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Abstract: This article primarily focuses on the approximate controllability of fractional semilinear
integrodifferential equations using resolvent operators. Two alternative sets of necessary requirements
have been studied. In the first set, we use theories from functional analysis, the compactness of an
associated resolvent operator, for our discussion. The primary discussion is proved in the second
set by employing Gronwall’s inequality, which prevents the need for compactness of the resolvent
operator and the standard fixed point theorems. Then, we extend the discussions to the fractional
Sobolev-type semilinear integrodifferential systems. Finally, some theoretical and practical examples
are provided to illustrate the obtained theoretical results.
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1. Introduction

Fractional calculus has played a considerable part in mathematics because some
physical problems cannot be solved using differential equations of an integer order, but
they can be solved using differential equations of a fractional order. Fractional systems
have received plenty of attention and are widely used in engineering, physical science,
chemical science, biology, and a variety of other subjects. Fractional calculus ideas have
recently been successfully extended to numerous sectors, and scientists are increasingly
understanding that a fractional system can well correspond to many occurrences in the
realms of regular sciences and engineering. Rheology, liquid stream, scattering, microscopic
structures, viscoelasticity, and optics are only a few of the important disciplines of fractional
calculus currently. Although diagnostic structures are typically difficult to come by, several
researchers have been impressed by the success of mathematical evaluation approaches
for fractional systems in these fields. Readers can refer to [1–19]. A Sobolev-type equation
can be found in a range of physical situations, including fluid movement through fissured
rocks, the propagation of small-amplitude long waves, and so forth, see [20–22].

In mathematical control theories and technological sectors, controllability is linked
to pole assignment, quadratic optimum control, observer design, and other concepts.
Exact and approximate controllability are the two primary principles of controllability that
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may be identified in infinite dimensional systems. Infinite-dimensional spaces contain
non-closed linear subspaces. The system can be guided to any final state with exact
controllability, whereas it can be steered to any smaller neighborhood of the final state with
approximate controllability, we refer to [13,14,17,23–33]. The results of mild solutions for
integrodifferential systems using resolvent operators were introduced by Grimmer [23–27].
In [27], the author proved the existence, uniqueness, and continuity of solutions of abstract
Volterra integral equations. In [25], the authors proved the existence of analytic resolvent
operators for integral equations in a Banach space by assuming that the closed operator A
generates an analytic semigroup and stated the hypothesis in terms of A. The existence of
a resolvent operator for such an equation is equivalent to its well-posedness obtained by
the Hille-Yosida theorem; we recommend readers to [1,3–5,23–27].

The primary contributions are: the approximate controllability of fractional semilinear
integrodifferential systems with control using resolvent operators. Two alternative sets of
requirements have been studied. In the first set, we use theories from functional analysis,
the compactness of the associated resolvent operator, for the conversation. The primary
discussion is proved in the second set by employing Gronwall’s inequality, which avoids the
need for the compactness of the resolvent operator and the standard fixed point theorems. In
the first approach, we use the fixed point technique, and in the second approach, we relaxed
the compactness of the solution operator and the application of the fixed point theorem.

Let us consider the subsequent fractional semilinear integrodifferential control systems
via resolvent operators of the form

Dα
σχ(σ) = A

[
χ(σ) +

∫ σ

0
B(σ− ι)χ(ι)dι

]
+ Bv(σ) + E(σ, χ(σ)), σ ∈ V = [0, c], (1)

χ(0) = χ0, χ′(0) = 0, (2)

where α ∈ (1, 2); A, (B(σ))σ≥0 are closed linear operators defined on a Hilbert space X, and
cDα

0+σ
χ(σ) = Dα

σχ(σ) stands for the Caputo fractional derivative of order n− 1 < α < n
of χ, which is given as

Dα
σχ(σ) =

∫ σ

0
hn−α(σ− ι)

dn

dιn
χ(ι)dι,

where n is the smallest integer greater than or equal to α, and hβ(σ) := σβ−1

Γ(β)
σ > 0, and

β > 0, v(·) ∈ L2(V, U) is a Hilbert space of admissible control functions; U is also a Hilbert
space. Furthermore, the linear operator B : U → X is bounded, and E : V × X → X.

