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Abstract: This paper re-investigates the mathematical transport model of chlorine used as a water
treatment model, when a variable order partial derivative is incorporated for describing the chlorine
transport system. This model was introduced in the literature and governed by a fractional partial
differential equation (FPDE) with prescribed boundary conditions. The obtained solution in the
literature was based on implementing the Laplace transform (LT) combined with the method of
residues and expressed in terms of regular exponential functions. However, the present analysis
avoids such a method of residues, and thus a new analytical solution is introduced in this paper via
Mittag-Leffler functions. Therefore, an effective approach is developed in this paper to solve the
chlorine transport model with non-integer order derivative. In addition, our results are compared
with several studies in the literature in case of integer-order derivative and the differences in results
are explained.

Keywords: fractional partial differential equation; Mittag-Leffler function; boundary value problem;
separation of variables; Laplace transform

1. Introduction

Water sciences is a growing field of research. The quality of water can be enhanced
through suitable values of injection and maintaining residual chlorine in a network not by
reducing chlorine. In industrial sciences, chlorine decay is not much more than that in the
use of water networks operation and water quality control. This procedure is widely used
in most countries to ensure the disinfection capacity of distributed water [1,2]. Therefore,
the study of chlorine decay is of great importance due to its wide applications in engineering
and industrial sciences [3]. Biswas et al. [4] formulated the standard model of chlorine
transport in pipes. In addition, the standard model [4] (with integer-order derivative)
has been re-analyzed utilizing different approximate methods [5,6]. Later, the author [7]
generalized the standard model [4] by means of fractional calculus (FC). The dimensionless
generalized model is governed by FPDE [7]:

C
0 Dα

xu(x, r) =
A0

r
∂

∂r

(
1
r

∂u
∂r

)
− A1u, α ∈ (0, 1], (1)

where α is the order of the fractional derivative in Caputo sense C
0 Dα

xu(x, r) = ∂αu
∂xα and

u = u(x, r) is the chlorine concentration [7]. The model is subjected to the following
boundary conditions (BCs) [7]:
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u(0, r) = 1, 0 ≤ r ≤ 1, (2)
∂

∂r
u(x, 0) = 0, 0 ≤ x ≤ 1, (3)

∂

∂r
u(x, 1) + A2u(x, 1) = 0, 0 ≤ x ≤ 1. (4)

Details of the parameters were addressed by the authors [4–7]. As α → 1, i.e., for
classical partial derivative with respect to x, Biswas et al. [4], Yeh et al. [5], and Mahrous [6]
obtained three different approximate solutions for the system (1)–(4). For α ∈ (0, 1],
the exact solution of the current model has been recently obtained in Ref. [7] through
implementing the LT combined with the method of residues to determine the inverse LT of
some expressions. However, our analysis avoids such a method of residues, and hence the
inverse LT can be directly calculated in terms of the Mittag-Leffler functions. Moreover,
useful and recent studies on the chlorine decay models are listed in Refs. [8–15]. Therefore,
an effective approach is to be developed in this paper to resolve the Equations (1)–(4).
The suggested approach is mainly based on the separation of variables method (SOV)
combined with the LT. The SOV technique is used to convert the PDE (1) to a couple of
ODEs via auxiliary parameter.

The LT method was widely applied to solve various models in physics and engineering
such as diffusions process [16], fluid flow suspended with carbon-nanotubes [17], singu-
lar boundary value problems with applications [18,19], and the magnetohydrodynamics
(MHD) convection over a flat plate [20]. In addition, the LT was successfully implemented
to treat the Ambartsumian’s model of interstellar brightness [21] (with ordinary derivative)
and also in view of FC in Ref. [22]. Moreover, Handibag and Karande [23] applied the
Laplace substitution method for solving PDEs involving mixed partial derivatives, while
in Ref. [24], the same authors extended their idea to solve linear and nonlinear PDEs
of nth order. In addition, the LT has been implemented to deal with a set of differential
equations [25]. Additionally, the double LT was used by Dhunde and Waghmare [26] to
solve nonlinear PDEs while the volterra integro-differential equations has been analyzed
utilizing the triple LT by Mousa and Elzaki [27]. Very recently, Zhang and Nadeem [28]
solved a set of nonlinear time-fractional differential equations by means of the LT. Besides,
the solution in terms of the Mittag-Leffler functions for a class of first-order fractional initial
value problems, using the LT, was introduced very recently by Ebaid and Al-Jeaid [29],
while the geometric properties of the Mittag-Leffler functions were addressed by Srivastava
et al. [30].

