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Abstract: The purpose of this article is to discuss the existence, uniqueness, and Ulam–Hyers
stability of solutions to a coupled system of fractional differential equations with Erdélyi–Kober and
Riemann–Liouville integral boundary conditions. The Banach fixed point theorem is used to prove
the uniqueness of solutions, while the Leray–Schauder alternative is used to prove the existence of
solutions. Furthermore, we conclude that the solution to the discussed problem is Hyers–Ulam stable.
The results are illustrated with examples.
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1. Introduction

The mathematical modeling of systems and processes in the fields of astrophysics,
chemistry, polymer rheology, chemical physics, aerodynamics, physics, engineering, and sci-
entific disciplines requires differential equations of fractional order. Additionally, fractional
differential Equations (FDEs) are an effective tool for describing the inherited properties of
diverse materials and processes. As a result, FDEs are becoming increasingly important
and popular. See [1–4] and the references therein for more information.

In the realm of differential equations, the study of boundary-value problems (BVPs) for
both linear and nonlinear differential equations is a popular area of study with numerous
applications in a wide range of fields in both the pure and applied sciences. Recent years
have seen a surge in interest in BVPs of fractional order. Thus, the literature on the subject
has a variety of results of varying importance, ranging from theoretical to applied aspects.
See [5–12] and the references therein for some recent work on the topic.

A large part of the research on fractional-order boundary problems is concerned with
integral boundary conditions of the classical, Riemann–Liouville, or Hadamard types.
In addition to the aforementioned criteria, the Erdélyi–Kober fractional integral operator
is used in another sort of integral boundary condition (introduced by Arthur Erdélyi and
Hermann Kober [13] in 1940). These operators are critical in solving single, dual, and triple
integral equations with kernels that contain special functions of mathematical physics.
Furthermore, the applications of the Erdélyi–Kober fractional integrals have been discussed
in [14–17].

Furthermore, the analysis of coupled systems of fractional-order differential equations
is crucially significant since systems of this type exist in a wide variety of applications in
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numerous fields, particularly in the biosciences. We refer the reader to the works [18–27]
for the sources referenced therein for more information and examples.

The study of coupled systems with fractional differential equations is particularly
important because these systems are used to solve a wide range of real-world problems.
Additionally, numerous research studies have investigated coupled systems of fractional
differential equations.

Stability analysis is another field of research that has received great attention in the
last few decades for fractional differential equations. Various kinds of stability have
been investigated in the literature, including Mittag–Leffler, Lyapunov, and others. To our
knowledge, the Ulam–Hyers stability of a coupled system of fractional differential equations
has been studied very rarely. Ulam and Hyers discovered a novel type of stability called
Ulam–Hyers stability [28,29].

This type of research can aid in understanding biochemical processes and fluid mo-
tion, as well as semiconductors, population dynamics, heat conduction, and elasticity.
Researchers have recently started investigating the coupled fractional BVPs. The authors
in [30] discussed the solvability of the following coupled FDEs with integral boundary
conditions: 

cDqx(t) = f (t, x(t), y(t)),
cDpy(t) = h(t, x(t), y(t)),
x
′
(0) = α

∫ ξ
0 x

′
(s)ds, x(1) = β

∫ 1
0 g(x

′
(s))ds,

y
′
(0) = α1

∫ θ
0 y

′
(s)ds, y(1) = β1

∫ 1
0 g(y

′
(s))ds,

t ∈ [0, 1], 1 < q, p ≤ 2, 0 ≤ ξ, θ ≤ 1,

where cDq and cDp denote the Caputo fractional derivatives (CFDs) of order q, p; f , h:
[0, 1] × R× R → R are given continuous functions; α, β, α1, and β1 are real constants.
The FDEs with integral and ordinary-fractional flux boundary conditions

cDαx(t) = f (t, x(t), y(t)),
cDβy(t) = h(t, x(t), y(t)),
x(0) + x(1) = a

∫ 1
0 x(s)ds, x

′
(0) = bcDγx(1),

y(0) + y(1) = a1
∫ 1

0 y(s)ds, y
′
(0) = b1

cDδy(1),
t ∈ [0, 1], 1 < α, β ≤ 2, 0 < γ, δ ≤ 1,

was discussed in [31], where cDα,cDβ, and cDγ,cDδ denote the CFDs of order α, β, γ, δ; f , h:
[0, 1]×R2 → R are given continuous functions; and a, b, a1, and b1 are real constants. In
this article, we investigate a novel class of coupled Caputo FDE boundary value problem:{ cDξ p(ι) = f (ι, p(ι), q(ι)), ι ∈ [0, T], 1 < ξ ≤ 2

cDζ q(ι) = g(ι, p(ι), q(ι)), ι ∈ [0, T], 1 < ζ ≤ 2,
(1)

supported by integral boundary conditions of the form:{
p(0) = 0, Iε p(α) = λ J γ,ϑ

ρ q(T)
q(0) = 0, Iδq(β) = µ J η,ω

σ p(T),
(2)

where cDi denotes the Caputo fractional derivatives (CFDs) of order i; Iε; and Iδ are the
Riemann–Liouville fractional integral (RLFI) of order ε, δ > 0; J γ,ϑ

ρ ,J η,ω
σ is the Erdélyi–Kober

fractional integral (EKFI) of order ϑ, ω > 0, ρ, σ > 0 and γ, η ∈ R; f , g : [0, T]×R2 → R
are continuous functions; and λ, µ, α, β are real constants. The manuscript is structured
as follows. Section 2 is dedicated to some elemental concepts of fractional calculus with
primitive lemmas to the given problem. The existence, uniqueness, and Ulam–Hyers
stability results are based on fixed point theory, and numerical examples are obtained in
Section 3.
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2. Preliminaries

To begin, let us recall some fundamental definitions and lemmas of fractional calculus.