The linear system of (1)–(2) proceeds as follows:

Dα
σχ(σ) = A

[
χ(σ) +

∫ σ

0
B(σ− ι)χ(ι)dι

]
+ Bv(σ), σ ∈ V = [0, c], (3)

χ(0) = χ0, χ′(0) = 0. (4)

Next, we examine the synopsis of the project. In the second half, the theories and
preliminary results for the resolvent operator, which will be used in this investigation,
are provided. In Sections 3 and 4, we provide the main discussion of our work. Then, in
Section 5, an example for drawing the theory of the primary outcomes is offered.

2. Preliminaries

We provide some essential results, notations, and fundamental outcomes concerning
resolvent family in this part. The resolvent set of a linear operator A is denoted by ρ(A).
∃ M ≥ 1, w 3 ‖T (σ)‖ ≤ Mewσ, σ ≥ 0 (refer to [24]). Define C as the Banach space C(V, X),
equipped with ‖z‖C ≡ supσ∈V ‖z(σ)‖, for z ∈ C.



Fractal Fract. 2022, 6, 73 3 of 14

To obtain our essential results, let us consider the following fractional integrodifferen-
tial system

Dα
σχ(σ) =Aχ(σ) +

∫ σ

0
B(σ− ι)χ(ι)dι, (5)

χ(0) =z ∈ X, χ′(0) = 0, (6)

which is connected with an α-resolvent operator of bounded linear operators (Rα(σ))σ≥0
on X.

Definition 1. In [3] A one-parameter family of bounded linear operators (Rα(σ))σ≥0 on X is said
to be an α-resolvent operator of (5) and (6) provided that the subsequent characteristics are fulfilled:

(a) Rα(·) : [0, ∞)→ L(X) is strongly continuous andRα(0)χ = χ, ∀ χ ∈ X and α ∈ (1, 2).
(b) For χ ∈ D(A),Rα(·)χ ∈ C([0, ∞), [D(A)])

⋂
C1([0, ∞), X), and

Dα
σRα(σ)χ = ARα(σ)χ +

∫ σ

0
B(σ− ι)Rα(ι)χdι, (7)

Dα
σRα(σ)χ = Rα(σ)Aχ +

∫ σ

0
Rα(σ− ι)B(ι)χdι, (8)

for every σ ≥ 0.

We now present the properties discussed in [5] to attain the mild solutions. We
introduce the operator (Rα(σ))σ≥0 in the following way:

Rα(σ) =


1

2πi

∫
Γr,θ

eλσFα(λ)dλ, σ > 0,

I, σ = 0.
(9)

We assume that the non-homogeneous system

Dα
σχ(σ) =Aχ(σ) +

∫ σ

0
B(σ− ι)χ(ι)dι + f (σ), σ ∈ [0, c], (10)

χ(0) =χ0, χ′(0) = 0, (11)

where α ∈ (1, 2) and f ∈ L1([0, a], X). Here,Rα(·) is the operator determined as in (9).

Definition 2. In [3], let α ∈ (1, 2); we define the family (Tα(σ))σ≥0 by

Tα(σ)χ :=
∫ σ

0
hα−1(σ− ι)Rα(ι)χdι,

for each σ ≥ 0.

Definition 3. In [3], let f ∈ L1([0, c], X). A function χ ∈ C([0, a], X) is called a mild solution of
(10) and (11) if

χ(σ) = Rα(σ)z +
∫ σ

0
Tα(σ− ι) f (ι)dι, σ ∈ [0, c].

Definition 4. The function χ ∈ C is called the mild solution of (1) and (2) if

χ(σ) = Rα(σ)χ0 +
∫ σ

0
Tα(σ− ι)E(ι, χ(ι))dι +

∫ σ

0
Tα(σ− ι)Bv(ι)dι, σ ∈ V,

is fulfilled.

Definition 5. The reachable set of (1) and (2) is presented as
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Kc(E) = {χ(c) ∈ X : χ(σ) designates the mild solution of (1) and (2)}.
Suppose E ≡ 0, then (1) and (2) reduce to a corresponding linear system. The reachable set for

this case is designated as Kc(0).

Definition 6. If Kc(E) = X, then the semilinear system is approximately controllable on [0, c].
Here, Kc(E) denotes the closure of Kc(E). Clearly, provided that Kc(0) = X, then the linear system
is approximately controllable.

Consider Ψ = L2(V, X). We now define ℵ : Ψ→ Ψ in the following way:

[ℵχ](σ) = E(σ, χ(σ)); 0 < σ ≤ c.

