γ(t, t) ≤ 1 for all t ∈ (0,+∞). Then, the mapping f is said to be a general
(s, q, F)-contraction if:

τ + F(sqb( f ξ, f η)) ≤ F(αb(η, f η)Γ(b(ξ, f ξ), b(ξ, η)) + βb(ξ, η) + γb(η, f ξ)), (3)

for all ξ, η ∈ M and b( f ξ, f η) > 0, where τ, q > 0 and α, β, γ ≥ 0 are constants with 0 <
α + β + 2γs < 1.

Theorem 2. Let (M, b, s) be a b-complete b-metric-like space with parameter s ≥ 1 and f a b-
continuous general (s, q, F)-contraction on M. Then, f has a unique fixed point provided that
b( f η, f η) ≤ b(η, η) for all η ∈ M.

Proof. Let η0 ∈ M and define the Picard iterative sequence {ηn} as ηn+1 = f ηn. If
ηn0+1 = ηn0 for some n0 ∈ N, then ηn0 is a fixed point of f because of f ηn0 = ηn0 . So we
always assume that ηn+1 6= ηn, i.e., bn := b( f ηn−1, f ηn) = b(ηn, ηn+1) > 0 for all n ∈ N∗.
By using (3) and the monotonicity of F, we have:

τ + F(sqbn) = τ + F(sqb(ηn, ηn+1)) = τ + F(sqb( f ηn−1, f ηn))

≤ F(αb(ηn, f ηn)Γ(b(ηn−1, f ηn−1), b(ηn−1, ηn)) + βb(ηn−1, ηn) + γb(ηn, f ηn−1))

= F(αb(ηn, ηn+1)Γ(b(ηn−1, ηn), b(ηn−1, ηn)) + βb(ηn−1, ηn) + γb(ηn, ηn))

≤ F(αbnΓ(bn−1, bn−1) + βbn−1 + 2γsbn−1)

≤ F(αbn + (β + 2γs)bn−1),

which shows that (1) holds. Accordingly, f is an (s, q, F)-contraction. Thus, by virtue of
Theorem 1, f has a fixed point.
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We show that f has a unique fixed point in M. Indeed, first of all, we prove that
b(η∗, η∗) = 0 if η∗ is a fixed point of f . On the contrary, assume b(η∗, η∗) > 0, i.e.,
b( f η∗, f η∗) > 0, then by (3) and the monotonicity of F, we get:

F(sqb(η∗, η∗)) < τ + F(sqb( f η∗, f η∗))

≤ F(αb(η∗, f η∗)Γ(b(η∗, f η∗), b(η∗, η∗)) + βb(η∗, η∗) + γb(η∗, f η∗))

= F(αb(η∗, η∗)Γ(b(η∗, η∗), b(η∗, η∗)) + βb(η∗, η∗) + γb(η∗, η∗))

≤ F((α + β + γ)b(η∗, η∗))

≤ F(b(η∗, η∗)),

which implies that:
sqb(η∗, η∗) < b(η∗, η∗).

As a consequence of b(η∗, η∗) > 0, then sq < 1. This is a contradiction with s ≥ 1 and
q > 0. Accordingly, b(η∗, η∗) = 0.

Let ξ∗ and η∗ be two distinct fixed points of f . By the above statement, we have
b(ξ∗, ξ∗) = 0 and b(η∗, η∗) = 0. In view of ξ∗ 6= η∗, that is, b(ξ∗, η∗) > 0, i.e., b( f ξ∗, f η∗) > 0,
then from (3) and the monotonicity of F, we speculate:

F(sqb(ξ∗, η∗)) < τ + F(sqb( f ξ∗, f η∗))

≤ F(αb(η∗, f η∗)Γ(b(ξ∗, f ξ∗), b(ξ∗, η∗)) + βb(ξ∗, η∗) + γb(η∗, f ξ∗))

= F(αb(η∗, η∗)Γ(b(ξ∗, ξ∗), b(ξ∗, η∗)) + βb(ξ∗, η∗) + γb(η∗, ξ∗))

= F((β + γ)b(ξ∗, η∗)) ≤ F(b(ξ∗, η∗)),

which establishes that
sqb(ξ∗, η∗) < b(ξ∗, η∗).