Definition 1 ([2]). The RLFI of order ε > 0 for a function g(ι) is defined as

Iεg(ι) =
1

Γ(ε)

ι∫
0

(ι− s)ε−1g(s)ds, ι > 0,

provided that the RHS is point-wise defined on [0, ∞).

Definition 2 ([2]). The CFD of order ζ > 0 of a function g : [0, ∞)→ R is defined as

cDζ g(ι) =
1

Γ(n− ζ)

ι∫
0

(ι− s)n−ζ−1g(n)(s)ds, n− 1 < ζ < n,

where n = dζe+ 1 and dζe denotes the integral part of the real number.

Definition 3 ([2]). The EKFI of order ϑ > 0 with ρ > 0 and γ ∈ R of a continuous function
g : (0, ∞)→ R is defined by

J γ,ϑ
ρ g(ι) =

ρι−ρ(ϑ+γ)

Γ(ϑ)

ι∫
0

sργ+ρ−1

(ιρ − sρ)1−ϑ
g(s)ds,

provided the RHS is point-wise defined on R+.

Remark 1. For ρ = 1, the above operator is reduced to the Kober operator

J γ,ϑ
1 g(ι) =

ι−(ϑ+γ)

Γ(ϑ)

ι∫
0

sγ

(ι− s)1−ϑ
g(s)ds, ρ, ϑ > 0,

which was introduced for the first time by Kober in [13]. For γ = 0, the Kober operator is reduced
to the RLFI with a power weight:

J 0,ϑ
ρ g(ι) =

ι−ϑ

Γ(ϑ)

ι∫
0

1
(ι− s)1−ϑ

g(s)ds, ϑ > 0.

Lemma 1 ([13]). Let ρ, ϑ > 0 and γ, ζ ∈ R. Then, we have

J γ,ϑ
ρ ιζ =

ιζ Γ
(

γ +
(

ζ
ρ

)
+ 1
)

Γ
(

γ +
(

ζ
ρ

)
+ ϑ + 1

) . (3)

Lemma 2 ([13]). Let ζ, r > 0, and n = dζe+ 1. Then,

Iζ ιr−1(ι) =
Γ(r)

Γ(ζ + r)
ιr+ζ+1,

cDζ ιr−1(ι) =
Γ(r)

Γ(r− ζ)
ιr−ζ−1, (4)

and cDζ ιk = 0, k = 0, 1, . . . , n− 1. (5)
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Lemma 3 ([2]). For ζ > 0 and x ∈ C([0, T],R). Then, the FDEs cDζ u(ι) = 0 has a unique
solution u(ι) = d0 + d1 ι + . . . + dn−1 ιn−1, and then

Iζ cDζ u(ι) = u(ι) + d0 + d1 ι + . . . + dn−1ιn−1,

where n− 1 < ζ < n and di ∈ R, i = 0, 1, . . . , n− 1.

Lemma 4. Let f1, g1 ∈ C([0, T],R). Then, the integral solution for the linear system of FDEs:

cDξ p(ι) = f1(ι), 1 < ξ ≤ 2,
cDζq(ι) = g1(ι), 1 < ζ ≤ 2,

(6)

augmented by the boundary conditions (2) is given by

p(ι) = Iξ f1(ι) + v(ι)
[
µκ3J

η,ω
σ Iξ f1(T)− κ2Iε+ξ f1(α) + λκ2J γ,ϑ

ρ Iζ g1(T)

−κ3Iδ+ζ g1(β)
]
, (7)

and

q(ι) = Iζ g1(ι) + v(ι)
[
λκ4J γ,ϑ

ρ Iζ g1(T)− κ1Iδ+ζ g1(β) + µκ1J
η,ω

σ Iξ f1(T)

−κ4Iε+ξ f1(α)
]
, (8)

where

κ1 =
Γ(3)

Γ(ε + 3)
αε+2, κ2 =

Γ(3)
Γ(δ + 3)

βδ+2, κ3 =
λT Γ

(
γ +

(
1
ρ

)
+ 1
)

Γ
(

γ +
(

1
ρ

)
+ ϑ + 1

) (9)

κ4 =
µT Γ

(
η +

(
1
σ

)
+ 1
)

Γ
(

η +
(

1
σ

)
+ ω + 1

) , v(ι) =
ι

κ1κ2 − κ3κ4
, where κ1κ2 − κ3κ4 6= 0. (10)

Proof. The general solution of the FDEs in (6) is defined as

p(ι) = Iξ f1(ι) + c1 + c2 ι, (11)

q(ι) = Iξ g1(ι) + d1 + d2 ι. (12)

Using the boundary conditions (2) in (11) and (12), we deduce that c1 = 0, d1 = 0. Moreover,
we have

c2 κ1 − d2κ3 = λ J γ,ϑ
ρ Iζ g1(T)− Iε+ξ f1(α), (13)

d2 κ2 − c2κ4 = µ J η,ω
σ Iξ f1(T)− Iδ+ζ g1(β). (14)

