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Abstract: A novel computational approach is developed to investigate the mixed convection, bound-
ary layer flow over a nonlinear elastic (stretching or shrinking) surface. The viscous fluid is electrically
conducting, incompressible, and propagating through a porous medium. The consequences of vis-
cous dissipation, Joule heating, and heat sink/source of the volumetric rate of heat generation are
also included in the energy balance equation. In order to formulate the mathematical modeling,
a similarity analysis is performed. The numerical solution of nonlinear differential equations is
accomplished through the use of a robust computational approach, which is identified as the Spectral
Local Linearization Method (SLLM). The computational findings reported in this study show that,
in addition to being simple to establish and numerically implement, the proposed method is very
reliable in that it converges rapidly to achieve a specified goal and is more effective in resolving very
complex models of nonlinear boundary value problems. In order to ensure the convergence of the
proposed SLLM method, the Gauss–Seidel approach is used. The SLLM’s reliability and numerical
stability can be optimized even more using Gauss–Seidel approach. The computational results for
different emerging parameters are computed to show the behavior of velocity profile, skin friction
coefficient, temperature profile, and Nusselt number. To evaluate the accuracy and the convergence of
the obtained results, a comparison between the proposed approach and the bvp4c (built-in command
in Matlab) method is presented. The Matlab software, which is used to generate machine time for
executing the SLLM code, is also displayed in a table.

Keywords: mixed convection; elastic permeable medium; viscous dissipation; magneto-hydrodynamics
(MHD); computational method; machine time

1. Introduction

Heat transfer over an elastic surface has attracted the interest of researchers around the
globe because of its numerous applications in manufacturing and commercial processes such
as glass blowing, polymer extrusion, hot rolling, metal spinning, and wire drawing [1,2].
Many chemical engineering processes [3,4], such as metallurgical operations and polymer
extrusion processes involve the cooling of a molten liquid that is stretched into a cooling
system, have made use of the momentum and heat transfer of boundary layer flow across
the stretching surface. In these applications, continuous strips of filaments are cooled by
drawing them through a quiescent fluid. The process of drawing stretches the filaments.
Rahmati et al. [5] investigated the non-Newtonian nanofluid flow under the impact of
no-slip and slip conditions. Sene [6] discussed the effects of Newtonian heating using a
second-grade fluid with Caputo fractional derivative.
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The heat transfer process through porous media is applicable in a variety of fields
ranging from Ceramic Engineering to Geophysiscs as it appears below in Table 1.

Table 1. Applications of heat transfer through porous media.

Ceramic engineering [7]
Simultaneous mass and heat transfer in disordered media occurs during the
burnout/drying of the binder system from green compacts during the colloidal
process of ceramics.

Chemical engineering [8] During the interim eventual and storage of nuclear waste, as well as in packet bed
reactors.

Ground water hyrology [9] The investigation of seepage water through river beds and underground water
resources.

Industrial engineering [10]

The primary goal of filtration analysis is to examine the movement of fluid through
a porous medium, leaving behind unwanted material. As a result of the mass
deposition, the porous medium is constantly changing and altering the system’s
pressure drop properties.

Mechanical engineering [11]

To achieve effective insulation, solid conduction must be minimized, porosity must
be maximized to reduce effective thermal conductivity, and free convection must
be suppressed. The same concept is useful when producing high-performance
insulators for cryogenic containers.

Petroleum engineering [12] For oil recovery mechanisms.

Geophysics [13] In the analysis of geo-pressurized reservoirs, and extraction of geothermal energy.

All of these applications provide an incentive to further investigate the mixed convec-
tion flow in a porous medium with a non-linear elastic surface.

