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Abstract: The study of hidden attractors plays a very important role in the engineering applications of
nonlinear dynamical systems. In this paper, a new three-dimensional (3D) chaotic system is proposed
in which hidden attractors and self-excited attractors appear as the parameters change. Meanwhile,
asymmetric coexisting attractors are also found as a result of the system symmetry. The complex
dynamical behaviors of the proposed system were investigated using various tools, including time-
series diagrams, Poincaré first return maps, bifurcation diagrams, and basins of attraction. Moreover,
the unstable periodic orbits within a topological length of 3 in the hidden chaotic attractor were
calculated systematically by the variational method, which required six letters to establish suitable
symbolic dynamics. Furthermore, the practicality of the hidden attractor chaotic system was verified
by circuit simulations. Finally, offset boosting control and adaptive synchronization were used to
investigate the utility of the proposed chaotic system in engineering applications.

Keywords: hidden attractor; unstable periodic orbit; circuit simulation; coexisting attractors; offset
boosting; adaptive synchronization

1. Introduction

Chaos theory has grown tremendously in recent decades and holds great promise
for practical applications [1,2]. The study of chaotic systems began with the discovery of
strange attractors by Lorenz in 1963 [3], when he constructed a three-dimensional (3D)
quadratic chaotic system that exhibited the famous butterfly effect. Many other chaotic
systems have since been presented, some of which satisfy the Šhil’nikov theorem [4], such
as the Chen system [5], Qi system [6], Lü system [7], and Rössler system [8]. Recently,
two types of attractors were classified by Leonov and Kuznetsov [9], namely self-excited
attractors and hidden attractors, and the difference between them is reflected in whether
the attractor intersects a neighborhood of any unstable fixed points. The Lorenz system
and the systems mentioned above are all referred to as self-excited attractors, while others
that do not satisfy the Šhil’nikov theorem are referred to as hidden attractors. Owing
to the unique features of hidden attractors, they are difficult to locate and thus play a
vital role in encryption and communication [10–12]. However, hidden attractors also
bring disadvantages and present difficulties in the simulation of drilling systems and
phase-locked loops [13].

Based on this, the study of hidden attractors has become an attractive research di-
rection and has received considerable attention from researchers. There are three main
types of hidden attractors, which are systems with no equilibria [14–17], only stable equi-
libria [18–20], and infinitely many equilibria [21,22]. The types of hidden attractors with
infinite numbers of equilibria can be divided into various systems, including systems with
line equilibria, ellipsoidal equilibria, and circular equilibria. Currently, for hidden attractors
with infinite equilibria, researchers have primarily focused on systems with line equilib-
ria [23–25]. By using a computer search, Jafari et al. discovered nine chaotic flows with line
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equilibria, all of which were hidden attractor chaotic systems [26]. Some new systems with
hidden chaotic attractors were constructed by introducing perturbations or nonlinear terms
into existing hidden attractor chaotic systems [27,28], while many new systems have also
been obtained on the basis of modifying the Sprott system and Jafari system [29,30]. The
existence of multi-stability can be found in hidden attractor chaotic systems, as reflected
by the fact that coexisting attractors have been discovered, and thus, performance flexibil-
ity can be achieved [31,32]. In addition, researchers have also concentrated on studying
hidden chaotic attractors in fractional-order systems [33–36], memristor systems [37–40]
and jerk systems [41,42]. Hyperchaotic systems with planes or surfaces of equilibrium
points that have hidden attractors are of particular interest, as they exhibit more complex
dynamical behaviors than low-dimensional chaotic systems [43,44]. Multiscroll chaotic
systems have exceptional benefits in the areas of digital image encryption and private
communication [45]. The multi-stability in asymmetric systems, conditional symmetric
systems, and self-reproducing systems also have attracted widespread attention [46–48].
In Ref. [49], the complex dynamic behaviors and hidden attractors in delayed impulsive
systems were explored by means of various bifurcation analyses.