Solving the system (13) and (14) for c2 and d2, we find that

c2 =
1

κ1κ2 − κ3κ4

[
µκ3J

η,ω
σ Iξ f1(T)− κ2Iε+ξ f1(α) + λκ2J γ,ϑ

ρ Iζ g1(T)− κ3Iδ+ζ g1(β)
]

d2 =
1

κ1κ2 − κ3κ4

[
λκ4J γ,ϑ

ρ Iζ g1(T)− κ1Iδ+ζ g1(β) + µκ1J
η,ω

σ Iξ f1(T)− κ4Iε+ξ f1(α)
]
, (15)

Substituting the values of c1, c2, d1, d2 in (11) and (12), we obtain the solution given by (7)
and (8).
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3. Main Results

Let us define P = {p(ι) : p(ι) ∈ C([0, T],R)} and Q = {q(ι) : q(ι) ∈ C([0, T],R)} to
denote the spaces equipped, respectively, with the norms ‖p‖ = sup

ι∈[0,T]
|p(ι)| and ‖q‖ =

sup
ι∈[0,T]

|q(ι)| as Banach spaces. As a consequence, the product space (P ×Q, ‖(p, q)‖) is a

Banach space endowed with the norm ‖(p, q)‖ = ‖p‖+ ‖q‖ for (p, q) ∈ P ×Q. Using
Lemma 4, we introduce an operatorH : P ×Q → P ×Q connected with (1) and (2) in the
problem as follows:

H(p, q)(ι) = (H1(p, q)(ι), H2(p, q)(ι)), (16)

where

H1(p, q)(ι) = Iξ f (s, p(s), q(s))(ι) + v(ι)
[
µκ3J

η,ω
σ Iξ f (s, p(s), q(s))(T)

−κ2Iε+ξ f (s, p(s), q(s))(α) + λκ2J γ,ϑ
ρ Iζ g(s, p(s), q(s))(T) (17)

−κ3Iδ+ζ g(s, p(s), q(s))(β)
]
,

and

H2(p, q)(ι) = Iζ g(s, p(s), q(s))(ι) + v(ι)
[
λκ4J γ,ϑ

ρ Iζ g(s, p(s), q(s))(T)

−κ1Iδ+ζ g(s, p(s), q(s))(β) + µκ1J
η,ω

σ Iξ f (s, p(s), q(s))(T) (18)

−κ4Iε+ξ f (s, p(s), q(s))(α)
]
.

Theorem 1 (Leray–Schauder alternative [32]). Let H : E → E be a completely continuous
operator. Let Φ(H) = {x ∈ E : x = κ H(x)for some 0 < κ < 1}. Then, either the set Φ(H) is
unbounded orH has at least one fixed point.

Theorem 2 (Arzela–Ascoli Theorem [32]). A subset G in E([c, d],R) is relatively compact if it
is uniformly bounded and equicontinuous on [c, d].

Theorem 3 (Banach Fixed Point Theorem [32]). Let (U , d) be a nonempty complete metric
space, let 0 < ν < 1, and let T : U → U be the map such that, for every u, v ∈ U , the relation
d(T u, T v) ≤ ν d(u, v) holds. Then, the operator T has a unique fixed point u of T in U .

Next, we provide our result, which is concerned with the existence of a solution to
the problem and is employing the Leray–Schauder alternative. For the sake of computing
efficiency, we establish the following notations and hypothesis:

A1 =
Tξ

Γ(ξ + 1)
+ v

[
µ κ3 TξΓ

(
η +

(
ξ
σ

)
+ 1
)

Γ(ξ + 1)Γ
(

η +
(

ξ
σ

)
+ ω + 1

) +
κ2 αε+ξ

Γ(ε + ξ + 1)

]
, (19)

A2 = v

[
µ κ1 TξΓ

(
η +

(
ξ
σ

)
+ 1
)

Γ(ξ + 1)Γ
(

η +
(

ξ
σ

)
+ ω + 1

) +
κ4 αε+ξ

Γ(ε + ξ + 1)

]
, (20)
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B1 = v

[
λ κ2 Tζ Γ

(
γ +

(
ζ
ρ

)
+ 1
)

Γ(ζ + 1)Γ
(

γ +
(

ζ
ρ

)
+ ϑ + 1

) +
κ3 βδ+ζ

Γ(δ + ζ + 1)

]
(21)

B2 =
Tζ

Γ(ζ + 1)
+ v

[
λ κ4 Tζ Γ

(
γ +

(
ζ
ρ

)
+ 1
)

Γ(ζ + 1)Γ
(

γ +
(

ζ
ρ

)
+ ϑ + 1

) +
κ1 βδ+ζ

Γ(δ + ζ + 1)

]
(22)

Λ = min
{

1− (A1 +A2)$1 − (B1 + B2)$̂1, 1− (A1 +A2)$2 − (B1 + B2)$̂2

}
(23)

Let f , g : [0, T]×R2 → R be continuous functions.

(F1) ∃ non-negative constants $i, $̂i(i = 0, 1, 2) such that, for all pi ∈ R (i = 1, 2),
we have

| f (ι, p1, p2)| ≤ $0 + $1|p1|+ $2|p2|,
|g(ι, p1, p2)| ≤ $̂0 + $̂1|p1|+ $̂2|p2|.