Therefore, the objective of this paper is to obtain the exact solution of the system (1)–(4)
via the LT in a different and easier way than that one followed by Mahrous [7]. It will be
shown that the present exact solution is of different physical meaning when compared
with the corresponding results in Ref. [7]. Besides, the results will be discussed and
interpreted. Finally, several comparisons are to be performed, and the differences in results
will be explained.

2. The SOV Method

Based on the SOV method, we assume that

u(x, r) = ξ(x)ψ(r). (5)

Substituting (5) into (1) yields

1
A0ξ(x)

C
0 Dα

xξ(x) +
A1

A0
=

1
rψ(r)

d
dr

(
r

dψ(r)
dr

)
, (6)

and accordingly we can write

1
A0ξ(x)

C
0 Dα

xξ(x) +
A1

A0
=

1
ψ(r)

(
d2ψ(r)

dr2 +
1
r

dψ(r)
dr

)
= µ, (7)
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where µ is an auxiliary parameter. From (7), we have the following FODE for ξ(x):

1
A0ξ(x)

C
0 Dα

xξ(x) +
A1

A0
= µ, (8)

and the ODE for ψ(r):
1

ψ(r)

(
d2ψ(r)

dr2 +
1
r

dψ(r)
dr

)
= µ, (9)

Following Biswas et al. [4], the equality µ = −λ2 (λ > 0) is used, hence, Equation (8)
converts to

C
0 Dα

xξ(x) +
(

A1 + A0λ2
)

ξ(x) = 0. (10)

Additionally, Equation (9) becomes

d2ψ(r)
dr2 +

1
r

dψ(r)
dr

+ λ2ψ(r) = 0. (11)

From the BC (3) and Equation (5), we obtain

dψ(0)
dr

= 0. (12)

Additionally, the BC (4) and Equation (5) lead to

dψ(1)
dr

+ A2ψ(1) = 0. (13)

The solutions of Equations (10) and (11) will be provided in the following sections.

2.1. Solution of ξ(x)

Applying the LT on Equation (10) gives

sαξ(s)− sα−1ξ(0) +
(

A1 + A0λ2
)

ξ(s) = 0, (14)

where ξ(s) is the LT of ξ(x). Solving Equation (14) for ξ(s), we obtain

ξ(s) =
ξ(0)sα−1

sα + (A1 + A0λ2)
. (15)

Applying the inverse LT on Equation (15) yields

ξ(x) = ξ(0)L−1
(

sα−1

sα + (A1 + A0λ2)

)
, (16)

and hence
ξ(x) = ξ(0)Eα

(
−(A1 + A0λ2)xα

)
, (17)

where Eα(·) is the Mittage-Leffler function of one parameter, where the equality ([22–29])

L−1
(

sα−γ

sα+ω2

)
= xγ−1Eα,γ(−ω2xα), Re(s) > |ω2| 1α is applied to obtain Equation (17) when

γ = 1 and ω2 = A1 + A0λ2.
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2.2. Solution of ψ(r)

The solution of Equation (11) is

ψ(r) = δ1 J0(λr) + δ2Y0(r), (18)

where δ1 and δ2 are unknown constants. Besides, J0(·) and Y0(·) are Bessel functions.
The physics of the present model require that u(x, r) must be bounded at r = 0. This
implies that ψ(r) must also be bounded at r = 0, which leads to δ2 = 0, where Y0(r)→ ∞
as r → 0. Therefore, Equation (18) becomes

ψ(r) = δ1 J0(λr). (19)

Implementing the property J′0(λr) = −λJ1(λr), we have

dψ(r)
dr

= −δ1λJ1(λr), (20)

and hence
dψ(0)

dr
= −δ1λJ1(0) = 0. (21)

Accordingly, the BC (12) is automatically satisfied since J1(0) = 0. Applying the
BC (13) yields

dψ(1)
dr

+ A2ψ(1) = δ1(−λJ1(λ) + A2 J0(λ)) = 0. (22)

Under the condition δ1 6= 0, Equation (22) yields

A2 J0(λ)− λJ1(λ) = 0. (23)

It should be noted here that Equation (23) has an infinite number of roots λn, so we
can write

A2 J0(λn)− λn J1(λn) = 0. (24)