In this paper, we constructed a new hidden attractor chaotic system and explored its
dynamical behavior using attraction basins, power spectra, bifurcation diagrams, and other
nonlinear analysis tools. Our motivation was to develop an effective method to devise
a novel chaotic system with hidden and coexisting attractors based on the existing ones,
enabling us to further understand the properties of hidden attractors and multi-stability.
The main difficulties in constructing such a system is that there is no general method
to clarify which form of feedback controller can be added to produce a new variable-
boostable system with both hidden attractors and coexisting attractors. The application of
the proposed design lies in the new system being easy to control and synchronize, and the
variable can be boosted to any level, so it can reduce the number of components required for
signal conditioning. Moreover, offset boosting can be combined with amplitude control to
achieve the full range of linear transformations of the signal. Furthermore, the existence of
coexisting attractors can also make the system more flexible without adjusting parameters,
and it can be used with suitable control strategies to cause switching between various
coexisting states. Therefore, it has potential application prospects in the engineering field.

The main contributions and novelty of this work are summarized as follows. (1) We
proposed a new 3D chaotic system and explored the adaptive synchronization of the new
system. Compared to the above contributions in the literature, the prominent feature of the
new system is that it belongs to the variable-boostable chaotic flow, which indicated that
it is convenient for chaotic applications. (2) We found self-excited attractors and hidden
attractors with two stable equilibrium points in this dissipative system when the parameters
were varied. In addition, we investigated the existence of various coexisting asymmetric
attractors. To the best of our knowledge, this combination of novel characteristics has
rarely been reported. (3) We developed a topological classification method and built
complicated symbolic dynamics with six letters instead of four, encoding the unstable
periodic orbits embedded in the hidden chaotic attractor, which allowed one to perform a
more comprehensive analysis of the periodic orbits.

The rest of the paper is organized as follows. A new hidden attractor chaotic system is
proposed, and its fundamental properties and dynamical characteristics under parameter
variations are explored in Section 2. In Section 3, a numerical method for calculating
periodic orbits, the variational method, is introduced. Section 4 uses the variational method
to systematically calculate the periodic orbits of the new system. In Section 5, a corre-
sponding circuit is designed to verify its practicality. Offset boosting control and adaptive
synchronization of the novel system are investigated in Section 6. Finally, Section 7 presents
the conclusions.
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2. New Hidden Chaotic System with Two Stable Equilibria

In retrospect, Wei and Yang introduced the generalized Sprott C system with three
real parameters [50]:

dx
dt

= a(y− x),

dy
dt

= −cy− xz, (1)

dz
dt

= y2 − b.

When a = 10, b = 100, and c = 0.4, there is a hidden chaotic attractor in system (1),
which is characterized by two stable fixed points.

With the use of the Bendixson theorem, a hidden attractor was found in a complex
variable Lorenz chaotic system [51]. In this work, we discovered the hidden attractor by
adding a disturbance term to the existing chaotic system, which could lead to the generation
of a new system, but there is no universal method. We first found that the construction of
hidden attractor chaotic systems cannot be realized by adding a constant or linear term to
the generalized Sprott C system. Therefore, we attempted to add a nonlinear term to the
system, and it was further confirmed that adding it to the third equation of Equation (1)
could generate hidden chaotic attractors. Inspired by system (1), we propose a new system
by adding the kxy term to the third equation as follows:

dx
dt

= a(y− x),

dy
dt

= −cy− xz, (2)

dz
dt

= y2 − b + kxy,

where x, y, z are the state variables, and a, b, c, k are positive constant parameters. When
we select the parameter values of a = 12, b = 100, c = 10, and k = 4.6, the three Lyapunov
exponents of system (2) can be estimated. To avoid transient chaos, we extended the time,
and the Lyapunov exponents after 20,000 s were L1 = 0.9861, L2 = 0, and L3 = −22.9857.
The largest Lyapunov exponent was greater than 0, which confirmed the existence of chaos,
as shown in Figure 1. Meanwhile, according to the Kaplan–Yorke formula,

DKY = j +
1∣∣Lj+1
∣∣ j

∑
i=1

Li = 2 +
L1 + L2

|L3|
= 2.0429, (3)

the fractal dimension also further verifies that the new system is chaotic.