(F2) ∃ non-negative constants Ki > 0, Li > 0 (i = 1, 2) such that for all ι ∈ [0, T] and
pi, qi ∈ R (i = 1, 2). We have

| f (ι, p1, q1)− f (ι, p2, q2)| ≤ K1|p1 − q1|+ K2|p2 − q2|,
|g(ι, p1, q1)− g(ι, p2, q2)| ≤ L1|p1 − q1|+ L2|p2 − q2|. (24)

In the following result, we establish the existence of solutions for problems (1) and (2) using
the Leray–Schauder alternative [32].

Theorem 4. Assume that (F1) holds. In addition, let us assume that (A1 +A2)$1− (B1 + B2)$̂1 < 1
and (A1 +A2)$2− (B1 + B2)$̂2 < 1. WhereA1,A2,B1,B2 are given by (19)–(22), respectively.
Then, there exists at least one solution for the BVP (1) and (2) on [0, T].

Proof. In the first step, we will show that the operatorH : P ×Q → P ×Q is completely
continuous. By continuity of functions f , g, it follows that the operators H1 and H2 are
continuous. As a consequence, the operator H is continuous. Next, we show that the
operatorH is uniformly bounded. Let Θ ⊂ P ×Q be bounded. Then, there exist positive
constants L f and Lg such that

| f (ι, p(ι), q(ι))| ≤ L f , |g(ι, p(ι), q(ι))| ≤ Lg, ∀(p, q) ∈ Θ.

Then, for any (p, q) ∈ Θ, we find that

|H1(p, q)(ι)| ≤ Iξ | f (s, p(s), q(s))|(T) + v(ι)
[
µκ3J

η,ω
σ Iξ | f (s, p(s), q(s))|(T)

+κ2Iε+ξ | f (s, p(s), q(s))|(α) + λκ2J γ,ϑ
ρ Iζ |g(s, p(s), q(s))|(T)

+κ3Iδ+ζ |g(s, p(s), q(s))|(β)
]

≤ L f

[
Tξ

Γ(ξ + 1)
+ v

(
µ κ3 Tξ Γ

(
η +

(
ξ
σ

)
+ 1
)

Γ(ξ + 1)Γ
(

η +
(

ξ
σ

)
+ ω + 1

) +
κ2 αε+ξ

Γ(ε + ξ + 1)

)]

+Lg

[
v

(
λ κ2 Tζ Γ

(
γ +

(
ζ
ρ

)
+ 1
)

Γ(ζ + 1)Γ
(

γ +
(

ζ
ρ

)
+ ϑ + 1

) +
κ3 βδ+ζ

Γ(δ + ζ + 1)

)]
(25)

≤ L f A1 + Lg B1.

In this same way, we obtain that
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|H2(p, q)(ι)| ≤ Lg

[
Tζ

Γ(ζ + 1)
+ v

(
λ κ4 TζΓ

(
γ +

(
ζ
ρ

)
+ 1
)

Γ(ζ + 1)Γ
(

γ +
(

ζ
ρ

)
+ ϑ + 1

) +
κ1 βδ+ζ

Γ(δ + ζ + 1)

)]

+L f

[
v

(
µ κ1 TξΓ

(
η +

(
ξ
σ

)
+ 1
)

Γ(ξ + 1)Γ
(

η +
(

ξ
σ

)
+ ω + 1

) +
κ4 αε+ξ

Γ(ε + ξ + 1)

)]
(26)

≤ Lg B2 + L f A2.

We derive from the inequalities (26) and (27) that the variablesH1 andH2 are uniformly
bounded, and thus the operator H is uniformly bounded as well. Following that, let us
demonstrate thatH is equicontinuous. Consider ι1, ι2 ∈ [0, T] with ι1 < ι2. Then, we have

|H1(p, q)(ι2)−H1(p, q)(ι1)|

≤ 1
Γ(ξ)

ι1∫
0

∣∣∣(ι2 − ε)ξ−1 − (ι1 − ε)ξ−1
∣∣∣| f (s, p(s), q(s))|ds +

1
Γ(ξ)

ι2∫
ι1

∣∣∣(ι2 − ι1)
ξ−1
∣∣∣

×| f (s, p(s), q(s))|ds + |v(ι2)−v(ι1)|
[
µκ3J

η,ω
σ Iξ | f (s, p(s), q(s))|(T)

+ κ2Iε+ξ | f (s, p(s), q(s))|(α) + λκ2J γ,ϑ
ρ Iζ |g(s, p(s), q(s))|(T)

+ κ3Iδ+ζ |g(s, p(s), q(s))|(β)
]
,

≤
L f

Γ(ξ + 1)

[
(ι2 − ι1)

ξ + (ιξ2 − ι
ξ
1)
]
+ |v(ι2)−v(ι1)|

[
µκ3J

η,ω
σ Iξ | f (s, p(s), q(s))|(T)

+ κ2Iε+ξ | f (s, p(s), q(s))|(α) + λκ2J γ,ϑ
ρ Iζ |g(s, p(s), q(s))|(T)

+ κ3Iδ+ζ |g(s, p(s), q(s))|(β)
]
.