Among the previous studies on the subject, Sakiadis [14] investigated the behavior of
the boundary layer on a continuous, stable subsurface, including both laminar and turbu-
lent flow. Crane [15] further extended the work of Sakiadis and investigated a Newtonian
fluid induced by a linearly stretched flat surface. He derived an exact solution for the
problem in closed form. More recently, Rosca and Pop [16] examined the heat transfer
across a stretching/shrinking sheet using a second order slip flow model. They used the
Matlab’s bvp4c function for their numerical solutions. The effect of a heat source/sink on a
viscous fluid passing through a porous medium was studied by Swain et al. [17]. Othman
et al. [18] used the shooting method, which generates numerical solutions for the stagnation
point of a steady 2-D mixed convection flow across a stretching/shrinking surface. Kumar
et al. [19] also explored the role of Joule heating on the thermal boundary layer flow and
heat transfer over a stretching surface. The effects of buoyancy on the two-dimensional
mixed convection and Casson fluid along a linearly stretching sheet was studied by Gan-
gadhar et al. [20]. Their numerical solutions were obtained by a spectral relaxation analysis.
Prabha et al. [21] used the LTNE model to evaluate the 2-D mixed convection boundary
layer flow through a porous medium. Badruddin et al. [22] provided a brief overview of
heat transfer through porous materials. Ali et al. [23] examined the flow over a stretching
sheet with a porous surface. Ilya et al. [24] used a Finite-Difference approach to investigate
the occurrence of mixed convection flow along the surface of a cone immersed in a porous
medium in the presence of a heat source/sink, a magnetic field, and density difference that
induce buoyancy. Adeniyan et al. [25] studied the similarity solutions within the context
of convective boundary layer flow and heat transfer around a stretching hollow cylinder,
immersed and filled with a viscoelastic fluid. To obtain numerical results, they used the
Runge–Kutta–Fehlberg integration method together with the shooting method.

Viscous dissipation is important in many areas: significant temperature rises have
been experimentally observed in polymer processes, such as fast extrusion or injection
molding. Aerodynamic heating in a thin boundary layer around high-speed rail and aircraft
elevates their surface temperature. In a completely different application, the dissipation
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function is used to express the viscosity of dilute suspensions [26]. Viscous dissipation is
also observed in convection mechanisms [27–29] for various devices that are operate at
high relative velocities or at high rotational velocities. The impact of viscous dissipation
can be also seen in planetary processes because it causes stronger gravitational fields with
large masses of gas and larger planets.

The field of magnetohydrodynamics (MHD) flow and heat transfer has applications in
a wide range of industries, ecological systems, and geophysical explorations. For example,
paper manufacturing, glass-fiber manufacturing, and the fabrication of polymer sheets from
dies, continuous casting and wire drawing are all examples of industrial processes related
to this field. Because of their industrial applications, such flows have been addressed by
a variety of researchers, including: Jafar et al. [30] evaluated the steady boundary layer
flow of incompressible and viscous fluids under the effects of MHD. Dessie et al. [31]
studied the relationship of viscous dissipation as a heat source/sink in MHD flow and
heat transfer via porous media across a stretched sheet. The solutions of the governing
equations in this study were calculated by employing Lie’s group transformations. Bibi
et al. [32] used the shooting technique to numerically investigate the unsteady MHD flow
of a Williamson fluid with heat transfer on a pervious stretchable sheet. Alarifi et al. [33]
numerically assessed the MHD boundary layer flow over a vertical stretched surface, in
the presence of a heat source/sink and a magnetic force. They used the RKFI approach to
identify numerical solutions to the nonlinear differential equations. Also, Swain et al. [34]
explored the effects of Joule heating and viscous dissipation on MHD flow and heat transfer
via porous material. Megahed et al. [35] described an unsteady magnetized fluid flow with
thermal radiation effects and heat flux conditions. To obtain numerical solutions, they
combined the shooting method with a Runge–Kutta algorithm. Sarda et al. [36] considered
a non-Newtonian fluid propagating over a stretching surface and non-equilibrium thermal
conditions to investigate the effect of magnetic fields on heat transfer. They also used
a combination of shooting technique and the fourth-fifth-order Runge–Kutta–Fehlberg
(RKF) method. Zhou et al. [37] examined the role of slip on a stretchable surface with a
non-uniform heat source using Casson fluid. They used the bvp4c command to develop
solutions to the nonlinear problem. Ullah et al. [38] used a new stochastic method to
investigate the MHD boundary layer flow. Recently, Bhatti et al. [39] used a Lie group
analysis and a successive linearization technique to solve a nonlinear Jeffrey fluid model
with mass transport.

The primary goal of this paper is to present a rigorous computational method for solv-
ing nonlinear boundary value problems. The proposed methodology is a simple, precise,
and convergent algorithm and is known as the spectral local linearization method, abbreviated
as SLLM. This method involves linearizing and decoupling equations using a univariate
linearization approach and spectral collocation linearization. The proposed algorithm’s
main distinguishing feature is that it converts a large coupled system of equations into a set
of smaller systems that can be solved sequentially in a computationally efficient manner.
We applied this methodology to a nonlinear problem, such as two coupled nonlinear differ-
ential equations of mixed convection heat transfer. The results show that, when compared
to other similar methods, the computed methodology is simple to develop, fast converging,
efficient, accurate, and reliable.