3. The Exact Solution u(x, r)

Substituting Equations (17) and (19) into Equation (5), we obtain u(x, r) in the form:

u(x, r) = ξ(0)δ1 J0(λr)Eα

(
−(A1 + A0λ2)xα

)
, (25)

or
u(x, r) = σJ0(λr)Eα

(
−(A1 + A0λ2)xα

)
, (26)

where σ = ξ(0)δ1. Since Equation (24) has an infinite number of roots, then Equation (26) is
given by the series:

u(x, r) =
∞

∑
n=1

σn J0(λnr)Eα

(
−(A1 + A0λ2

n)xα
)

. (27)

Applying the BC (2) on Equation (27) gives

1 =
∞

∑
n=1

σn J0(λnr), where Eα(0) = 1 ∀ α ∈ (0, 1]. (28)

Following Biswas et al. [4], we find that

σn =
2J1(λn)

λn
(

J2
0 (λn) + J2

1 (λn)
) . (29)
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Substituting (29) into (27) leads to

u(x, r) = 2
∞

∑
n=1

J1(λn)J0(λnr)Eα

(
−(A1 + A0λ2

n)xα
)

λn
(

J2
0 (λn) + J2

1 (λn)
) . (30)

Equation (24) implies A2 = λn J1(λn)
J0(λn)

, hence, Equation (30) is expressed as

u(x, r) = 2
∞

∑
n=1

λn J1(λn)J0(λnr)Eα

(
−(A1 + A0λ2

n)xα
)(

A2
2 + λ2

n
)

J2
0 (λn)

. (31)

As α→ 1, Equation (31) reduces to

u(x, r) = 2
∞

∑
n=1

λn J1(λn)J0(λnr)E1
(
−(A1 + A0λ2

n)x
)(

A2
2 + λ2

n
)

J2
0 (λn)

, (32)

and therefore

u(x, r) = 2
∞

∑
n=1

λn J1(λn)J0(λnr)e−(A1+A0λ2
n)x(

A2
2 + λ2

n
)

J2
0 (λn)

, (33)

which is identical to the solution obtained by Biswas et al. [4] for the chlorine decay model
with classical x-partial derivative.

4. The Cup-Mixing Average Concentration

Following Biswas et al. [4], we define the dimensionless cup-mixing average concen-
tration as

uav = 2
∫ 1

0
u(x, r) rdr. (34)

Substituting (31) into (34), yields

uav = 2
∞

∑
n=1

λn J1(λn)Eα

(
−(A1 + A0λ2

n)xα
)(

A2
2 + λ2

n
)

J2
0 (λn)

∫ 1

0
rJ0(λnr)dr, (35)

or

uav = 4
∞

∑
n=1

J2
1 (λn)(

A2
2 + λ2

n
)

J2
0 (λn)

Eα

(
−(A1 + A0λ2

n)xα
)

, (36)

where the integral property
∫ 1

0 rJ0(λnr)dr = J1(λnr)
λn

is used. From Equation (24) and making

use of A2 = λn J1(λn)
J0(λn)

, then

uav = 4
∞

∑
n=1

A2
2

λ2
n
(

A2
2 + λ2

n
)Eα

(
−(A1 + A0λ2

n)xα
)

. (37)

As α→ 1, Equation (37) becomes

uav = 4
∞

∑
n=1

A2
2

λ2
n
(

A2
2 + λ2

n
) e−(A1+A0λ2

n)x, (38)

which agrees with the corresponding result in Ref. [4].

4.1. A2 → ∞ (The Pipe Walls Act as a Perfect Sink)

If the pipe walls act as a perfect sink, i.e., A2 → ∞ [4], then uav is obtained from
Equation (37) by
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uav = 4 lim
A2→∞

(
∞

∑
n=1

A2
2

λ2
n
(

A2
2 + λ2

n
)Eα

(
−(A1 + A0λ2

n)xα
))

, (39)

which gives

uav =
∞

∑
n=1

4
λ2

n
Eα

(
−(A1 + A0λ2

n)xα
)

, (40)

where λn’s are the roots of J0(λn) = 0. As α→ 1, Equation (40) reduces to

uav =
∞

∑
n=1

4
λ2

n
e−(A1+A0λ2

n)x, (41)

which is the same result obtained in Ref. [4]. It may be important here to refer to that
the series (39–41) are convergent for all positive values of the parameters A0 and A1.
Such a point can be explained as follows. In Ref. [31] (see p. 9), it was mentioned that
0 < Eα(−Ω) ≤ 1 for Ω > 0. Since the physical parameters A0 and A1, in addition to
the roots λn, are always positive, then 0 < Eα(−Ω) = Eα