Evidently, |H1(p, q)(ι2)−H1(p, q)(ι1)| → 0 independent of p, q as ι2 → ι1. Similarly, we
can obtain that

|H2(p, q)(ι2)−H2(p, q)(ι1)|

≤
Lg

Γ(ζ + 1)

[
(ι2 − ι1)

ζ + (ιζ2 − ι
ζ
1)
]
+ |v(ι2)−v(ι1)|

[
λκ4J γ,ϑ

ρ Iζ |g(s, p(s), q(s))|(T)

+ κ1Iδ+ζ |g(s, p(s), q(s))|(β) + µκ1J
η,ω

σ Iξ | f (s, p(s), q(s))|(T)

+ κ4Iε+ξ | f (s, p(s), q(s))|(α)
]
,

which implies that |H2(p, q)(ι2)−H2(p, q)(ι1)| → 0 independent of p, q as ι2 → ι1. As
a result of the equicontinuity of H1 and H2, the operator H is equicontinuous as well.
As a result of the Arzela–Ascoli theorem [32], we can conclude that the operator H is
completely continuous.

Next, it will be proven that the set F = {(p, q) ∈ P ×Q |(p, q) = ιH(p, q), 0 < ι < 1}
is bounded. Let us define (p, q) ∈ F , then (p, q) = ιH(p, q). For any ι ∈ [0, T], we have

p(ι) = ιH1(p, q)(ι), q(ι) = ιH2(p, q)(ι).
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By using our assumption, we find that

|p(ι)| ≤ Iξ | f (s, p(s), q(s))|(T) + v(ι)
[
µκ3J

η,ω
σ Iξ | f (s, p(s), q(s))|(T)

+κ2Iε+ξ | f (s, p(s), q(s))|(α) + λκ2J γ,ϑ
ρ Iζ |g(s, p(s), q(s))|(T)

+κ3Iδ+ζ |g(s, p(s), q(s))|(β)
]
,

≤ ($0 + $1‖p‖+ $2‖q‖)×
[

Tξ

Γ(ξ + 1)
+ v

(
µ κ3 Tξ Γ

(
η +

(
ξ
σ

)
+ 1
)

Γ(ξ + 1)Γ
(

η +
(

ξ
σ

)
+ ω + 1

)
+

κ2 αε+ξ

Γ(ε + ξ + 1)

)]
+ ($̂0 + $̂1‖p‖+ $̂2‖q‖)

×
[

v

(
λ κ2 TζΓ

(
γ +

(
ζ
ρ

)
+ 1
)

Γ(ζ + 1)Γ
(

γ +
(

ζ
ρ

)
+ ϑ + 1

) +
κ3 βδ+ζ

Γ(δ + ζ + 1)

)]

≤ ($0 + $1‖p‖+ $2‖q‖) A1 + ($̂0 + $̂1‖p‖+ $̂2‖q‖) B1. (27)

In similar way, we have

|q(ι)| ≤ ($̂0 + $̂1‖p‖+ $̂2‖q‖)×
[

Tζ

Γ(ζ + 1)
+ v

(
λ κ4 Tζ Γ

(
γ +

(
ζ
ρ

)
+ 1
)

Γ(ζ + 1)Γ
(

γ +
(

ζ
ρ

)
+ ϑ + 1

)
+

κ1 βδ+ζ

Γ(δ + ζ + 1)

)]
+ ($0 + $1‖p‖+ $2‖q‖) (28)

×
[

v

(
µ κ1 Tξ Γ

(
η +

(
ξ
σ

)
+ 1
)

Γ(ξ + 1)Γ
(

η +
(

ξ
σ

)
+ ω + 1

) +
κ4 αε+ξ

Γ(ε + ξ + 1)

)]
≤ ($̂0 + $̂1‖p‖+ $̂2‖q‖) B2 + ($0 + $1‖p‖+ $2‖q‖) A2.

From (27) and (29), together with the notation (19)–(23), we deduce that

‖p‖+ ‖q‖ ≤ (A1 + A2)$0 + (B1 + B2)$̂0 +
[
(A1 + A2)$1 + (B1 + B2)$̂1

]
‖p‖

+
[
(A1 + A2)$2 + (B1 + B2)$̂2

]
‖q‖,

which yields ‖(p, q)‖ ≤ (A1 + A2)$0 + (B1 + B2)$̂0

Λ
. This shows that the setF is bounded.

Thus, the operator H has at least one fixed point with the Leray–Schauder alternative [32].
Hence, the BVP (1) and (2) has at least one solution on [0, T].

Example 1. Consider the following coupled system of fractional differential equations

D
11
6 p(ι) =

3
ι + 1

+
15

200
cos|p(ι)|+ |q(ι)|

25 (1 + |q(ι)|) ,

D
13
8 q(ι) =

3t
ι + 6

+
4

97
|p(ι)|

(1 + |p(ι)|) +
5
60

tan−1|q(ι)|, (29)
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augmented by boundary conditions:

p(0) = 0, I
3
5 p
(18

15

)
= J

2
7 , 11

13√
3

4

q(1),

q(0) = 0, I
9

18 q
(10

7

)
= J

√
2

5 ,
√

3
7√

5
9

p(1). (30)

Here, ξ =
11
6

, ζ =
13
8

, ε =
3
5

, δ =
9

18
, α =

18
15

, β =
10
7

, λ = 1, µ = 1, γ =
2
7

, ϑ =
11
13

,

ρ =

√
3

4
, η =

√
2

5
, ω =

√
3

7
, σ =

√
5

9
, and it is clear that

| f (ι, p(ι), q(ι))| =
3

ι + 1
+

15
200

cos|p(ι)|+ |q(ι)|
25 (1 + |q(ι)|) ,

|g(ι, p(ι), q(ι))| =
3t

ι + 6
+

4
97

|p(ι)|
(1 + |p(ι)|) +

5
60

tan−1|q(ι)|.