In view of b(ξ∗, η∗) > 0, then sq < 1. This is a contradiction with s ≥ 1 and q > 0.
Therefore, b(ξ∗, η∗) = 0, i.e., ξ∗ = η∗. In other words, the fixed point is unique.

Remark 6. Theorem 2 generalizes the previous theorems from [9,10,12,15,19,20,24–26] and some
of them used rational expressions under the contractive conditions. If we take the function Γ :
(0,+∞)× (0,+∞) → (0,+∞) as Γ(p, t) = p

t , we can obtain from the above results in case of
Jaggi and Gupta contractions.

Corollary 1. Let (M, b, s) be a b-complete b-metric-like space with parameter s ≥ 1, f be a
b-continuous self-mapping on M, F : (0,+∞)→ R be an increasing mapping. If

τ + F(sqb( f ξ, f η)) ≤ F
(

αb(η, f η)
b(ξ, f ξ)

b(ξ, f ξ) + b(ξ, η)
+ β f (ξ, η) + γb(η, f ξ)

)
,

for all ξ, η ∈ M and b( f ξ, f η) > 0, where τ, q > 0 and α, β, γ ≥ 0 are constants with
0 < α + β + 2γs < 1. Then, f has a unique fixed point in M.

Proof. Use the function Γ(x, y) = x
x+y on [0,+∞) × (0,+∞) in (3). By Theorem 2, we

obtain the proof.

Corollary 2. Let (M, b, s) be a b-complete b-metric-like space with parameter s ≥ 1, f be a
b-continuous self-mapping on M, and F : (0,+∞)→ R be an increasing mapping. If

τ + F(sqb( f ξ, f η)) ≤ F

(
αb(η, f η)

√
b(ξ, f ξ)b(ξ, η)

1 + b(ξ, η)
+ βb(ξ, η) + γb(η, f ξ)

)
,

for all ξ, η ∈ M and b( f ξ, f η) > 0, where τ, q > 0 and α, β, γ ≥ 0 are constants with
0 < α + β + 2γs < 1. Then, f has a unique fixed point in M.
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Proof. Use the function Γ(x, y) =
√

xy
1+y on [0,+∞)× (0,+∞) in (3). Via Theorem 2, we get

the desired result.

Example 4. Let M = [0,+∞) and b(ξ, η) = ξ2 + η2 + (ξ − η)2 for all ξ, η ∈ M. It is not
hard to verify that (M, b, s) is a b-complete b-metric-like space with parameter s = 2. Suppose
that F(t) = ln t is a function on (0,+∞) and f : M → M is a mapping by f ξ = 1

4 ln(1 + ξ)
for all ξ ∈ M. Then f is a b-continuous general (s, q, F)-contraction on M. Indeed, it is easy to
show that (3) is satisfied for all ξ, η ∈ M and b( f ξ, f η) > 0, where τ = ln 2, q = 2, α = γ = 0,
β = 1

2 , Γ : [0,+∞)× (0,+∞)→ (0,+∞) is a function such that Γ(t, t) ≤ 1 for all t ∈ (0,+∞).
Therefore, f has a unique fixed point 0 ∈ M.

Now we show that (3) is satisfied for all ξ, η ∈ M and b( f ξ, f η) > 0. As a matter of fact, by
ln(1 + t) ≤ t for all t ∈ [0,+∞), using the mean value theorem of differentials, we have:

τ + F(sqb( f ξ, f η))

= ln 2 + ln
{

4
[

f 2ξ + f 2η + ( f ξ − f η)2
]}

= ln 2 + ln

{
4

[(
ln(1 + ξ)

4

)2

+

(
ln(1 + η)

4

)2

+

(
ln(1 + ξ)

4
− ln(1 + η)

4

)2
]}

≤ ln 2 + ln
{

4
[

1
16

ξ2 +
1
16

η2 +
1
16

(ξ − η)2
]}

= ln 2 + ln
{

1
4

[
ξ2 + η2 + (ξ − η)2

]}
= ln

{
1
2

[
ξ2 + η2 + (ξ − η)2

]}
≤ F(αb(η, f η)Γ(b(ξ, f ξ), b(ξ, η)) + βb(ξ, η) + γb(η, f ξ)),

for all ξ, η ∈ M and b( f ξ, f η) > 0.