Not enough emphasis has been given to the mixed convection fluid flow with viscous
dissipation. The majority of the literature reported above used the bvp4c, a shooting
method, the Runge–Kutta approach or other numerical and analytical techniques to solve
nonlinear boundary layer flow problems. Spectral numerical methods, like SLLM, were
not used to solve such problems. The primary goal of this research is to use a robust
computational technique to assess the mixed convection fluid flow including magnetic
and porous effects. The energy equation takes into account the simultaneous effects of
viscous dissipation, heat source/sink, and Joule heating. Following a similarity analysis,
the numerical solutions to the governing equations were obtained using the computational
approach of Spectral Local Linearization. The Gauss–Seidel technique is also used to
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improve the convergence of this method. The suggested methodology’s machine time is
also given in tabular form utilizing the Matlab software. Full numerical and graphical
comparisons with the bvp4c [40] and previously reported studies are also provided in
this paper.

2. Problem Description and Modeling

We consider a two-dimensional mixed convective flow of a viscous incompressible
fluid induced by a nonlinear elastic sheet, while stretching or shrinking, with a porous
medium. The flow is modeled in a Cartesian coordinate system, with the x′-coordinate
along the moving surface and the y′-coordinate in the normal to the surface direction. The
elastic sheet is at rest on the plane y′ = 0, which also incorporates the heat sink/source
with volumetric heat absorption or generation Q0 = x′q0 (where q0 is constant). The
nonlinear elastic sheet is deformed with a wall velocity ws(x′) = cx′2, where the constant
parameter c is positive during stretching (c > 0) and negative during shrinking (c < 0).
The elastic surface is permeable. The process is an injection when the velocity is vs < 0 and
suction when the velocity is vs > 0. The fluid is electricity conducting when exposed to the
influence of a uniform variable magnetic field B0 = b0

√
x′ and traveling through a porous

material with variable permeability k = k0/x′. Furthermore, Tw signifies temperature at the
wall, while Tinf indicates the ambient temperature distant from the surface. The governing
equations for this physical problem are formulated using the standard boundary layer
approximations [41]:

∂u′

∂x′
+

∂v′

∂y′
= 0, (1)

u′
∂u′

∂x′
+ v′

∂u′

∂y′
= ν

∂2u′

∂y′2
+ dgχ(T − Tinf)−

σB0
2

ρ
u′ − ν

k
u′, (2)

where u′ and v′ represent the velocity components in x′- and y′- coordinates, ρ denotes
the density, ν denotes the kinematic viscosity, g is the gravitational acceleration, χ denotes
the coefficient of the thermal expansion, µ is the fluid viscosity, σ denotes the electrical
conductivity, and d is a dummy parameter with values 0,+1 or −1.

u′
∂T
∂x′

+ v′
∂T
∂y′

= α
∂2T
∂y′2

+
Q0

ρcp
(T − Tinf) + V.D., (3)

where α denotes the thermal diffusivity, cp denotes the specific heat capacity, and V.D. is
the viscous dissipation, defined as follows:

V.D. =
1

ρcp

[
µ

(
∂u′

∂y′

)2

+ σB0
2u′2 +

µ

k
u′2
]

. (4)

The boundary conditions at y′ = 0 are defined as:

u′ = ws
(
x′
)
= cx′2, v′ = x′

1
2 vs, T = Tw

(
x′
)
= Tinf + bx′3, (5)

where b is a constant that indicates a hot plate when b > 0 and a cool plate when b < 0.
The boundary conditions at y′ → ∞ are defined as:

u′ → 0,
∂u′

∂y′
→ 0, T → Tinf. (6)
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Similarity Analysis

The following transformations are introduced for the solution of the governing equa-
tions:

η = y′
√

3|c|x′
2ν

, u′ = |c|x′2 f ′(η),

v′ = −1
2

√
2
3

ν|c|x′
[
3 f (η) + η f ′(η)

]
, T = bx′3θ + Tinf, (7)

and the velocity of the wall mass transfer becomes vs = −
√

3ν|c|
2

ς. Applying Equation (7)

to the governing Equations (2)–(6), we derive the following set of differential equations

f ′′′ + f f ′′ − 4
3

f ′2 − (β + γ) f ′ + Λθ = 0, (8)