The functions f and g satisfy the condition with $0 =
3
2

, $1 =
15

200
, $1 =

1
25

, $̂0 =
3
7

, $̂1 =
4
97

,

$̂1 =
5

60
, v = 1.04118, A1 = 1.48920, A2 = 0.71859, B1 = 0.60859, and B2 = 1.66609.

We find that Λ = min{1− (A1 +A2)$1− (B1 + B2)$̂1, 1− (A1 +A2)$2− (B1 + B2)$̂2} ∼=
0.72971 < 1. Clearly, all the conditions of Theorem 4 are satisfied, and the BVP (29) and (30) has a
solution on [0, 1].

In the following result, we establish the uniqueness of solutions for problems (1) and
(2) using the Banach Fixed Point Theorem [32].

In the sequel, we use the notations:

ψ1 = N1(A1 +A2), ψ2 = N2(B1 + B2), (31)

φ1 = K1A1 + K2A1 + L1B1 + L2B1, φ2 = K1A2 + K2A2 + L1B2 + L2B2. (32)

Theorem 5. Assume that (F2) holds. Further, we suppose that (φ1 + φ2) < 1, where φ1 and φ2
are given by (31). Then, there exists a unique solution for the BVP (1) and (2) on [0, T].

Proof. Let us define sup
ι∈[0,T]

| f (ι, 0, 0| ≤ N1 < ∞ and sup
ι∈[0,T]

|g(ι, 0, 0| ≤ N2 < ∞ such that

ρ̂ ≥
(
ψ1 + ψ2

)[
1− (φ1 + φ2)

]−1
, where ψ1 and ψ2 are given by (31). Then, we will prove

thatHBρ̂ ⊂ Bρ̂, where Bρ̂ = {(p, q) ∈ P ×Q : ‖(p, q)‖ ≤ ρ̂}, and the operatorH is defined
by (16). For (p, q) ∈ Bρ̂, we have
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|H1(p, q)(ι)| ≤ Iξ
(
| f (s, p(s), q(s))− f (s, 0, 0)|+ | f (s, 0, 0)|

)
(T) + v(ι)

×
[
µκ3J

η,ω
σ Iξ

(
| f (s, p(s), q(s))− f (s, 0, 0)|+ | f (s, 0, 0)|

)
(T)

+ κ2Iε+ξ
(
| f (s, p(s), q(s))− f (s, 0, 0)|+ | f (s, 0, 0)|

)
(α)

+ λκ2J γ,ϑ
ρ Iζ

(
|g(s, p(s), q(s))− g(s, 0, 0)|+ |g(s, 0, 0)|

)
(T)

+ κ3Iδ+ζ
(
|g(s, p(s), q(s))− g(s, 0, 0)|+ |g(s, 0, 0)|

)
(β)
]

≤ (K1‖p‖+ K2‖q‖+ N1)×
[

Tξ

Γ(ξ + 1)
+ v

(
µ κ3 Tξ Γ(η + ( ξ

σ ) + 1)

Γ(ξ + 1)Γ(η + ( ξ
σ ) + ω + 1)

+
κ2 αε+ξ

Γ(ε + ξ + 1)

)]
+ (L1‖p‖+ L2‖q‖+ N2)

×
[

v

(
λ κ2 TζΓ(γ + ( ζ

ρ ) + 1)

Γ(ζ + 1)Γ(γ + ( ζ
ρ ) + ϑ + 1)

+
κ3 βδ+ζ

Γ(δ + ζ + 1)

)]
≤ (K1‖p‖+ K2‖q‖+ N1) A1 + (L1‖p‖+ L2‖q‖+ N2) B1. (33)

Similarly, we have

|H2(p, q)(ι)| ≤ (L1‖p‖+ L2‖q‖+ N2)×
[

Tζ

Γ(ζ + 1)
+ v

(
λ κ4 Tζ Γ

(
γ +

(
ζ
ρ

)
+ 1
)

Γ(ζ + 1)Γ
(

γ +
(

ζ
ρ

)
+ ϑ + 1

)
+

κ1 βδ+ζ

Γ(δ + ζ + 1)

)]
+ (K1‖p‖+ K2‖q‖+ N1) (34)

×
[

v

(
µ κ1 TξΓ

(
η +

(
ξ
σ

)
+ 1
)

Γ(ξ + 1)Γ
(

η +
(

ξ
σ

)
+ ω + 1

) +
κ4 αε+ξ

Γ(ε + ξ + 1)

)]
≤ (L1‖p‖+ L2‖q‖+ N2) B2 + (K1‖p‖+ K2‖q‖+ N1) A2.

Thus, it follows from (33) and (35) that ‖H(p, q)‖ ≤ ρ̂, which impliesHBρ̂ ⊂ Bρ̂.
Let us show that the operatorH is a contraction. For pi, qi ∈ Bρ̂ and for any ι ∈ [0, T],

by virtue of the condition (F2), we obtain
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|H1(p1, q1)(ι)−H1(p2, q2)(ι)|
≤ Iξ | f (s, p1(s), q1(s))− f (s, p2(s), q2(s))|(T) + v(ι)

×
[
µκ3J

η,ω
σ Iξ | f (s, p1(s), q1(s))− f (s, p2(s), q2(s))|(T)

+ κ2Iε+ξ | f (s, p1(s), q1(s))− f (s, p2(s), q2(s))|(α)
+ λκ2J γ,ϑ

ρ Iζ |g(s, p1(s), q1(s))− g(s, p2(s), q2(s))|(T)