We now present ρ : Ψ→ Ψ in the following way:

[ρχ](σ) =
∫ σ

0
Tα(σ− ζ)χ(ζ)dζ.

Additionally, we present L : Ψ→ X in the following way:

Lµ =
∫ c

0
Tα(c− ζ)µ(ζ)dζ.

We take N0(L) as the null space according to L. Additionally, N0(L) is a subspace
of Ψ, which is closed, and the orthogonal space is assigned as N⊥0 (L). Therefore, Ψ is
unambiguously assigned as Ψ = N0(L)⊕ N⊥0 (L). R(B), R(B) denotes the range of B and
closure of R(B), correspondingly.

3. Integrodifferential System
3.1. Controllability Results through the Fixed Point Theorem

The topic of approximate controllability for the imagined system is the emphasis of
this section. Before we begin investigating the essential results, we make the subsequent
considerations:

Assumption 1. There exists M > 0 such that ‖Rα($)‖L(H) ≤ M and ‖Tα($)‖L(H) ≤ M for
every $ ∈ [0, c].

Assumption 2. Lµ = Lν such that ν ∈ R(B), ∀ µ ∈ Ψ.

Assumption 3. The operator Tα(σ) is compact.

Assumption 4. The function E(σ, χ(σ)) fulfills the Lipschitz condition. Additionally, there exists
a constant l > 0 fulfilling

‖E(σ, χ)− E(σ, v)‖ ≤ l‖χ−v‖, ∀ χ, v ∈ X, σ ∈ [0, c].

Let us consider lE = max0≤σ≤c ‖E(σ, 0)‖.

Clearly, by referring to Assumption (2), there exists ν ∈ R(B) along µ− ν = θ ∈ N0(L),
∀ µ ∈ Ψ. Therefore, Ψ = N0(L)⊕ R(B). Accordingly, we present P : N⊥0 L → R(B) is
continuous, linear, and defined as Pu∗ = ν∗, and ν∗ designates a unique minimum norm
element in R(B) ∩ {u∗ + N0(L)}, i.e.,

‖Pu∗‖ = ‖ν∗‖ = min{‖v‖ : v ∈ {u∗ + N0(L)} ⊕ R(B)}.
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By referring to Assumption (2), clearly, ∀ u∗ ∈ N⊥0 (L), the set R(B) ∩ {u∗ + N0(L)}
is non-void, and every z ∈ Ψ is characterized as z = θ + ν∗. Thus, P is well defined.
Additionally, ‖P‖ ≤ λ, λ > 0 (refer to [34]).

Lemma 1. In [35], let us assume that the subsequent

‖θ‖Ψ ≤ (1 + λ)‖χ‖Ψ,

fulfills ∀ χ ∈ Ψ and θ ∈ N0(L).

We now assume that Υ is the subspace of Ψ (refer to [36]) such that

Υ = {β ∈ Ψ : β(σ) = (ρθ)(σ), θ ∈ N0(L)}, 0 ≤ σ ≤ c.

Clearly, β(c) = 0, ∀ β ∈ Υ.
We present ηχ : Υ→ Υ in the following way:

ηχ(β) = ρθ;

in the above, θ is presented in the following way:

ℵ(χ + β) = θ + ν; θ ∈ N0(L), ν ∈ R(B). (12)

Theorem 1. By referring to Assumption (2), system (3) and (4) corresponding to (1) and (2) is
approximately controllable, i.e., Kc(0) = X.

Proof. One can refer to [36] with suitable modifications.

Lemma 2. Under assumptions (1) and (4), β0 ∈ Υ with ηχ(β0) = β0, if Mlc(1 + λ) < 1.

Proof. Let Ωr = {χ ∈ Ψ : ‖χ‖ ≤ r}, here r > 0. The target is to verify ηχ mapping Ωr into
itself. By using the contradiction approach, we can verify this result. Assume β ∈ Ωr, then
ηχ(β) /∈ Ωr, i.e., ‖ηχ(β)‖ > r. By referring to Lemma 1 and Assumption (1), one can obtain

r < ‖ηχ(β)‖ = ‖ρθ‖ ≤
∫ σ

0
‖Tα(σ− ζ)‖ ‖θ(ζ)‖dζ

≤ M
∫ σ

0
‖θ(ζ)‖ dζ

≤ M(1 + λ)
∫ σ

0
‖ℵ(χ + β)(ζ)‖ dζ

≤ M(1 + λ)
∫ σ

0
‖E(ζ, (χ + β)(ζ))‖ dζ

≤ M(1 + λ)
∫ σ

0
[l ‖(χ + β)(ζ)‖+ lE]dζ

≤ Ml(1 + λ)
√

σ‖χ‖Ψ + M(lr + lE)(1 + λ)σ

≤ M(1 + λ)[l
√

c ‖χ‖Ψ + lrc + lEc].