2.1. Basic Properties of New Chaotic System

The basic properties of the new chaotic system are described as follows.
(1) Symmetry about the z-axis: When the coordinates are transformed, (x, y, z) →

(−x,−y, z), the form of system (2) remains unchanged.
(2) Dissipativity:

∇ ·V =
∂
·
x

∂x
+

∂
·
y

∂y
+

∂
·
z

∂z
= −a− c. (4)

Since a and c are positive constants, the new system (2) is dissipative. Based on
the equation,

dV
dt

= e−a−c, (5)

the system converges to a set of measure zero exponentially as the volume of the phase
space is contracted, V = V0e−a−c. Therefore, the system will end up fixed to an attractor.
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(3) Equilibrium: The new system has two fixed points:

E1 = (

√
b

k + 1
,

√
b

k + 1
,−c),

E2 = (−
√

b
k + 1

,−
√

b
k + 1

,−c). (6)

The Jacobi matrix can be obtained as follows:

J =

 −a a 0
−z −c −x
ky 2y + kx 0

. (7)

The characteristic equation is

f (λ) = λ3 + (a + c)λ2 + (ac + 2xy + kx2 + az)λ + 2axy + akx2 + akxy. (8)

By substituting the coordinates of the two fixed points separately, we obtain the same
characteristic equation:

f (λ) = a3λ3 + a2λ2 + a1λ + a0, (9)

where

a3 = 1,

a2 = a + c,

a1 = b +
b

k + 1
, (10)

a0 = 2ab.

From the Routh–Hurwitz criterion, the two fixed points are stable if the following
conditions are satisfied: ai > 0, (i = 0, 1, 2, 3), a2a1 − a3a0 > 0. The condition that needs
to be satisfied for this system to have hidden attractors is (c− a)k > −2c. For the current
parameters (a, b, c, k) = (12, 100, 10, 4.6), the Routh–Hurwitz stability criterion can be
satisfied. As a result, the two fixed points E1 and E2 are both stable node-focus points. The
new system is a chaotic system in which a strange attractor is hidden.

(4) Power spectrum: The power spectrum of the chaotic state is almost fully covered
with background and broad peaks, as shown in Figure 2.

Figure 1. Lyapunov exponent spectrum of the new system (2) for (a, b, c, k) = (12, 100, 10, 4.6).
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Figure 2. Continuous broadband power spectrum of the new chaotic system for (a, b, c, k) =

(12, 100, 10, 4.6).

(5) Phase portraits: Using the fourth-order Runge–Kutta numerical integration method,
the 2D phase diagrams of the chaotic system for a time-length of 200 s with a = 12, b = 100,
c = 10, and k = 4.6 were obtained from the initial conditions (x0, y0, z0) = (1, 1, 1), as
shown in Figure 3.
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Figure 3. Projection in different two-dimensional (2D) phase spaces of system (2) for (a, b, c, k) =
(12, 100, 10, 4.6): (a) x-y plane, (b) x-z plane, and (c) y-z plane.
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In addition, based on the definition of a hidden attractor, we checked the basins of
attraction to determine whether a chaotic attractor of the new system could be found from
the initial conditions near the equilibrium points. A cross-section at z = −10 was selected,
and the basins of attraction were captured in three regions, as shown in Figure 4a, in which
the blue dots represent the crossing trajectories of the chaotic attractor. The initial values
in the red and yellow regions converged to the fixed points E1 and E2, respectively. The
orange region represents chaos. In simple terms, the initial values in this region result
in a chaotic state. Therefore, it can be clearly observed from the basins of attraction that
system (2) contains a hidden chaotic attractor.

The exact correspondence is illustrated in Figure 4b, where the phase diagram tra-
jectory finally converges to the fixed point E1 for the initial value I1 = (12,−5,−10) in
the red attraction basin and to the fixed point E2 for the initial value I2 = (−12, 5,−10) in
the yellow attraction basin, while the initial value (1, 1,−10) in the orange region finally
evolves to chaos. In Figure 4c, coexisting time series for different initial values are also
shown, which indicates the multi-stability in system (2).
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Figure 4. (a) Three colored basins of attraction at z = −10 on (x, y) plane. (b) Three-dimensional
(3D) views of the chaotic attractor and two fixed point attractors. (c) Coexisting time-series diagram
of x(t).

2.2. Observation of Chaotic and Complex Dynamics

The system parameters change to enrich the dynamical behaviors of the new system (2).
In order to completely explore the diverse dynamical behaviors, we investigated the
bifurcations under parameter variations and verified the complicated dynamical behaviors
with the aid of bifurcation diagrams, largest Lyapunov exponent spectra, and division
diagrams of two parameters.
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2.2.1. Fix b = 100, c = 10, and k = 4.6 and Vary a

We fixed the parameters as b = 100, c = 10, and k = 4.6 while letting a vary in the
region [0, 30]. A summary of the results of the bifurcation diagram and the corresponding
largest Lyapunov exponent spectrum are shown in Figure 5. When a increased, the new
system converged to a fixed point and then transitioned to chaos, after which the solution
became periodic through an inverse period-doubling bifurcation, then evolved to chaos,
and finally degenerated to periodic solutions again.