(
−(A1 + A0λ2

n)xα
)
≤ 1 where

Ω = (A1 + A0λ2
n)xα > 0 ∀ x ∈ [0, 1], α ∈ (0, 1]. Accordingly, we have from (39), (40)

that |uav| ≤ ∑∞
n=1

4
λ2

n
. To check the convergence of the series ∑∞

n=1
4

λ2
n

, let cn = 4
λ2

n
, then

limn→∞

∣∣∣ cn+1
cn

∣∣∣ = limn→∞

∣∣∣∣ λ2
n

λ2
n+1

∣∣∣∣ ≤ 1, where λn ≤ λn+1∀n ≥ 1. Similar proof can be easily

shown for the series (41) and also for (37) and (38). Hence, the series (37–41) are convergent
by the ratio test for all positive values of the parameters Ai, i = 0, 1, 2.

4.2. A2 → 0 (No Chlorine Consumption Takes Place at the Walls)

If A2 → 0 (the pipe walls are inert and no chlorine consumption takes place at the
walls), then Equation (24) leads to λn = 0 or J1(λn) = 0. The case J1(λn) = 0 implies that
σn = 0 (from Equation (29)), hence, trivial solution u(x, r) = 0 is obtained. The case λn = 0
transforms Equation (26) into the simple expression:

u(x, r) = σEα(−A1xα). (42)

Applying the BC (2) on Equation (40) gives σ = 1 and hence,

u(x, r) = Eα(−A1xα). (43)

According to (34), we obtain

uav = 2
∫ 1

0
Eα(−A1xα) rdr = Eα(−A1xα). (44)

As α→ 1, Equation (44) yields

uav = e−A1x, (45)

which is the same expression obtained by Biswas et al. [4].

5. Results & Discussion

In this section, comparisons between the present results, as α→ 1 (classical chlorine
decay), and the corresponding ones in Refs. [4–6] are performed. Additionally, the com-
parisons between the present results and those obtained by Mahrous [7] are introduced
for α ∈ (0, 1] (fractional chlorine decay). In addition, the effect of the order of fractional
derivative α on the variation of the cup-mixing average concentration uav is discussed.
Before doing so, we must have a clear picture about the nature of the roots of Equation (24).
Here, the function φ(λ):

φ(λ) = A2 J0(λ)− λJ1(λ) = 0, (46)
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is supposed to facilitate the discussion.

5.1. Behavior of φ(λ)

Behavior of φ(λ) is depicted in Figures 1–5 at various values of A2. It is verified in all
figures that there is an infinite number of roots. However, the roots are nearly identical for
small A2 ∈ [0, 1) (Figure 1), except the first root. The thin curve (black, dashed) represents
the function φ(λ) = −λJ1(λ) (A2 = 0). For A2 ∈ [1, 10), it can be conducted from Figure 2
that the roots, after the first seven ones, have approximately the same values. From Figure 3,
it can be seen that the first two roots are nearly identical for A2 ∈ [10, 50), the rest of roots
are different. For relatively higher values of A2 ∈ [50, 100) (Figure 4) and A2 ∈ [100, 1000)
(Figure 5), the roots are nearly identical as shown from Figures 4 and 5. Although an
infinite number of roots exist for the equation φ(λ) = 0, Biswas et al. [4] considered certain
approximate analytic formulas, using fitting data, for only the first three roots λ1, λ2 and
λ3 when deriving their results. Moreover, Yeh et al. [5] obtained an approximate formula
for the first root and then they established their results. Furthermore, Mahrous [6] derived
the first two roots and gave approximate analytic forms and then compared his results with
Biswas et al. [4] and Yeh et al. [5]. In Table 1, the numeric values of the first three roots λ1,
λ2 and λ3 of Equation (24) are listed.

5 10 15 20 25
Λ

-2

2

4

ΦHΛL

A2=0.8

A2=0.6

A2=0.4

A2=0.2

A2=0.0

Figure 1. Behavior of φ(λ) vs. λ in the range 0 ≤ A2 < 1. The thin curve (black, dashed) represents
the function φ(λ) = −λJ1(λ) (A2 = 0).