Dividing the above inequality by r and taking r −→ ∞, one can obtain

Mlc(1 + λ) ≥ 1.

Therefore, by the contradiction approach, one can come to an end that ηχ maps Ωr
into itself.

Subsequently, we verify ηχ is compact. ρ is compact when Tα(σ) is compact (by
referring to Assumption (3)); thus, ηχ is compact.
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By referring to Schauder’s fixed point theorem, β0 is the fixed point of ηχ, i.e.,

ηχ(β0) = ρθ = β0,

and the proof is complete.

Theorem 2. Suppose that the Assumptions (1)–(3) are fulfilled; provided that system (3) and (4) is
approximately controllable, system (1) and (2) is also approximately controllable.

Proof. Assume that χ(·) is the mild solution of (3) and (4), then

χ(σ) =Rα(σ)χ0 + ρBu(σ), σ ∈ [0, c]. (13)

Our target is to prove that s(σ) = χ(σ) + β0(σ) is the mild solution of the
subsequent system

Dα
σs(σ) =A

[
s(σ) +

∫ σ

0
B(σ− ι)χ(ι)dι

]
+ (Bu− ν)(σ) + E(σ, s(σ)), σ ∈ (0, c], (14)

s(0) =χ0, s′(0) = 0. (15)

From (12), we obtain
ℵ(χ + β)(σ) = θ(σ) + ν(σ),

operating ρ at β = β0, where β0 is a fixed point of ηχ and by referring to the results on Υ,
along Lemma 2, we obtain

ρℵ(χ + β0)(σ) = ρθ(σ) + ρν(σ)

= β0(σ) + ρν(σ).

Now
χ(σ) + ρℵ(χ + β0)(σ) = χ(σ) + β0(σ) + ρν(σ).

Let s(σ) = χ(σ) + β0(σ), then

χ(σ) + ρℵ(s)(σ) = s(σ) + ρν(σ),

⇒ s(σ) = χ(σ) + ρℵ(s)(σ)− ρν(σ). (16)

Using Equation (13), we obtain

s(σ) =Rα(σ)χ0 + ρ(Bu− ν)(σ) + ρℵ(s)(σ),

which concludes the mild solution of (14) and (15) along control (Bu− ν).
Additionally, we consider β0(0) = 0 = β0(τ) as

s(0) = χ(0) + β0(0) = χ0

and

s(τ) = χ(τ) + β0(τ) = χ(τ) ∈ Kc(0).

Additionally, because ν ∈ R(B), we assume that there exists a control v ∈ Y such that

‖Bv− ν‖ ≤ ε, ∀ ε > 0.

Let us consider χw(·) is the mild solution of (1) and (2) with control w = u− v, and
we can simply verify the subsequent:

‖s(τ)− χw(τ)‖ = ‖χ(τ)− χw(τ)‖ ≤ ε,
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which gives Kc(0) ⊆ Kc(E). Since Kc(0) is dense in X (by referring to Assumption (2), the
system (3) and (4) is approximately controllable); consequently, Kc(E) is also dense in X.
Therefore, system (1) and (2) is approximately controllable.

3.2. Controllability Results without the Use of the Fixed Point Theorem

Assumption 5. R(ℵ) ⊂ R(B).

Theorem 3. Supposing Assumptions (1), (2), (4), and (5), provided that system (3) and (4) is
approximately controllable, system (1) and (2) is also approximately controllable.

Proof. Assume χ(·) is the mild solution for (3) and (4), then

χ(σ) =Rα(σ)χ0 + ρBu(σ), σ ∈ [0, τ].

By referring to Assumption (5), ℵ(χ) ∈ R(B). Thus, for ε > 0, there exists
w(·) ∈ L2(V, U) with

‖ℵ(χ)− Bw‖Ψ ≤ ε.