Different types of coexisting attractors can also be found in system (2), which shows
that the multi-stability of the new system is very rich. As the 2D phase portraits show
in Figure 6a,b, system (2) included two coexisting chaotic attractors for the parameter
a = 27.35 when different initial values (x0, y0, z0) = (1, 1, 1) and (x0, y0, z0) = (−1,−1, 1)
were selected. Moreover, when the parameter was set at a = 29, the system entered a
periodic state, and due to the symmetry of the system, the coexistence of two periodic
attractors appeared, as depicted in Figure 6c,d. A periodic attractor whose tip faced right
or left was obtained depending on the initial values.
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Figure 5. (a) Bifurcation diagram and (b) largest Lyapunov exponent spectrum versus a, where
b = 100, c = 10, and k = 4.6.

2.2.2. Fix a = 12, c = 10, and k = 4.6 and Vary b

Keeping the parameters a = 12, c = 10, and k = 4.6 constant, we let b vary from 40
to 140. Figure 7 shows the bifurcation diagram and the maximum Lyapunov exponent
diagram versus b. The system went through a process of period-doubling bifurcations to
chaos, transitioning from a periodic to a chaotic solution. The solution was chaotic over
a large range, from 68 to 140, which was accompanied by periodic windows. In Figure 8,
we present the exact details of the various periodic solutions that occur when b varies. It
is worth noting that asymmetric periodic attractors coexist when b = 47 with the initial
values of (x0, y0, z0) = (1, 1, 1) and (x0, y0, z0) = (−1,−1, 1).

2.2.3. Fix a = 12, b = 100, and k = 4.6 and Vary c

We varied c from−10 to 20 while keeping a = 12, b = 100, and k = 4.6. The bifurcation
diagram and largest Lyapunov exponent spectrum are shown in Figure 9. The system
exhibited intriguing dynamical behaviors in this case, undergoing a pitchfork bifurcation
followed by a period-doubling bifurcation route to chaos, interspersed with several periodic
windows, and finally, it converged to the equilibrium point. Rich dynamical behaviors can
also be observed from the phase diagrams with different parameter values, as displayed in
Figure 10. The complexity of the chaos varied when parameter c was changed, and there
was a significant difference, which can also be reflected by the size of the largest Lyapunov
exponent. Compared with the strange attractor when c = 8 (see Figure 10c), we conclude
that the chaotic behavior of the system was more complex when c = −2 (see Figure 10b).
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Figure 6. Two-dimensional views of coexisting chaotic attractors and periodic attractors in system (2)
with parameters b = 100, c = 10, and k = 4.6 : (a) a = 27.35, (x0, y0, z0) = (1, 1, 1), (b) a = 27.35,
(x0, y0, z0) = (−1,−1, 1), (c) a = 29, (x0, y0, z0) = (1, 1, 1), and (d) a = 29, (x0, y0, z0) = (−1,−1, 1).
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Figure 7. (a) Bifurcation diagram of |y| with b as the varied parameter and (b) the largest Lyapunov
exponent spectrum, where a = 12, c = 10, and k = 4.6.
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Figure 8. Three-dimensional views of various limit cycles with parameters a = 12, c = 10,
and k = 4.6: (a) b = 45, (x0, y0, z0) = (1, 1, 1), (b) b = 47, (x0, y0, z0) = (1, 1, 1), (c) b = 47,
(x0, y0, z0) = (−1,−1, 1), and (d) b = 65, (x0, y0, z0) = (1, 1, 1).
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Figure 9. (a) Bifurcation diagram of |y| with c as the varied parameter and (b) the largest Lyapunov
exponent spectrum, where a = 12, b = 100, and k = 4.6.
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Figure 10. Three-dimensional views of rich dynamical behaviors with parameters a = 12, b = 100,
and k = 4.6: (a) c = −10, (b) c = −2, (c) c = 8, and (d) c = 15. The initial values of
(x0, y0, z0) = (1, 1, 1) were selected.