Theorem 3. Let (M, b, s) be a b-complete b-metric-like space with parameter s ≥ 1, f be a
b-continuous self-mapping on M, F : (0,+∞)→ R be an increasing mapping. If

τ + F(sqb( f ξ, f η)) ≤ F
(

αb(ξ, η) + β
b(ξ, f η)

2s
+ γ

b(η, f ξ)

2s

)
, (4)

for all ξ, η ∈ M with b( f ξ, f η) > 0, where τ, q > 0 and α, β, γ ≥ 0 are constants with
0 < α + β + γ < 1. Then, f has a unique fixed point provided that b( f η, f η) ≤ b(η, η) for all
η ∈ M.

Proof. Let {ηn} be a Picard iterative sequence as ηn+1 = f ηn initiated on each point η0 ∈ M.
Assume the general case that ηn+1 6= ηn, i.e., bn := b( f ηn−1, f ηn) = b(ηn, ηn+1) > 0 for all
n ∈ N∗. Considering (4) and the monotonicity of F, we have:

τ + F(sqbn) = τ + F(sqb( f ηn−1, f ηn))

≤ F
(

αb(ηn−1, ηn) + β
b(ηn−1, f ηn)

2s
+ γ

b(ηn, f ηn−1)

2s

)
= F

(
αb(ηn−1, ηn) + β

b(ηn−1, ηn+1)

2s
+ γ

b(ηn, ηn)

2s

)
≤ F

(
αbn−1 + β

bn−1 + bn

2
+ γbn−1

)
= F

(
β

2
bn +

(
α + γ +

β

2

)
bn−1

)
.

Hence, f is an (s, q, F)-contraction. By Theorem 1, f has a fixed point.
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Now we show the fixed point of f is unique. To this end, assume that there exist two
distinct fixed points ξ∗ and η∗, then b(ξ∗, η∗) > 0, i.e., b( f ξ∗, f η∗) > 0. By (4) and the
monotonicity of F, we have:

F(sqb(ξ∗, η∗)) < τ + F(sqb(ξ∗, η∗)) = τ + F(sqb( f ξ∗, f η∗))

≤ F
(

αb(ξ∗, η∗) + β
b(ξ∗, f η∗)

2s
+ γ

b(η∗, f ξ∗)

2s

)
= F

(
αb(ξ∗, η∗) + β

b(ξ∗, η∗)

2s
+ γ

b(η∗, ξ∗)

2s

)
≤ F((α + β + γ)b(ξ∗, η∗)) ≤ F(b(ξ∗, η∗)),

which establishes that:

sqb(ξ∗, η∗) < b(ξ∗, η∗).

In view of b(ξ∗, η∗) > 0, then sq < 1. This is a contradiction with s ≥ 1 and q > 0.
Therefore, b(ξ∗, η∗) = 0. It leads to ξ∗ = η∗. That is to say, the mapping f has a unique
fixed point in M.

Definition 9. Let f be a self-mapping on b-metric-like space (M, b, s) with parameter s ≥ 1, and
let {ηn} be a Picard iterative sequence generated by f , F : (0,+∞)→ R be an increasing function.
We say that f is a r-order (s, q, F)-contraction if for all bn := b(ηn, ηn+1) > 0, it satisfies

τ + F(sqbn) ≤ F
((

αbr
n + βbr

n−1
) 1

r

)
, (5)

where τ, q, r > 0 and α, β ≥ 0 are constants with 0 < α + β < 1.

Remark 7. Clearly, (s, q, F)-contraction is 1-order (s, q, F)-contraction. Hence, (s, q, F)-contraction
is the special case of r-order (s, q, F)-contraction. In other words, r-order (s, q, F)-contraction greatly
generalizes (s, q, F)-contraction. In addition, by replacing s = 1, we obtain the notion of r-order
F-contraction in the setting of metric spaces.

Theorem 4. Let (M, b, s) be a b-complete b-metric-like space with parameter s ≥ 1 and f a
b-continuous r-order (s, q, F)-contraction. Then, f has a fixed point provided that b( f η, f η) ≤
b(η, η) for all η ∈ M.