Let us consider ϑ(σ) is the mild solution with control (u− w) for (1) and (2). Then,

χ(σ)− ϑ(σ) =
∫ σ

0
Tα(σ− ζ)Bw(ζ)dζ −

∫ σ

0
Tα(σ− ζ)[ℵϑ](ζ)dζ

=
∫ σ

0
Tα(σ− ζ)[Bw− ℵχ](ζ)dζ +

∫ ζ

0
Tα(σ− ζ)[ℵχ− ℵϑ](ζ)dζ.

Applying the norm, we obtain

‖χ(σ)− ϑ(σ)‖ ≤M
∫ σ

0
‖Bw(ζ)− [ℵχ](ζ)‖Xdζ + M

∫ σ

0
‖[ℵχ](ζ)− [ℵϑ](ζ)‖dζ

≤M
√

σ‖Bw− ℵχ‖Ψ + Ml
∫ σ

0
‖χ(ζ)− ϑ(ζ)‖dζ

≤Mε
√

σ + Ml
∫ σ

0
‖χ(ζ)− ϑ(ζ)‖dζ.

By employing Gronwall’s inequality, and by assuming appropriate control w, one can
create ‖χ(c)− ϑ(c)‖X arbitrarily small. Therefore, the solution set of (1) and (2) is dense in
(3) and (4), which is dense in X, and the proof is complete.

4. Sobolev-Type Integrodifferential System
4.1. Controllability Results through the Fixed Point Theorem

The topic of approximate controllability for the imagined system is the emphasis of
this section.

Assume that the Sobolev-type system has the subsequent form

Dα
σ[Kχ(σ)] = A

[
χ(σ) +

∫ σ

0
B(σ− ι)χ(ι)dι

]
+ Bv(σ) + E(σ, χ(σ)), σ ∈ V = [0, c], (17)

χ(0) = χ0, χ′(0) = 0. (18)

The linear system for (17) and (18) has the subsequent form

Dα
σ[Kz(σ)] = A

[
χ(σ) +

∫ σ

0
B(σ− ι)χ(ι)dι

]
+ Bv(σ), σ ∈ I = (0, c], (19)

χ(0) = χ0, χ′(0) = 0, (20)

By referring to [22], we introduce the subsequent characteristics on the linear operators
A : D(A) ⊂ X → X and K : D(A) ⊂ X → X
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(K1) A and K are closed linear operators.
(K2)D(K) ⊂ D(A) and K is bijective.
(K3)K−1 : X → D(K) is continuous.

Additionally, because of (K1) and (K2), K−1 is closed, by (K3) and from the closed
graph theorem, we have the boundedness of AK−1 : X → X. We assume that ‖K−1‖ = K̃1
and ‖L‖ = K̃2.

Definition 7. The function χ ∈ C is said to be the mild solution of (17) and (18) provided that

χ(σ) = K−1Rα(σ)Kz0 +
∫ σ

0
K−1Tα(σ− ι)E(ι, χ(ι))dι +

∫ σ

0
K−1Tα(σ− ι)Bv(ι)dι, σ ∈ I,

is fulfilled.

We present ℵ : Ψ→ Ψ in the following way:

[ℵχ](σ) = E(σ, χ(σ)); 0 < σ ≤ c.

We now present ρ : Ψ→ Ψ in the following way:

[ρχ](σ) =
∫ σ

0
K−1Tα(σ− ζ)χ(ζ)dζ.

Additionally, we present L : Ψ→ X in the following way:

Lµ =
∫ c

0
K−1Tα(c− ζ)µ(ζ)dζ.

Before we begin investigating the primary outcomes, we make the following assumptions:

Assumption 6. Lµ = Lν such that ν ∈ R(B), ∀ µ ∈ Ψ.

Lemma 3. In [35] Let us assume that the subsequent

‖θ‖Ψ ≤ (1 + λ)‖χ‖Ψ,

fulfills ∀ χ ∈ Ψ and θ ∈ N0(L).

We now assume that Υ is the subspace of Ψ (refer to [36]) such that

Υ = {β ∈ Ψ : β(σ) = (ρθ)(σ), θ ∈ N0(L)}, 0 ≤ σ ≤ c.