2.2.4. Fix a = 12, b = 100, and c = 10 and Vary k

We varied k from 0 to 20, again keeping the other parameters constant at a = 12,
b = 100, and c = 10. From the results in Figure 11, it is evident that the system transitioned
from convergence to a fixed point into chaos, which was accompanied by periodic windows
in between. Table 1 lists the Lyapunov exponents and Kaplan–Yorke dimensions for the
different parameter values, demonstrating the diverse dynamical behaviors with the change
of the k value.
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Figure 11. (a) Bifurcation diagram of |y| with k as the varied parameter and (b) the largest Lyapunov
exponent spectrum, where a = 12, b = 100, and c = 10.
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Table 1. Lyapunov exponents and Kaplan–Yorke dimension of system (2): (a, b, c) = (12, 100, 10) and
(x0, y0, z0) = (1, 1, 1).

k L1 L2 L3 DKY Dynamics

1 −0.794149 −0.795286 −20.4107 0 Equilibrium
3 0.961912 0 −22.9613 2.0419 Chaos

4.225 0 −0.0340439 −21.9686 1.0 Period
5 0.920123 0 −22.9146 2.0399 Chaos

5.54 0 −0.0956672 −21.9091 1.0 Period
13 0.742037 0 −22.7375 2.0324 Chaos

2.2.5. Division of Different Parameters

The division diagram for the parameters c and k is shown to investigate the character-
istics of the dynamical behaviors of the new system when the other parameters remained
constant at a = 12 and b = 100. The parameter c was set to vary between −10 and 30,
whereas the parameter k was altered between 0 and 25. Figure 12a shows the division
of this region by a pseudo-colored map, which was obtained by computing the largest
Lyapunov exponents. There are a variety of colors in the division diagram, corresponding
to rich variations. The different colors represent different dynamical behaviors. Red, orange,
yellow, and green represent chaotic states, cyan corresponds to a periodic state, and blue
indicates an equilibrium state. The complexity of the chaos increased as the color became
redder. The division diagram of the parameters c and k coincides well with the different
dynamical behaviors for the individual parameters shown in Figures 9 and 11. Similarly,
we fixed c = 10 and k = 4.6, and the division diagram for parameters a and b was obtained,
as shown in Figure 12b, in which most regions are periodic. The division diagrams in
Figure 12 indicate that the dynamical behaviors of the new system were very rich.

(a) (b)

Figure 12. Diagram of largest Lyapunov exponents with different parameters: (a) division for
parameters c and k (a = 12 and b = 100) and (b) division for parameters a and b (c = 10 and k = 4.6).

3. Variational Method

Chaotic motion consists of multiple unstable periodic orbits embedded in the strange
attractor [52]. The study of periodic orbits gives us a better understanding of the chaotic
properties of dynamical systems. If the system is high-dimensional or strongly chaotic,
many existing methods for finding unstable periodic orbits will become inefficient or even
fail. Here, we use the new method proposed by Lan and Cvitanović, namely the variational
method [53]. This method is robust and converges at a fast rate. The variational method
employs the logical limit of the multi-point shooting method. First, we have to make an
initial loop guess for the overall topology of the unstable periodic orbit and then drive it
toward the evolution of the real periodic orbit. The following partial differential equation
dominates the loop evolution toward the cycle:
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∂2∼x
∂s∂τ

− λA
∂
∼
x

∂τ
− v

∂λ

∂τ
= λv− ∼v. (11)

In Equation (11), λ is used to control the period, the deformation of the loop is
described by the fictitious time τ, the intrinsic coordinate used to parameterize the loop
is s ∈ [0, 2π], Aij =

∂vi
∂xj

denotes the gradient matrix of the velocity field, v is the dynamic

flow vector field, defined by the derivative of x, and
∼
v represents the tangential velocity of

the loop.
The stability of the numerical method can be achieved using the Newton descent

method. At this point, the cost function obtained by the evolution of the loop toward the
cycle is monotonically decreasing:

F2[(
∼
x)] =

1
2π

∮
L(τ)

d
∼
x[
∼
v(
∼
x)− λv(

∼
x)]2. (12)

Through iteration, the tangential velocity direction of the loop is continuously brought
closer to the velocity direction of the dynamical flow. When τ → ∞, the two directions
become consistent, and thus, the loop converges to the true periodic orbit defined by the
dynamical system flow. Consequently, the period of the periodic orbit can be calculated
from the following equation:

Tp =
∫ 2π

0
λ(
∼
x(s, ∞))ds. (13)

Discretization of the loop derivatives is required to ensure numerical stability:

∼
vn ≡

∂
∼
x

∂s
|∼
x=
∼
x(sn)

≈ (
∧
D
∼
x)n. (14)

A five-point approximation is used for the numerical calculations, and the matrix is

∧
D =

N
24π



0 8 −1 1 −8
−8 0 8 −1 1
1 −8 0 8 −1

· · ·
1 −8 0 8 −1

−1 1 −8 0 8
8 −1 1 −8 0


. (15)

Thus, Equation (11) can be changed to the following form with a fictitious time Euler
step δτ: ∧A −∧v

∧
a 0

(δ
∼
x

δλ

)
= δτ

(
λ
∧
v−

∧
∼
v

0

)
, (16)

where
∧
A =

∧
D− λdiag[A1, A2, ..., AN ],

∧
v = (v1, v2, ..., vN)

t,
∧
∼
v = (

∼
v1,
∼
v2, ...

∼
, vN)

t, and
∧
a is an

Nd-dimensional row vector, which restricts the change of the coordinates. By inverting the
matrix on the left of Equation (16), we can solve for δ

∼
x and δλ to acquire the deformation

of the loop coordinates and period. The banded lower–upper decomposition method can
be used to accelerate the computation, and the Woodbury formula can be employed to deal
with periodic and boundary terms [54]. The variational method can be effectively used to
calculate the unstable periodic orbits of various chaotic systems [55–57]. In the next section,
we utilize the variational method to locate the unstable periodic orbits in the hidden chaotic
attractor of system (2).
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4. Symbolic Encoding of Unstable Periodic Orbits in the Hidden Chaotic Attractor
with Six Letters

Periodic orbit theory can be used to calculate many physical quantities, such as the
fractal dimension and topological entropy [58,59]. In most cases, the theory is acquired by
performing calculations for the required unstable short-period orbits. Here, we explore
the unstable periodic orbits in the hidden chaotic attractor of system (2) for the parameter
values of (a, b, c, k) = (12, 100, 10, 4.6). When the Poincaré section z = −10 is chosen, the
first return map can be plotted, which contains a large number of dense points with a
certain hierarchical structure, as shown in Figure 13. There were five branches, and thus,
it was necessary to build complex symbolic dynamics to encode the periodic orbits of
the new system (2) for the current parameters [60]. Taking this into account, we used
the variational method to locate the cycles of the new system, and six cycles with simple
topological structures were found, as shown in Figure 14. The symbolic encoding rules of
these periodic orbits are as follows:

Figure 13. Poincaré first return map with a section z = −10 for (a, b, c, k) = (12, 100, 10, 4.6).

(1) For a cycle with a smooth ellipse shape around a fixed point, the symbol 0 is used
to denote the cycle around the left and the symbol 1 is used to denote the cycle around
the right.

(2) For an irregular cycle around a fixed point with a smaller extension on the z-axis
around 100, which has a blunt fold, in the shape of a raised wing, the symbol 2 is used
to denote the cycle around the left and the symbol 3 is used to denote the cycle around
the right.

(3) For an irregular cycle around a fixed point with a larger extension on the z-axis
around 140, which has a very sharp fold, forming the shape of a ginkgo leaf, the symbol 4
is used to denote the cycle around the left and the symbol 5 is used to denote the cycle
around the right.
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Figure 14. Six building block cycles for system (2), (a, b, c, k) = (12, 100, 10, 4.6): (a) cycle 0, (b) cycle 1,
(c) cycle 2, (d) cycle 3, (e) cycle 4, and (f) cycle 5.

The six cycles presented above are the building blocks that make up the orbits of the
new system, and the other complex long-period orbits are composed of them. Thus, we
can calculate the cycles systematically by utilizing the six-letter symbolic dynamics. It can
be clearly seen that cycles 0 and 1 were symmetric to each other, as were cycles 2 and 3
and cycles 4 and 5. They were cycles with a topological length of 1, while cycles had a
topological length of 2 when they rotated once around each of the left and right fixed points
or twice around a fixed point. Since there was z-axis symmetry in the system, we could
likewise find symmetric and asymmetric cycles with a topological length of 2, as shown in
Figure 15.