θ′′ + Γ
[

f θ′ − 2 f ′θ + λ f ′′2 + λ(β + γ) f ′2 + δθ
]
= 0, (9)

where β =
2σb0

2

3|c|ρ denotes the magnetic parameter, γ =
2υ

3k0|c|
denotes the permeability

parameter, λ =
w2

s
cp(Tw − Tinf)

denotes the Eckert number, Γ =
ν

α
denotes the Prandtl

number, δ =
2
3

q0

ρcp|c|
denotes the local heat generation/absorption coefficient, Λ = d

2
3

Gr

<2

denotes the mixed convention parameter, Gr =
gχ(Tw − Tinf)x′3

υ2 denotes the Grashof

number, and < =
wsx′

υ
denotes the Reynolds number. Mixed convection occurs when the

mechanisms of forced and natural convection work in tandem to transfer heat. The Grashof
number (for natural convection) and the Reynolds number (for forced convection) are two
dimensionless numbers that are frequently used to define the strength of each part of the
convection [42,43].

The boundary conditions reduce to the following form:

f (0) = ς, f ′(0) = φ, θ(0) = 1,

f ′(∞) = 0, θ(∞) = 0, (10)

where ς denotes the wall transpiration, and φ is the stretching/shrinking parameter. If
φ > 0 the surface is stretching and if φ < 0 the surface shrinks.

The skin friction coefficient and the Nusselt number are expressed as follows:

C f =
τs

ρw2
s

(
∂u′

∂y′

)
y=0

, Nu =
x′q f

κ(Tw − Tinf)
, (11)

where κ represents the thermal conductivity. The wall shear stress τs, and the surface heat
flux q f are given by the equations:

τs = µ

(
∂u′

∂y′

)
y′=0

, q f = −κ

(
∂T
∂y′

)
y′=0

. (12)

Using Equations (7) and (11), we obtain the following expressions:

<
1
2 C f =

√
3
2

f ′′(0),<−
1
2 Nu = −

√
3
2

θ′(0). (13)
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It can be seen that the resulting Equations (8) and (9) are nonlinear and coupled. Exact and
closed-form solutions to these differential equations are impossible to derive. Therefore, in
the following section, we will present a robust computational method to solve the system
of equations.

3. Implementation of Numerical Method
3.1. Basic Steps to Apply Spectral Local Linearization Method

Let us consider a system of differential equations F = [ f1(η), f2(η), . . . , fm(η)] that
fulfill the condition:

Ln +Nn = Hn, n = 1, 2, . . . , m, (14)

where m denotes the number of differential equations. EachHn is a function of η ∈ (A,B),
and Ln,Nn represent the system’s linear and nonlinear components, respectively.

To continue the iteration process, the local linearization of Nn at approximately Fn,t
(latest iteration) is employed for the nth nonlinear equation by assuming that all other
Fl,t(l 6= n) values are known.

Nn[ f1(η), f2(η), . . . , fm(η)] = Nn[ f1,t, f2,t, . . . , fm,t]

+∇Nn[ f1,t, f2,t, . . . , fm,t]( fn − fn,t). (15)

As a result, for the current iteration with fn = fn,t+1, Equation (14) becomes

Ln[ f1,t, f2,t, . . . fm,t+1] +∇Nn[ f1,t, f2,t, . . . , fm,t] f1,t+1

= Hn +∇Nn[ f1,t, f2,t, . . . , fm,t] f1,t −Nn[ f1,t, f2,t, . . . , fm,t], (16)

...

...

Lm[ f1,t, f2,t, . . . , fm,t+1] +∇Nm[ f1,t, f2,t, . . . , fm,t] fm,t+1

= Hm +∇Nm[ f1,t, f2,t, . . . , fm,t] fm,t −Nm[ f1,t, f2,t, . . . , fm,t], (17)

where the nth equation [ f1,t, f2,t, . . . , fm,t] ≡ [ f1,t+1, f2,t+1, . . . , fn−1,t+1, fn,t, . . . , fm,t].
Traditionally, the SLLM is an iterative procedure for solving differential equations that

begins with an initial approximation f0 and then is implemented iteratively, generating new
approximations f1, f2, f3, . . . , where Ft = [ f1,t, f2,t, . . . fm,t] for each t = 0, 1, 2, . . . . Once the
nonlinear components Nn have been linearized, Equations (16) and (17) can be numerically
solved utilizing the Chebyshev spectral collocation approach.