Clearly, β(c) = 0, ∀ β ∈ Υ.
We present ηχ : Υ→ Υ in the following way:

ηχ(β) = ρθ;

in the above, θ is presented in the following way:

ℵ(χ + β) = θ + ν; θ ∈ N0(L), ν ∈ R(B). (21)

Theorem 4. By referring to Assumption (6), system (19) and (20) is approximately controllable,
i.e., Kc(0) = X.

Proof. One can refer to [36] with suitable modifications.

Lemma 4. Under Assumptions (1) and (4), β0 ∈ Υ with ηχ(β0) = β0 if MK̃1lc(1 + λ) < 1.
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Proof. Let Ωr = {χ ∈ Ψ : ‖χ‖ ≤ r} where r > 0. The target is to verify ηχ mapping Ωr
into itself. By using the contradiction approach, we can verify this result. Assume β ∈ Ωr,
then ηχ(β) /∈ Ωr, i.e., ‖ηχ(β)‖ > r. By referring to Lemma 3 and Assumption (1), one
can obtain

r < ‖ηχ(β)‖ = ‖ρθ‖ ≤
∫ σ

0
‖K−1Tα(σ− ζ)‖ ‖θ(ζ)‖dζ

≤ MK̃1

∫ σ

0
‖θ(ζ)‖ dζ

≤ MK̃1(1 + λ)
∫ σ

0
‖ℵ(χ + β)(ζ)‖ dζ

≤ MK̃1(1 + λ)
∫ σ

0
‖E(ζ, (χ + β)(ζ))‖ dζ

≤ MK̃1(1 + λ)
∫ σ

0
[l ‖(χ + β)(ζ)‖+ lE]dζ

≤ MK̃1l(1 + λ)
√

σ‖χ‖Ψ + M(lr + lE)(1 + λ)σ

≤ MK̃1(1 + λ)[l
√

c ‖χ‖Ψ + lrc + lEc].

Dividing the above inequality by r and taking r −→ ∞, one can obtain

MK̃1lc(1 + λ) ≥ 1.

Subsequently, we verify ηχ is compact. ρ is compact when Tα(σ) is compact (by
referring to Assumption (3)); thus, ηχ is compact.

By referring to Schauder’s fixed point theorem, β0 is the fixed point of ηχ, i.e.,

ηχ(β0) = ρθ = β0,

and the proof is complete.

Theorem 5. Suppose that Assumptions (1), (3), and (6) are fulfilled; provided that system (19) and
(20) is approximately controllable, system (17) and (18) is also approximately controllable.

Proof. Assume that χ(·) is the mild solution of (19) and (20), then

χ(σ) =K−1Rα(σ)Kz0 + ρBu(σ), σ ∈ [0, c]. (22)

Our target is to prove that s(σ) = χ(σ) + β0(σ) is the mild solution of the
subsequent system

Dα
σKs(σ) =A

[
s(σ) +

∫ σ

0
B(σ− ι)χ(ι)dι

]
+ (Bu− ν)(σ) + E(σ, s(σ)), σ ∈ (0, c], (23)

s(0) =χ0, s′(0) = 0. (24)

From (21), we obtain
ℵ(χ + β)(σ) = θ(σ) + ν(σ),

operating ρ at β = β0, where β0 is a fixed point of ηχ, and by referring to the results on Υ,
along Lemma 4, we obtain

ρℵ(χ + β0)(σ) = ρθ(σ) + ρν(σ),

= β0(σ) + ρν(σ).

Now
χ(σ) + ρℵ(χ + β0)(σ) = χ(σ) + β0(σ) + ρν(σ).
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Let s(σ) = χ(σ) + β0(σ), then

χ(σ) + ρℵ(s)(σ) = s(σ) + ρν(σ),

⇒ s(σ) = χ(σ) + ρℵ(s)(σ)− ρν(σ). (25)

Using Equation (22), we obtain

s(σ) =K−1Rα(σ)Kz0 + ρ(Bu− ν)(σ) + ρℵ(s)(σ),

which concludes the mild solution of (23) and (24) along control (Bu− ν).
Additionally, let us consider β0(0) = 0 = β0(τ) as

s(0) = χ(0) + β0(0) = χ0

and

s(τ) = χ(τ) + β0(τ) = χ(τ) ∈ Kc(0).

Additionally, because ν ∈ R(B), we assume that there exists a control v ∈ Y

‖Bv− ν‖ ≤ ε, ∀ ε > 0.