Proof. Let {ηn} be a Picard iterative sequence as ηn+1 = f ηn initiated on each point
η0 ∈ M. Without loss of generality, we assume that ηn+1 6= ηn, i.e., bn := b( f ηn−1, f ηn) =
b(ηn, ηn+1) > 0 for all n ∈ N∗. Taking advantage of (5), we obtain:

F(sqbn) < τ + F(sqbn) ≤ F
((

αbr
n + βbr

n−1
) 1

r

)
.

By the monotonicity of F, we have:

sqbn <
(
αbr

n + βbr
n−1
) 1

r ,

which follows that
sqrbr

n < αbr
n + βbr

n−1.

This leads to

bn <

(
β

sqr − α

) 1
r
bn−1.



Fractal Fract. 2022, 6, 272 9 of 13

Note that
(

β
sqr−α

) 1
r
< 1, then by Lemma 1, {ηn} is a b-Cauchy sequence in M such that

lim
n,m→∞

b(ηn, ηm) = 0. Since (M, b, s) is b-complete, then there exists some η∗ ∈ M such that

0 = lim
n,m→∞

b(ηn, ηm) = lim
n→∞

b(ηn, η∗) = b(η∗, η∗).

Following the same argument as in Theorem 1, we claim that f has a fixed point.

Theorem 5. Let (M, b, s) be a b-complete b-metric-like space with parameter s ≥ 1, f be a b-
continuous self-mapping on M, F : (0,+∞) → R be an increasing mapping and Γ : [0,+∞)×
(0,+∞)→ (0,+∞) be a function such that Γ(t, t) ≤ 1 for all t ∈ (0,+∞). If

τ + F(sqb( f ξ, f η))

≤ F
((

α(b(η, f η)Γ(b(ξ, f ξ), b(ξ, η)))r + β(b(ξ, η))r + γ(b(η, f ξ))r) 1
r

)
, (6)

for all ξ, η ∈ M and b( f ξ, f η) > 0, where τ, q, r > 0 and α, β, γ ≥ 0 are constants with
0 < α + β + 2rsrγ < 1. Then, the mapping f has a unique fixed point provided that b( f η, f η) ≤
b(η, η) for all η ∈ M.

Proof. Let {ηn} be a Picard iterative sequence as ηn+1 = f ηn initiated on each point η0 ∈ M.
Assume the general case that ηn+1 6= ηn, i.e., bn := b( f ηn−1, f ηn) = b(ηn, ηn+1) > 0 for all
n ∈ N∗. By using (6), we have

τ + F(sqbn) = τ + F(sqb( f ηn−1, f ηn))

≤ F
((

α(b(ηn, f ηn)Γ(b(ηn−1, f ηn−1), b(ηn−1, ηn)))
r

+β(b(ηn−1, ηn))
r + γ(b(ηn, f ηn−1))

r) 1
r

)
= F

((
α(b(ηn, ηn+1)Γ(b(ηn−1, ηn), b(ηn−1, ηn)))

r

+ β(b(ηn−1, ηn))
r + γ(b(ηn, ηn))

r) 1
r
)

≤ F
((

αbr
n + (β + 2rsrγ)br

n−1
) 1

r
)

,

which shows that (5) holds, and hence f is an r-order (s, q, F)-contraction. Thus, by
Theorem 4, f has a fixed point.

We prove that b(η∗, η∗) = 0 if η∗ is a fixed point of f . Indeed, by supposing the
contrary, that is, b(η∗, η∗) > 0, i.e., b( f η∗, f η∗) > 0. It follows immediately from (6) that:

F(sqb(η∗, η∗)) < τ + F(sqb( f η∗, f η∗))

≤ F
((

α(b(η∗, f η∗)Γ(b(η∗, f η∗), b(η∗, η∗)))r + β(b(η∗, η∗))r + γ(b(η∗, f η∗))r) 1
r
)

≤ F
((

α(b(η∗, η∗))r + β(b(η∗, η∗))r + γ(b(η∗, η∗))r) 1
r
)

≤ F
((

(b(η∗, η∗))r) 1
r

)
= F(b(η∗, η∗)).