The nth differential Equation (14) after the first t + 1 iterations can be expressed in this
manner:

Ln+1 +Nn+1 = Hn. (18)

Taylor series can be used to linearize the nonlinear components. For instance

Nn|t+1 = Nn|t +∇Nn|t[Vt+1 − Vt], (19)

where Vt denotes the n-tuples of Fn,t and its differentials.
It is now possible to use Equations (18) and (19) into Equation (14) to obtain

Ln|t+1 +∇Nn|tVt+1 = Hn +∇Nn|tVt −Nn|t. (20)
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3.2. Implementation of the Spectral Local Linearization Method

To develop the SLLM, the current system of differential equations must be reduced in
order, hence, we assume that f ′ = h, to obtain the transformed Equations (8) and (9) in the
form:

h′′ + f h′ − (β + γ)h− 4
3

h2 + Λθ = 0, (21)

θ′′ + Γ
[

f θ′ − 2hθ + λh′2 + λ(β + γ)h2 + δθ
]
. (22)

We linearized the non-linear term h2 using a Taylor series expansion, which is de-
scribed in more detail below:

h2
t+1 = 2ht(ht+1 − ht) + h2

t = 2ht+1ht − h2
t , (23)

where the component with the subscript t + 1 represents the current approximated value
and the component with the subscript t represents the previous value. Equation (23)
is substituted in Equation (21), and the nonlinear system is decoupled by applying the
Gauss–Seidel relaxation method to obtain the desired result. Thus, we have:

f ′t+1 = ht, (24)

h′′t+1 + fth′t+1 − (β + γ)ht+1 −
8
3

htht+1 = −4
3

ht
2 −Λθt, (25)

θ′′t+1 + Γ[ ftθ
′
t+1 − 2ht+1θt+1 + δθt+1] = −λ

[
h′2t+1 + (β + γ)h2

t+1

]
. (26)

The pertinent boundary conditions are transformed as follows:

ft+1(0) = ς, ht+1(0) = φ, θt+1(0) = 1, (27)

ht+1(∞) = 0, θt+1(∞) = 0. (28)

We write Equations (24)–(26) in a concise form as:

f ′t+1 = E00, (29)

h′′t+1 + E11h′t+1 − E13ht+1 − E12ht+1 = E1,t, (30)

θ′′t+1 + Γ
(
E11θ′t+1 − 2ht+1θt+1 + δθt+1

)
= E2,t, (31)

where

E00 = ht, E11 = ft, E12 =
8
3

ht, E13 = (β + γ),

E1,t = −
4
3

ht
2 −Λθt, E2,t = −λ

[
h′2t+1 + (β + γ)h2

t+1

]
. (32)

Now, we apply the Chebyshev spectral collocation method to the system of Equations (24)–(26),

where the differentiation matrix [44] D =
2
l

D is used to approximate the derivatives of

the unknown variables in the above equations. The physical region of the problem [0, ∞)
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is truncated to [0, l] to allow the numerical implementation using the spectral technique,
where l is stipulated to be sufficiently high. Our new system is written as:

D f t+1 = ht, (33)

{D2 + diag[E11]D − E13 I − E12 I}ht+1 = E1,t, (34)

{D2 + Γ(diag[E11]D − 2diag[ht+1] + δI)}θt+1 = E2,t. (35)

The corresponding boundary conditions are:

ft+1(ηN) = ς, ht+1(ηN) = φ, θt+1(ηN) = 1, (36)

ht+1(η0) = 0, θt+1(η0) = 0. (37)

This system of equations may be expressed in a more concise form as follows:

B1 ft+1 = C1, (38)

B2ht+1 = C2, (39)

B3θt+1 = C3, (40)

where

B1 = D, C1 = ht, (41)

B2 = D2 + diag[E11]D − E13 I − E12 I, C2 = E1,t, (42)

B3 = D2 + Γ(diag[E11]D − 2diag[ht+1] + δI), C3 = D2,t, (43)

where the diagonal matrices “diag” are defined as follows:

diag[E11] =

E11(η0) · · · .
...

. . .
...

. · · · E11(ηN)

, diag[E12] =

E12(η0) · · · .
...

. . .
...

. · · · E12(ηN)

, (44)

diag[E1,t] =

E1,t(η0)
...

E1,t(ηN)

, diag[E2,t] =

E2,t(η0)
...