Let us consider that χw(·) is the mild solution of (17) and (18) with control w = u− v.
One can simply verify the subsequent:

‖s(τ)− χw(τ)‖ = ‖χ(τ)− χw(τ)‖ ≤ ε,

which gives Kc(0) ⊆ Kc(E). Since Kc(0) is dense in X (by referring Assumption (2),
system (3) and (4) is approximately controllable); consequently, Kc(E) is also dense in X.
Therefore, system (17) and (18) is approximately controllable.

4.2. Controllability Results without the Use of the Fixed Point Theorem

Assumption 7. R(ℵ) ⊂ R(B).

Theorem 6. Supposing Assumptions (1), (4), (6), and (7), provided that system (19) and (20) is
approximately controllable, system (17) and (18) is also approximately controllable.

Proof. Assume χ(·) is the mild solution for (19) and (20), then

χ(σ) =K−1Rα(σ)Kz0 + ρBu(σ), σ ∈ [0, τ].

By referring to Assumption (7), ℵ(χ) ∈ R(B). Thus, for ε > 0, there exists
w(·) ∈ L2(V, U) with

‖ℵ(χ)− Bw‖Ψ ≤ ε.

Let us consider ϑ(σ) is the mild solution with control (u− w) for (17) and (18). Then,

χ(σ)− ϑ(σ) =
∫ σ

0
K−1Tα(σ− ζ)Bw(ζ)dζ −

∫ σ

0
K−1Tα(σ− ζ)[ℵϑ](ζ)dζ

=
∫ σ

0
K−1Tα(σ− ζ)[Bw− ℵχ](ζ)dζ +

∫ ζ

0
K−1Tα(σ− ζ)[ℵχ− ℵϑ](ζ)dζ.

Applying the norm, we obtain

‖χ(σ)− ϑ(σ)‖ ≤MK̃1

∫ σ

0
‖Bw(ζ)− [ℵχ](ζ)‖Xdζ + MK̃1

∫ σ

0
‖[ℵχ](ζ)− [ℵϑ](ζ)‖dζ
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≤MK̃1
√

σ‖Bw− ℵχ‖Ψ + MK̃1l
∫ σ

0
‖χ(ζ)− ϑ(ζ)‖dζ

≤MK̃1ε
√

σ + MK̃1l
∫ σ

0
‖χ(ζ)− ϑ(ζ)‖dζ.

By employing Gronwall’s inequality, and by assuming appropriate control w, one can
create ‖χ(c)− ϑ(c)‖X arbitrarily small. Therefore, the solution set of (17) and (18) is dense
in (19) and (20), which is dense in X, and the proof is complete.

5. Examples
5.1. Integrodifferential System

Let us consider the subsequent fractional integrodifferential system of the form

∂α

∂σα
χ(σ, ξ) =

∂2

∂ξ2 χ(σ, ξ) +
∫ σ

0
(σ−v)δe−γ(σ−v) ∂2

∂ξ2 χ(v, ξ)dv + µ(σ, ξ)

+ γ(σ, χ(σ, ξ)), (σ, ξ) ∈ V × [0, π], (26)

χ(σ, 0) = χ(σ, π) = 0, σ ∈ [0, c], (27)

χσ(0, ξ) = 0, σ ∈ [0, c], (28)

χ(v, ξ) = φ(v, ξ), v ≤ 0, ξ ∈ [0, π]. (29)

In the above, ∂α

∂σα = Dα
σ, α ∈ (1, 2), and the function µ : V× [0, π]→ [0, π] is continuous.

To convert the system (26)–(29) into (1) and (2), we assume X = L2([0, π]) and A :
D(A) ⊆ X → X is presented as Ax = x′′, with D(A) = {x ∈ X : x′′ ∈ X, x(0) = x(π) =
0}. A is the infinitesimal generator of an analytic semigroup on X. Therefore, A is of
sectorial type and (P1) is fulfilled. Assume B(σ) : D(A) ⊆ X → X, σ ≥ 0, B(σ)x =
σδe−γσ Ax for x ∈ D(A). Clearly, (P2) and (P3) are fulfilled along with b(σ) = σδe−γσ.
Thus, (5) and (6) has connected α-resolvent operators (Rα(σ))σ≥0 on X.