Making full use of the monotonicity of F, we claim that

sqb(η∗, η∗) < b(η∗, η∗).

As a consequence of b(η∗, η∗) > 0, then sq < 1. This is a contradiction with s ≥ 1 and
q > 0. Accordingly, b(η∗, η∗) = 0.
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Let ξ∗ and η∗ be two distinct fixed points of f . By the above statement, we have
b(ξ∗, ξ∗) = 0 and b(η∗, η∗) = 0. In view of ξ∗ 6= η∗, that is, b(ξ∗, η∗) > 0, i.e., b( f ξ∗, f η∗) > 0.
then from (6) and the monotonicity of F, we speculate:

F(sqb(ξ∗, η∗)) < τ + F(sqb(ξ∗, η∗)) < τ + F(sqb( f ξ∗, f η∗))

≤ F
((

α(b(η∗, f η∗)Γ(b(ξ∗, f ξ∗), b(ξ∗, η∗)))r + β(b(ξ∗, η∗))r + γ(b(η∗, f η∗))r) 1
r
)

= F
((

α(b(η∗, η∗)Γ(b(ξ∗, ξ∗), b(ξ∗, η∗)))r + β(b(ξ∗, η∗))r + γ(b(η∗, η∗))r) 1
r
)

= F
((

β(b(ξ∗, η∗))r) 1
r
)
≤ F

((
(b(ξ∗, η∗))r) 1

r
)
= F

(
b(ξ∗, η∗)

)
,

which follows from the monotonicity of F that

sqb(ξ∗, η∗) < b(ξ∗, η∗).

Notice that b(ξ∗, η∗) > 0 implies sq < 1. This is a contradiction with s ≥ 1 and q > 0.
Thus, b(ξ∗, η∗) = 0. Therefore, ξ∗ = η∗. That is to say, the fixed point of f is unique.

Remark 8. It can be easily shown that our new approach of r-order (s, q, F)-contraction covers
many classical types of contractions such as Kannan, Reich, Chatteria, Hardy, Ćirić, etc. Con-
sequently, it could be developed as a prospective work in the future. Kindly see the reference
from [27].

4. Application

Stimulated by the work in [6,7,28,29], we investigate the existence of solution to a class
of nonlinear integral equations utilizing the results proved in the previous section.

Consider the integral equation:

ξ(t) =
∫ T

0
G(t, s) f (s, ξ(s))ds, for all t ∈ [0, T], (7)

where T > 0 is a constant, ξ : [0, T] → R, f : [0, T] × R → R and G : [0, T] × [0, T] →
[0,+∞) are continuous functions.

Let C([0, T]) denote the set of real continuous functions on [0, T].

Theorem 6. Suppose that:

sup
t∈[0,T]

(∫ T

0
G2(t, s)ds

)
≤ L, (8)

and

(| f (t, ξ(t))|+ | f (t, η(t))|)2 ≤ (|ξ(t)|+ |η(t)|)2, (9)

for all ξ(t), η(t) ∈ C([0, T]) and t ∈ [0, T], where L ∈ (0, 1
T ) is a constant. Then the integral

Equation (7) has a unique solution in C([0, T]).

Proof. Put M = C([0, T]). We endow M with the b-metric-like

b(ξ, η) = sup
t∈[0,T]

(|ξ(t)|+ |η(t)|)2, for all ξ, η ∈ M.
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Clearly, (M, b, s) is a b-complete b-metric-like space with parameter s = 2. Assume
that F(u) = ln u is a function on (0,+∞), Γ(x, y) = xy

1+y2 is a function on [0,+∞)× (0,+∞).
Define the mapping T : M→ M by

Tξ(t) =
∫ T

0
G(t, s) f (s, ξ(s))ds, for all t ∈ [0, T],

then

τ + F(sqb(Tξ, Tη)) ≤ F(αb(η, Tη)Γ(b(ξ, Tξ), b(ξ, η)) + βb(ξ, η) + γb(η, f ξ)), (10)

for all ξ, η ∈ M and b(Tξ, Tη) > 0, where γ = 0, λ > 1, τ = ln λ, q > 0, α, β ≥ 0 are
constants such that 0 < α + β < 1 and LT < β