5 10 15 20 25
Λ

-4

-2

2

4

6

8

ΦHΛL

A2=8.5

A2=6.5

A2=4.5

A2=2.5

A2=1.5

Figure 2. Behavior of φ(λ) vs. λ in the range 1 ≤ A2 < 10.
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5 10 15 20 25
Λ

-20

-10

10

20

30

40

ΦHΛL

A2=45

A2=35

A2=30

A2=20

A2=10

Figure 3. Behavior of φ(λ) vs. λ in the range 10 ≤ A2 < 50.

5 10 15 20 25
Λ

-40

-20

20

40

60

80

ΦHΛL

A2=90

A2=80

A2=70

A2=60

A2=50

Figure 4. Behavior of φ(λ) vs. λ in the range 50 ≤ A2 < 100.

5 10 15 20 25
Λ

-200

200

400

600

800

ΦHΛL

A2=800

A2=600

A2=400

A2=200

A2=100

Figure 5. Behavior of φ(λ) vs. λ in the range 100 ≤ A2 < 1000.
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Table 1. The numerical values of λ1, λ2, and λ3 of Equation (24) at different values of A2.

A2 λ1 λ2 λ3

0.01 0.14125 3.83431 7.01701
0.1 0.44168 3.85771 7.02983
0.2 0.61698 3.88351 7.04403
0.5 0.94077 3.95937 7.08638
1 1.25578 4.07948 7.15580
2 1.59945 4.29096 7.28839
5 1.98981 4.71314 7.61771
10 2.17950 5.03321 7.95688
50 2.35724 5.41120 8.48399

100 2.38090 5.46521 8.56783

5.2. Experimental Values of A2 (Wall Decay Rate)

Yeh et al. [5] mentioned that the values of A2 are smaller than 0.1 according to the
experimental studies for chlorine decay. Therefore, the comparison between the present
results and those in the relevant literature are performed taking into account such experi-
mental considerations, i.e., A2 < 0.1. For this reason, Yeh et al. [5] considered only the first

root λ1 of Equation (24) and they obtained approximate expression λ1 =
√

4A2
2+A2

. Such λ1

was obtained by Biswas et al. [4] as λ1 = 1.29861(A2)
0.477433, while Mahrous [6] derived

λ1 =

√
2
(

2 + A2 −
√

4 + A2
2

)
. The comparison between the present numerical values for

λ1, against A2, and the above approaches is displayed in Figure 6. It is concluded from this
figure that the values of Ref. [6] are the best when compared with the true numerical ones
using Wolfram MATHEMATICA 12.

0.2 0.4 0.6 0.8 1.0
A2

0.2

0.4

0.6

0.8

1.0

1.2

Λ1

Present

Mahrous (2021)

Yeh et al. (2008)

Biswas et al. (1994)

Figure 6. Comparisons between the present numerical and the published approximate values of the
first root λ1 vs. A2 [4–6].

5.3. Comparisons as α→ 1 (Classical Chlorine Decay)

In the case of α→ 1, Biswas et al. [4] deduced the following approximation:

uav =
e−A1x

1 + ε
, ε = 2.4416A0 A2 − 0.1559A0 A2

2, 0.01 ≤ A2 ≤ 10, (47)

as a consequence of the regression technique. In addition, Yeh et al. [5] showed that the uav
can be approximated as

uav =

(
1 +

2A2

4 + 2A2 + A2
2

)
e−
(

A1+
4A0 A2
2+A2

)
x, 0 ≤ A2 < 0.1. (48)
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In addition, accurate approximate solution was obtained by Mahrous [6] in the form

uav = 4A2
2

2

∑
n=1

e−(A1+A0λ2
n)x

λ2
n
(

A2
2 + λ2

n
) , λ1,2 =

√
2
(

2 + A2 ∓
√

4 + A2
2

)
, 0 ≤ A2 ≤ 1. (49)

In Figures 7–9, the present uav (given in Equation (38)) is displayed versus A1 (water
decay rate), at the outlet x = 1 of a pipe, and compared with the above different approxi-
mations. The first three roots listed in Table 1 are used to conduct our results. For a fixed
radial diffusivity value A0 = 1.4, the comparisons are performed for A2 = 0.01 (Figure 7),
A2 = 0.1 (Figure 8), and A2 = 0.5 (Figure 9). It can be seen from Figures 7 and 8 that our
results coincide with the published ones by Biswas et al. [4], Yeh et al. [5], and Mahrous [6].
However, the current results agree only with Mahrous [6] in Figure 9 when A2 is slightly
increased (A2 = 0.5). This is because the value A2 = 0.5 lies outside the range of validity
addressed by Yeh et al. [5] (0 ≤ A2 < 0.1). Although A2 = 0.5 lies inside the range of
validity conducted by Biswas et al. [4] (0.01 ≤ A2 ≤ 10), their estimated expression for the
uav deviate from our results and those of Mahrous [6]. Probably, the fitting data used by
Biswas et al. [4] needs revisions in this case.