Assume that E(σ, ψ) = γ(σ, χ(σ, ξ)). Additionally, B : U → X by Bu(σ, ξ) = µ(σ, ξ),
0 < ξ < π. Let us consider that the above functions meet the hypotheses conditions above,
and we conclude that (26)–(29) is approximately controllable.

5.2. Sobolev-Type Integrodifferential System

Let us consider the subsequent Sobolev-type system of the form

∂α

∂σα
[χ(σ, ξ)− ∂2

∂ξ2 χ(σ, ξ)] =
∂2

∂ξ2 χ(σ, ξ) +
∫ σ

0
(σ−v)δe−γ(σ−v) ∂2

∂ξ2 χ(v, ξ)dv + µ(σ, ξ)

+ γ(σ, χ(σ, ξ)), (σ, ξ) ∈ V × [0, π], (30)

χ(σ, 0) = χ(σ, π) = 0, σ ∈ [0, c], (31)

χσ(0, ξ) = 0, σ ∈ [0, c], (32)

χ(v, ξ) = φ(v, ξ), v ≤ 0, ξ ∈ [0, π]. (33)

In the above, ∂α

∂σα = Dα
σ, α ∈ (1, 2), µ : V × [0, π]→ [0, π] is a continuous function.

We convert the system (30)–(33) into (17) and (18), assume X = L2([0, π]), and assume
A : D(A) ⊂ X → X, K : D(K) ⊂ X → X are the operators determined by Ax = x′′, and
Kx = x− x′′ where D(A) and D(K) is presented by

{x ∈ X : x, x′ are absolutely continuous, x(0) = x(π) = 0}.

We conclude that A is the infinitesimal generator of an analytic semigroup on X.
Therefore, A is sectorial, and the properties (P1) hold. Additionally, A and K are given by

Ax =
∞

∑
m=1

m2〈x, χm〉χm, x ∈ D(A),
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Kx =
∞

∑
m=1

(1 + m2)〈x, χm〉χm, x ∈ D(K).

Additionally, for z ∈ X, we have

K−1z =
∞

∑
m=1

1
(1 + m2)

〈z, χm〉χm,

and

AK−1z =
∞

∑
m=1

m2

(1 + m2)
〈z, χm〉χm.

Assume that E(σ, ψ) = γ(σ, χ(σ, ξ)). Additionally, B : U → X by Bu(σ, ξ) = µ(σ, ξ),
0 < ξ < π. Therefore, all the requirements are verified, and (30)–(33) is approximately
controllable.

5.3. Filter System

An advanced filter is a framework that performs mathematical operations on an
inspected digitized sign to decrease or upgrade certain highlights of the prepared signal.
Propelled by the plans examined in [9,37], we presented a filter design for our framework,
which is shown in Figure 1. Figure 1 depicts a crude block diagram pattern that aids in
improving the viability of an arrangement with the fewest possible input sources.

Figure 1. Filter System.

• Product modulator (PM) 1 receives the input A, Tα(σ), and presents the output
as ATα(σ).

• In the same way, PM 2 receives x(ι), E, and presents E(ι, x(ι)).
• PM 3 receives v(ι), B and presents Bv(ι).
• PM 4 receives x0 andRα(σ) at time σ = 0, and presentsRα(σ)x0.
• The integrators executed the integral of Tα(σ)[E(σ, x(σ)) + Bv(σ)], over σ.
• Inputs Tα(σ), E are mixed and multiplied with an integrator output over (0, σ).
• In the same way, Tα(σ), B are mixed and multiplied with an integrator output

over (0, σ).
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In the end, we move all integrator outputs to the summer network. Consequently, the
output x(t)

x(σ) = Rα(σ)x0 +
∫ σ

0
Tα(σ− ι)E(ι, x(ι))dι +

∫ σ

0
Tα(σ− ι)Bv(ι)dι, σ ∈ V,

is attained.

6. Conclusions

This discussion primarily focused on the approximate controllability of fractional
integrodifferential equations using resolvent operators. Two alternative sets of necessary
requirements were studied. In the first set, we used theories from functional analysis, the
compactness of an associated resolvent operator, for our discussion. In the second set,
Gronwall’s inequality was used to prove the primary discussion, which eliminated the
need for resolvent operator compactness and traditional fixed point theorems. The concept
was then extended to a Sobolev-type system.

We will concentrate on approximate controllability for fractional integrodifferential sys-
tems using resolvent operators in both deterministic and stochastic contexts in the future.
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