+ κ3Iδ+ζ |g(s, p1(s), q1(s))− g(s, p2(s), q2(s))|(β)
]
, (35)

≤
(
K1‖p1 − p2‖+ K2‖q1 − q2‖

)
×
[

Tξ

Γ(ξ + 1)
+ v

(
µ κ3 Tξ Γ(η + ( ξ

σ ) + 1)

Γ(ξ + 1)Γ(η + ( ξ
σ ) + ω + 1)

+
κ2 αε+ξ

Γ(ε + ξ + 1)

)]
+
(

L1‖p1 − p2‖+ L2‖q1 − q2‖
)

×
[

v

(
λ κ2 TζΓ(γ + ( ζ

ρ ) + 1)

Γ(ζ + 1)Γ(γ + ( ζ
ρ ) + ϑ + 1)

+
κ3 βδ+ζ

Γ(δ + ζ + 1)

)]
≤

(
K1‖p1 − p2‖+ K2‖q1 − q2‖

)
A1 +

(
L1‖p1 − p2‖+ L2‖q1 − q2‖

)
B1.

In similar way, we can find that

|H2(p1, q1)(ι)−H2(p2, q2)(ι)|
≤

(
L1‖p1 − p2‖+ L2‖q1 − q2‖

)
B2 +

(
K1‖p1 − p2‖+ K2‖q1 − q2‖

)
A2. (36)

Consequently, it follows from (36) and (36) that

‖H(p1, q1)(ι)−H(p2, q2)(ι)‖ ≤ (φ1 + φ2)(‖p1 − p2‖+ ‖q1 − q2‖).

By the assumption (φ1 + φ2) < 1, it follows that the operator H is a contraction. Hence,
by the Banach fixed point theorem [32], the operator H has a unique fixed point, which
corresponds to a unique solution of problems (1) and (2) on [0, T].

Example 2. Consider the following coupled system of fractional differential equations

D
15
10 p(ι) =

3
2
+

2 |p(ι)|
45 (1 + |p(ι)|) +

1
30

cos|q(ι)|,

D
12
7 q(ι) =

1
5
+

5
60

sin|p(ι)|+ 3
75

cos|q(ι)|, (37)

equipped with the integral boundary conditions:

p(0) = 0, I
2
5 p
(28

25

)
= 2 J

√
2, 5

3
2
3

q(π),

q(0) = 0, I
5
8 q(1) =

1
5
J

7
3 , 4

5
4
3

p(π). (38)

Here, ξ =
15
10

, ζ =
12
7

, ε =
2
5

, δ =
5
8

, α =
28
25

, β = 1, λ = 2, µ =
1
5

, γ =
√

2, ϑ =
5
3

,

ρ = 2
3 , η = 7

3 , ω = 4
5 , and σ = 4

3 . Clearly,



Fractal Fract. 2022, 6, 266 12 of 15

| f (ι, p(ι), q(ι))| =
3
2
+

2 |p(ι)|
45 (1 + |p(ι)|) +

1
30

cos|q(ι)|,

|g(ι, p(ι), q(ι))| =
1
5
+

5
60

sin|p(ι)|+ 3
75

cos|q(ι)|.

The functions f and g satisfy the condition with K1 =
2
45

, K2 =
1

30
, Ł1 =

12
180

, andŁ2 =
3

75
.

Using the given data, we find that κ1 = 0.63148, κ2 = 0.53807, κ3 = 0.56348, κ4 = 0.20711, v =
0.22307,A1 = 4.29968, A2 = 0.06635, B1 = 0.11426, B2 = 4.61069, and (φ1 + φ2) ∼=
0.82499 < 1. Thus, all the conditions of Theorem 5 are satisfied, and there exists a unique solution
of BVP (37) and (38) on [0, π].

In the following result, we demonstrate the stability of BVP solutions for Ulam–
Hyers (1) and (2) by its integral solution with the provision that

p(ι) = H1(p, q)(ι), q(ι) = H2(p, q)(ι). (39)

Define the following operators S1,S2 ∈ C([0, T],R)× C([0, T],R)→ C([0, T],R);

Dξ p(ι)− f (ι, p(ι), q(ι)) = S1(p, q)(ι), ι ∈ [0, T],

Dζq(ι)− g(ι, p(ι), q(ι)) = S2(p, q)(ι), ι ∈ [0, T].

For some µ1, µ2 > 0, the following inequalities are examined:

‖S1(p, q)‖ ≤ ι1, ‖S2(p, q)‖ ≤ ι2. (40)

Definition 4. The BVP (1) and (2) is Ulam–Hyers stable if there exist real numbers Ri >
0 (i = 1, 2) such that, for each ιi > 0 (i = 1, 2) and for each solution (p∗, q∗) ∈ C([0, T],R)×
C([0, T],R) of inequalities, there exists a solution (p, q) ∈ C([0, T],R)× C([0, T],R) of (1) and
(2) with ‖(p, q)− (p∗, q∗)‖ ≤ R1ι1 +R2ι2.

Theorem 6. Assume that (F2) holds. Then, the BVP (1) and (2) is stable.

Proof. Let us define (p, q) as the solution satisfying (17) and (18). Let (p∗, q∗) be any
solution satisfying (40).

Dξ p(ι) = f (ι, p(ι), q(ι)) + S1(p, q)(ι), ι ∈ [0, T],

Dζ q(ι) = g(ι, p(ι), q(ι)) + S2(p, q)(ι), ι ∈ [0, T].