2 4 6 8 10
A1

0.2

0.4

0.6

0.8

1.0

uav

Present

Mahrous (2021)

Yeh et al. (2008)

Biswas et al. (1994)

Figure 7. Comparisons between the present cup-mixing average concentration uav and the corre-
sponding ones in literature as α→ 1 when A0 = 1.4 and A2 = 0.01 [4–6].
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Yeh et al. (2008)

Biswas et al. (1994)

Figure 8. Comparisons between the present cup-mixing average concentration uav and the corre-
sponding ones in literature as α→ 1 when A0 = 1.4 and A2 = 0.1 [4–6].
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Mahrous (2021)

Yeh et al. (2008)

Biswas et al. (1994)

Figure 9. Comparisons between the present cup-mixing average concentration uav and the corre-
sponding ones in literature as α→ 1 when A0 = 1.4 and A2 = 0.5 [4–6].

5.4. Comparisons for α ∈ (0, 1] (Fractional Chlorine Decay)

In this section, the behavior of the present cup-mixing average concentration uav in
the FC, given in Equation (37) and the the corresponding one in Ref. [7] are declared.
For fractional chlorine decay, i.e., α ∈ (0, 1], Mahrous [7] obtained the following exact
solution for the uav:

uav = Eα(−A1xα)− 1
α

e(−A1)
1/αx + 4

∞

∑
n=1

A2
2

λ2
n
(

A2
2 + λ2

n
) e(−A1−A0λ2

n)
1/α

x. (50)

For fixed α = 1/2 and A0 = 1.4, the comparisons between the two approaches in
the FC are displayed through Figures 10–12 for the uav at A2 = 0.01 (Figure 10), A2 = 0.1
(Figure 11), and A2 = 0.5 (Figure 12). Here, it may be important to mention to that both
of our approach and Ref. [7] use the same numeric values of the three roots in Table 1.
However, a big difference in the behavior of uav is detected. In all figures, the present uav
decreases with increasing A2 in the whole domain, while the behavior of corresponding
one in Ref. [7] is completely different. In addition, the uav in Ref. [7] becomes negative in
sub-domains of A1, namely at the beginning. Moreover, the effect of α on the variation of
uav can be interpreted. Our curves in Figures 10–12 (black) at α = 1/2 are always lower
than those of Figures 7–9 (black) as α→ 1. So, the uav in the FC is of less amount than in
classical calculus. As a final note on the comparisons made above, the present analysis
agrees with the physical requirements of the problem, where the present uav is always
positive, i.e, unlike the negativity in Ref. [7]. In conclusion, the current analysis gives a
clear picture and accurate solution of the chlorine decay in the FC.
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Figure 10. Comparisons between the present cup-mixing average concentration uav and the corre-
sponding ones in Mahrous [7] at α = 1

2 (fractional chlorine decay), A0 = 1.4, and A2 = 0.01.
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Figure 11. Comparisons between the present cup-mixing average concentration uav and the corre-
sponding ones in Mahrous [7] at α = 1

2 (fractional chlorine decay), A0 = 1.4, and A2 = 0.1.
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Figure 12. Comparisons between the present cup-mixing average concentration uav and the corre-
sponding ones in Mahrous [7] at α = 1

2 (fractional chlorine decay), A0 = 1.4, and A2 = 0.5.



Fractal Fract. 2022, 6, 125 13 of 15

6. Conclusions

The transport model of the chlorine concentration decay in the FC was investigated.
The SOV method combined with the LT were applied to solve the current model. The di-
mensionless cup-mixing average concentration was obtained in closed form in terms of the
Mittag-Leffler function. It was declared that the results reduce to the standard ones in the
literature as the fractional order α tends to one. The obtained results were compared with
several studies in the literature, and the difference in results is explained and interpreted
in detail. In view of these comparisons, it can be concluded that the present analysis was
effective to giving a clear picture and accurate solution for the chlorine transport model in
the FC when compared with the previous solution in [7] for the same model.
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