E2,t(ηN)

, (45)

and

ft+1 = [ f (η0), f (η1), . . . , f (ηN)]
T , (46)

ht+1 = [h(η0), h(η1), . . . , h(ηN)]
T , (47)
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θt+1 = [θ(η0), θ(η1), . . . , (ηN)]
T , (48)

where I represents the identity matrix of order (N + 1) × (N + 1). Equations (46)–(48)
represents the vectors of size (N × 1)× 1.

In light of Equation (10), the following initial guesses are chosen for the implementa-
tion of the method:

f0(η0) = ς + φ(1− exp[−η]), h0(η0) = φ exp[−η], θ0(η0) = exp[−η]. (49)

These initial stipulations are used to obtain further approximations of ft, ht, θt for each
t = 1, 2, 3, . . . by using the suggested technique.

3.3. Convergence Analysis

The Gauss–Seidel technique with successive over relaxation parameter is often used
to accelerate the convergence of the linear system of equations. In this case, an equivalent
approach is utilized to accelerate the convergence rate for SLLM. At the (t + 1)th iteration,
the SLLM approach is used to solve the function Z .

B1Zt+1 = C1. (50)

The new mode of the SLLM approach is then represented by rewriting the equation as:

B1Zt+1 = (1−Ω)B1Zt + ΩC1. (51)

Here Ω denotes the convergence parameter. If the value of Ω is between 1 and 2, the
current value has a higher weight than the prior value. The current value must also be
close to the old value. This procedure will help to improve the convergent system even
more. This form of change is known as over relaxation, and the process is known as the
SOR approach (successive over relaxation). The improved SLLM approach significantly
contributes to the improvement of the accuracy and numerical efficiency.

4. Numerical Results and Discussion

The numerical solution for the velocity profile, the skin friction coefficient, the Nusselt
number, and the temperature profile are discussed in this section. The Matlab software is
used to plot all of the numerical results graphically. We chose the appropriate parametric
values for the graphical results such as: N = 100, β = 0.2, γ = 0.2, δ = 0.1, Γ = 1,
Λ = 0.1, λ = 0.5, ς = 0, φ = 1. Table 2 shows the machine time (s), which indicates
the execution time of numerical coding in Matlab. Table 3 shows the effect of N on the
skin friction coefficient and the Nusselt number. This table indicates that the desired
level of accuracy (up to five decimal places) can be obtained when N = 100 with four
iterations. In addition, Tables 4 and 5 illustrate the numerical results for the Skin friction and
Nusselt number profile as functions of the adjustable parameters. We have also included
a comparison with the bvp4c (built-in command in Matlab) in both tables (Tables 4 and
5). We observe in these Tables that the results obtained by the two methods agree very
well, indicating that the current approach, the SLLM, has been appropriately implemented.
The data shows that the magnetic parameter β, the permeability parameter γ, the wall
transpiration parameter ς, the shrinking or stretching parameter φ, and the Prandtl number
Γ cause the skin friction profile to reduce. On the contrary, the mixed convection parameter
Λ, the heat source or sink parameter δ, and the Eckert number λ augment the skin friction
profile. The Nusselt number increases significantly because of the effect of the mixed
convective parameter Λ and the Prandlt number Γ, whereas the magnetic parameter β,
the permeability parameter γ, the Eckert number λ, and the heat source/sink δ tend to
reduce the Nusselt number. Furthermore, Table 6 shows a numerical comparison of the skin
friction profile with previously published data for β = 0, γ = 0, Λ = 0, ς = −1/6, φ = 1. It
is clear from this table that the current results are compatible with the previous studies.
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Table 2. Machine time to execute the Matlab code on intel core i7.

Function Name Calls Total Time (s) Self Time (s)

SLLM code 1 0.284 0.202

Newplot 2 0.033 0.013

xlabel 2 0.029 0.023

newplot > ObserveAxesNextPlot 2 0.017 0.004

cla 2 0.013 0.007

hold 2 0.011 0.009

ylabel 2 0.010 0.008

convertStringToCharArgs 4 0.007 0.005

graphics/private/clo 2 0.005 0.005

gobjects 4 0.003 0.003

convertStringsToChars 4 0.002 0.001

markfigure 2 0.001 0.001

graphics/private/claNotify 2 0.001 0.001

graph2d/private/labelcheck 4 0.001 0.001

convertStringsToChars > convertStrings 16 0.001 0.001

axescheck 2 0.000 0.000

newplot > ObserveFigureNextPlo 2 0.000 0.000

Table 3. Impact of varying N on skin friction coefficient and Nusselt number.