2qλ .
Indeed, (10) becomes

ln λ + ln(2qb(Tξ, Tη)) ≤ ln
(

αb(η, Tη) · b(ξ, Tξ)b(ξ, η)

1 + b2(ξ, η)
+ βb(ξ, η)

)
,

which is equivalent with the following inequality:

2qλb(Tξ, Tη) ≤ αb(η, Tη) · b(ξ, Tξ)b(ξ, η)

1 + b2(ξ, η)
+ βb(ξ, η). (11)

By the Cauchy–Schwarz inequality and (9), for all ξ, η ∈ M, we have:

(|Tξ|+ |Tη|)2 =

(∣∣∣∣∫ T

0
G(t, s) f (s, ξ(s))ds

∣∣∣∣+ ∣∣∣∣∫ T

0
G(t, s) f (s, η(s))ds

∣∣∣∣)2

≤
(∫ T

0
G(t, s)| f (s, ξ(s))|ds +

∫ T

0
G(t, s)| f (s, η(s))|ds

)2

=

(∫ T

0
G(t, s)(| f (s, ξ(s))|+ | f (s, η(s))|)ds

)2

≤
(∫ T

0
G2(t, s)ds

)
·
(∫ T

0
(| f (s, ξ(s))|+ | f (s, η(s))|)2 ds

)
≤ T

(∫ T

0
G2(t, s)ds

)
· sup

t∈[0,T]
(|ξ(t)|+ |η(t)|)2,

which follows that:

sup
t∈[0,T]

(|Tξ|+ |Tη|)2 ≤ T sup
t∈[0,T]

(∫ T

0
G2(t, s)ds

)
· sup

t∈[0,T]
(|ξ(t)|+ |η(t)|)2.

Taking advantage of (8), we arrive at:

b(Tξ, Tη) ≤ β

2qλ
b(ξ, η). (12)

Thus, one gets:

2qλb(Tξ, Tη) ≤ βb(ξ, η) ≤ αb(η, Tη) · b(ξ, Tξ)b(ξ, η)

1 + b2(ξ, η)
+ βb(ξ, η).

Therefore, (11) holds. Accordingly, (10) is satisfied for all ξ, η ∈ M and b(Tξ, Tη) > 0.
Hence, T is a general (s, q, F)-contraction. By (12), we obtain:

b(Tη, Tη) ≤ β

2qλ
b(η, η) ≤ b(η, η), for all η ∈ M.
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As a consequence, all the conditions of Theorem 2 are satisfied. Therefore, by Theorem 2,
T has a unique fixed point in M. That is to say, the integral Equation (7) has a unique
solution in C([0, T]).

Remark 9. As compared with Theorem 6.1 of [7], Theorem 6 has much fewer conditions and more
straightforward proof. We consider the existence and uniqueness of the solution to the integral
Equation (7) in the setting of b-metric-like spaces, which are different from other counterparts in the
existing literature. Our conditions are not complicated and our proof is quite forthright.

Remark 10. It has been more widely used for the fixed point theory in b-metric-like spaces. It is not
only for all kinds of integral equations (see [7,9–12]), but also for other types of equations. As an
example, it has been applied to an electric circuit equation (see [19]), the conversion of solar energy
to electrical energy (see [9]), impulsive differential equations (see [30]) and fractional differential
equations (see [31,32]). As a result, our results may have wide applications in the future.

5. Conclusions

Nowadays, fixed point theory plays an important role in natural science and in solving
different social problems. In this work, a technique is furnished, based on generalized
F-contractions, such as the (s, q, F)-contraction, the general (s, q, F)-contraction, and the
r-order (s, q, F)-contraction. We establish several fixed point theorems on such contractions
with illustrative examples in the framework of b-metric-like spaces. As has been observed
in studies, the class of b-metric-like spaces contains the other classes of generalized metric
spaces (e.g., b-metric spaces, metric-like spaces, etc.), then our results in this paper gener-
alize and improve many known results in the existing literature. Additionally, we have
applied our results to obtain the existence of a solution for a class of integral equations.
We believe that the idea of further elaborating our method, which is presented in the main
result section, is very useful and can be applied to impulsive differential and nonlinear
fractional differential equations in the future.
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