Thus,

p∗(ι) = H1(p∗, q∗)(ι) + IξS1(p∗, q∗)(ι) + v(ι)
[
µκ3J

η,ω
σ IξS1(p∗, q∗)(T)

−κ2Iε+ξS1(p∗, q∗)(α) + λκ2J γ,ϑ
ρ IζS2(p∗, q∗)(T)− κ3Iδ+ζS2(p∗, q∗)(β)

]
As a consequence,

|H1(p∗, q∗)(ι)− p∗(ι)| ≤ ι1

[
Tξ

Γ(ξ + 1)
+ v

(
µ κ3 TξΓ

(
η +

(
ξ
σ

)
+ 1
)

Γ(ξ + 1)Γ
(

η +
(

ξ
σ

)
+ ω + 1

) +
κ2 αε+ξ

Γ(ε + ξ + 1)

)]

+ι2

[
v

(
λ κ2 Tζ Γ

(
γ +

(
ζ
ρ

)
+ 1
)

Γ(ζ + 1)Γ
(

γ +
(

ζ
ρ

)
+ ϑ + 1

) +
κ3 βδ+ζ

Γ(δ + ζ + 1)

)]
≤ ι1 A1 + ι2 B1.
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In a similar way, we can deduce that

|H2(p∗, q∗)(ι)− q∗(ι)| ≤ ι2 B2 + ι1 A2.

By using the fixed-point property, we obtain

|p(ι)− p∗(ι)| ≤ |p(ι)−H1(p∗, q∗)(ι)|+H1|(p∗, q∗)(ι)− p∗(ι)|
≤ K1A1 + K2A1 + L1B1 + L2B1 + ι1 A1 + ι2 B1. (41)

Analogously, we can obtain

|q(ι)− q∗(ι)| ≤ K1A2 + K2A2 + L1B2 + L2B2 + ι2 B2 + ι1 A2. (42)

Consequently, it follows from (41) and (42) that

‖(p, q)− (p∗, q∗)‖ ≤ ι1(A1 +A2) + ι2(B1 + B2) + (φ1 + φ2)‖(p, q)− (p∗, q∗)‖
≤ R1ι1 +R2ι2.

where, R1 =
A1 +A2

1− (φ1 + φ2)
andR2 = B1+B2

1−(φ1+φ2)
.

Hence, the boundary value problem (1) and (2) is stable for Ulam–Hyers.

Example 3. Consider the following coupled system of fractional differential equations

D
6
5 p(ι) =

1
2 (ι + 1)2 +

1
65

tan−1|p(ι)|+ 5 |q(ι)|
85 (1 + |q(ι)|) ,

D
11
8 q(ι) =

√
ι

2 (ι + 2)
+

2
55

|p(ι)|
(1 + |p(ι)|) +

1
85

sin|q(ι)|, (43)

subject to the coupled integral boundary conditions:

p(0) = 0, I
3
8 p
(12

15

)
=

5
4
J

3
4 ,
√

7
5

1
6

q
(5

2
)
,

q(0) = 0, I
4
6 q
(7

9

)
= 2 J

√
2

3 , 1√
3

11
4

p
(5

2
)
. (44)

Here, ξ =
6
5

, ζ =
11
8

, ε =
3
8

, δ =
4
6

, α =
12
15

, β =
7
9

, λ =
5
4

, µ = 2, γ =
3
4

, ϑ =

√
7

5
,

ρ =
1
6

, η =

√
2

3
, ω =

1√
3

, σ =
11
4

, and it is clear that

| f (ι, p(ι), q(ι))| =
1

2 (ι + 1)2 +
1

65
tan−1|p(ι)|+ 5 |q(ι)|

85 (1 + |q(ι)|) ,

|g(ι, p(ι), q(ι))| =

√
ι

2 (ι + 2)
+

2
55

|p(ι)|
(1 + |p(ι)|) +

1
85

sin|q(ι)|.

The functions f and g satisfy the condition with K1 =
1

65
, K2 =

5
85

, Ł1 =
2
55

, and Ł2 = 1
85 .

Using the given data, we find that κ1 = 0.39269, κ2 = 0.18306, κ3 = 1.27429, κ4 = 3.61746,
v = 0.55093, A1 = 5.54328, A2 = 1.82866, B1 = 0.28159, B2 = 5.52986, and (φ1 + φ2) ∼=
0.80661 < 1. Thus, all the conditions of Theorem 6 are satisfied, and there exists a unique solution

of BVP (43) and (44) on
[
0, 5

2

]
, that is stable.
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4. Conclusions

We established the existence, uniqueness, and Ulam–Hyers stability of some non-
linear Caputo type FDEs with Erdélyi–Kober and Riemann–Liouville integral boundary
conditions in this study by employing some classic fixed point theorems and a nonlinear
Leray–Schauder type alternative. Additionally, several examples are provided to illustrate
the present work. The results of this paper are limited to a few intriguing instances with
adequate values for the problem’s parameters. For example, if we keep ε = 1 = δ constant,
our results correspond to those for the{

p(0) = 0,
∫ α

0 p(s)ds = λ J γ,ϑ
ρ q(T)

q(0) = 0,
∫ β

0 p(s)ds = µ J η,ω
σ p(T),

coupled Erdélyi–Kober and classical integral boundary conditions (2). We emphasize that
all of the results that emerge as cases in our work are unique.
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