Iterations N Skin Friction Coefficient Nusselt Number

4 5 −1.15627 1.17653

4 10 −1.29290 1.43602

4 100 −1.30162 1.44072

− bvp4c −1.30162 1.44072

Table 4. Numerical comparison between the present numerical method and bvp4c for Skin friction
against different values of emerging parameters.

β γ Λ Γ δ λ ς φ SLLM bvp4c

0.2 0.2 0.5 1 0.1 0.2 0 1 −1.30162 −1.30162

1 −1.65671 −1.65671

1.5 −1.85064 −1.85064

0.5 −1.44264 −1.44264

0.8 −1.57383 −1.57383

1.2 −1.73640 −1.73640

0.4 −1.34991 −1.34991
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Table 4. Cont.

β γ Λ Γ δ λ ς φ SLLM bvp4c

1.0 −1.07167 −1.07167

1.5 −0.85505 −0.85505

0.71 −1.27273 −1.27273

2 −1.40238 −1.40238

3 −1.44594 −1.44594

−0.1 −1.31463 −1.31463

0 −1.30860 −1.30860

0.12 −1.30008 −1.30008

0.3 −1.29782 −1.29782

0.4 −1.29404 −1.29404

0.5 −1.29029 −1.29029

−0.5 −1.00143 −1.00143

0 −1.301625 −1.301625

0.5 −1.70488 −1.70488

−0.6 0.942750 0.942750

0 0.45307 0.45307

0.6 −0.48097 −0.48097

Table 5. Numerical comparison between present method and bvp4c for Nusselt number against
different values of the other parameters.

β γ Λ Γ δ λ SLLM bvp4c

0.2 0.2 0.5 1 0.1 0.2 1.44072 1.44072

1 1.25957 1.25957

1.5 1.16052 1.16052

0.5 1.36888 1.36888

0.8 1.30192 1.30192

1.2 1.21886 1.21886

0.4 1.42396 1.42396

1 1.50962 1.50962

1.5 1.56319 1.56319

0.71 1.18551 1.18551

2 2.15499 2.15499

3 2.69120 2.69120

−0.1 1.55523 1.55523

0 1.49965 1.49965

0.12 1.42846 1.42846

0.3 1.38320 1.38320

0.4 1.32612 1.32612

0.5 1.26948 1.26948
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Table 6. Numerical comparison between present results with previously report results [45] for skin
friction profile.

β γ Λ ς φ Present Results Fang et al. [45]

0 0 0 − 1
6 1 −1.0234 −1.0234

Figures 1 and 2 provide a graphical comparison of the velocity and temperature
profiles. The solid line depicts the results of SLLM, whereas the red circle depicts the
results of bvp4c. Matlab software is used to implement both solutions. The bvp4c (built-in
command) is based on the shooting method. We can observe from these data that the two
graphical outcomes agree well.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
SLLM

bvp4c

Figure 1. Solution comparison of bvp4c and SLLM approach for velocity profile.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
SLLM

bvp4c

Figure 2. Solution comparison of bvp4c and SLLM approach for temperature profile.

Figure 3 demonstrates the impact of the magnetic parameter β on the velocity profile.
It is evident in this Figure that the velocity profile diminishes as the magnetic parameter
increases. Because electromagnetic forces are proportional to magnetic fields, boosting the
magnetic parameter increases the electromagnetic force, and this restricts the fluid motion
over the whole surface. The temperature profile was significantly improved by increasing
the parameter β, as shown in Figure 4. The Lorentz force opposes the fluid motion and this
causes the temperature distribution and thermal boundary layer to increase. Since β = 0
signifies the consequence of non-magnetic mixed convection flow, these findings agree
with the case of a linear stretching surface [46].
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Figure 3. Velocity profile for magnetic parameter β.
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Figure 4. Temperature profile for magnetic parameter β.

Figures 5 and 6 show the influence of the permeability parameter γ on the velocity
and temperature profiles. It is observed that, as the permeability parameter is increased,
the velocity profile decreases. In the momentum Equation (8), the permeability parameter
includes the drag force component, i.e.,−γ f ′. Increasing the permeability parameter results
in the restriction of the flow. However, as shown in Figure 6, the permeability parameter
has the opposite effect on the temperature distribution. The restriction of flow impedes the
forced convection and results in the increase of temperature.
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Figure 5. Velocity profile for Permeability parameter γ.
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Figure 6. Temperature profile for permeability parameter γ.

Figure 7 demonstrates the effect of the heat generation parameter δ on the temperature
profile and shows that an increase of the heat generation parameter δ causes an increase
in the temperature profile. When δ > 0, the heat source effect is to increase the fluid
temperature while when δ < 0, (heat absorption by a heat sink) the fluid temperature
profile decreases.

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

 = 0.1

 = 0.2

 = 0.3

 = 0.4

Figure 7. Temperature profile for local heat generation parameter δ.
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Figure 8 reveals the impact of the Prandtl number Γ, which is the ratio of momentum
diffusion rate to thermal diffusion rate, on the temperature profile. The temperature profile
is seen to decrease as the Prandtl number increases. It is obvious that the momentum
diffusion rate is more influential and the increased fluid flow reduces the developed
temperature profile.

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

 = 1

 = 3

 = 5

 = 7

Figure 8. Temperature profile for Prandtl number Γ.

We can see in Figure 9 that the Grashof number has a significant and positive effect
on the velocity profile, because the buoyancy force, +Λθ in Equation (8), increases as the
Grashof number increases. The velocity profile increases because the natural convection ve-
locity intensifies. When Λ→ 0, natural (free) convection ceases and only forced convection
takes place.This coincides to the lowest calculated velocity. On the other contrary, increas-
ing the natural convection parameter Λ in Figure 10 reduces the temperature distribution
and the thermal boundary layer thickness. However, the impact of this parameter is minor.

0 1 2 3 4 5 6
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0.4

0.6

0.8
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 = 0.4

 = 0.6

 = 0.8

Figure 9. Velocity profile for mixed convection parameter Λ.
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Figure 10. Temperature profile for mixed convection parameter Λ.

Figure 11 depicts the effect of the Eckert number λ on the temperature profile. It is
apparent that increasing the Eckert number λ slightly increases the temperature distri-
bution and the thickness of the thermal boundary layer. Because enhancing the Eckert
number actually augments the advective transport and weakens the heat dissipation, the
temperature profile tends to rise.

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

 = 0.1

 = 0.3

 = 0.5

 = 0.7

Figure 11. Temperature profile as a function of Eckert number λ.

5. Summary and Conclusions

This study focuses on the mixed convective viscous fluid flow across an elastic surface
with a porous medium and the role of viscous dissipation. The viscous fluid is electrically
conducting, irrotational and incompressible. A similarity analysis was conducted for the
momentum and energy equations. The governing equations for the system are numerically
solved using a robust numerical method, known as the Spectral Local Linearization Method.
The Gauss–Seidel technique was employed to improve the convergence rate of the derived
solutions. The machine time required to execute the suggested approach was reported. The
main conclusion of the study are shown below:

(i) The magnetic and permeability parameters augment the temperature profile, while
decreasing the velocity profile.

(ii) The mixed convection parameter increases the velocity profile, while reducing the
temperature profile.

(iii) The Eckert number and the heat generation parameter have a significant effect to
increase the temperature profile and the thickness of the thermal boundary layer.
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(iv) Increasing the Prandtl number reduces the temperature profile, because the mo-
mentum diffusivity is more dominant and the increased flow dampens the devel-
opment of the temperature profile.

(v) The numerical results obtained with the Spectral local linearization method are
consistent with the results obtained with other related methodologies such as
bvp4c.

(vi) When the skin friction profile is compared to previously published data, it is found
that the current numerical results show a good agreement and this validates the
proposed method.

(vii) The SLLM does not lose accuracy as the number of collocation points increases.
(viii) For all of the model parameters investigated in this work, the method has been

found to rapidly converge to the respective solutions.
(ix) When compared to other approaches, the suggested methodology is computation-

ally more efficient and shows better performance with fewer collocation points
(N) and four iterations. Because this method is more reliable, simple, and efficient,
the SLLM methodology is considered more suitable for the solution of nonlinear
boundary value problems.

In general, the present analysis shows the excellent performance of the Spectral
Local Linearization Method for the simulation of nonlinear boundary layer problems with
porosity and viscous dissipation effects. Since our study is restricted to a Newtonian fluid
model, future studies can be extended to non-Newtonian fluids with slip and no-slip effects.
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