The cycles could be classified into two types: self-conjugated and mutually conjugated.
The periods of the cycles that were conjugated to themselves were not equal to those of
the other cycles, such as cycles 01, 23, and 45. Two mutually conjugated cycles had equal
periods and symmetry, e.g., cycles 03 and 12. We discovered that several cycles with
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topological length 2 were pruned, which means that they did not exist, such as cycles 02, 13,
and 04. We also found that building blocks with symbols 0 or 1 could not be combined with
the building blocks with symbols 4 or 5 to form a periodic orbit. Therefore, for example,
for the cycles of topological length 3, there would not be cycles 045 and 124. After some
attempts, we found that cycles 012, 123, 002, and 022 were also pruned. To obtain a clear
picture of the periodic orbits of the new system, we show the 2D phase diagrams of nine
cycles with topological length 3 in Figure 16. All the cycles and their periods Tp within a
topological length 3 are tabulated in Table 2.
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Figure 15. Unstable periodic orbits with topological length of 2 in the new system: (a) cycle 01, (b) 23,
(c) 45, (d) 03, (e) 24, and (f) 25.

Figure 13 shows that the multi-branch structure of the first return map created some
difficulties for the analysis of the unstable periodic orbits. The establishment of the symbolic
encoding approach based on the topological structure of the trajectory and its circuiting
property with respect to different equilibrium points showed the effectiveness of the
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analysis of the cycles in the hidden chaotic attractors. It is hoped that this method can also
be used to encode periodic orbits embedded in hidden hyperchaotic attractors.
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Figure 16. Unstable periodic orbits with a topological length of 3 in the new system, where the two
stable equilibria are marked with “+”: (a) cycle 001, (b) 013, (c) 023, (d) 033, (e) 003, (f) 243, (g) 245,
(h) 253, and (i) 345.

Table 2. Unstable cycles in the new system within a topological length of 3.

Length Itineraries Periods Length Itineraries Periods Length Itineraries Periods

1 0 0.645509 3 223 3.552630 3 001 2.324411
1 0.645509 233 3.552630 011 2.324411
2 1.186404 033 2.981070 123 —
3 1.186404 122 2.981070 032 —

2 01 1.559290 021 2.653639 003 2.401931
23 2.366105 013 2.653639 112 2.401931
12 1.792160 031 — 113 —
03 1.792160 012 — 002 —
02 — 132 2.962501 022 —
13 — 023 2.962501 133 —

1 4 1.515729 3 445 4.815813 3 354 4.221816
5 1.515729 455 4.815813 234 3.878345

2 24 2.695403 344 4.221765 325 3.878345
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Table 2. Cont.

Length Itineraries Periods Length Itineraries Periods Length Itineraries Periods

35 2.695403 255 4.221765 225 3.892262
25 2.706161 335 3.881997 334 3.892262
34 2.706161 224 3.881997 254 4.211233
45 3.031718 244 4.211320 345 4.211233

3 235 3.889210 355 4.211320
324 3.889210 245 4.221816

5. Circuitry of Proposed System

Multi-scroll chaotic systems often use current–feedback operational amplifiers (CFOAs)
to implement the circuit, which helps to enhance the frequency bandwidth [61]. FPGA
implementation has strong universality and is less limited by hardware resources [62],
while circuit simulation has the characteristics of simple debugging and a low cost. To
verify the correctness and feasibility of the new proposed system, circuit simulations were
performed in this study, and we selected the NI Multisim 14 software (accessed on 1 May
2015 and website address https://www.ni.com/zh-cn/suppot/downloads) to simulate
the circuit. The state variables x, y, and z were reduced by a factor of 10 to avoid the state
variables being out of the dynamic range of the device. Therefore, system (2) is rewritten as

·
X = a(Y− X),
·
Y = −cY− 10XZ, (17)
·
Z = 10Y2 − 0.1b + 10kXY,

where X = 0.1x, Y = 0.1y, and Z = 0.1z.
By performing a time-scale transformation of Equation (17), in which the time-scale

factor is set to τ0 = 1
R0C0

= 1000 and t = τ0τ, we obtain

·
X = 1000a(Y− X),
·
Y = −1000cY− 10, 000XZ, (18)
·
Z = 10, 000Y2 − 100b + 10, 000kXY.

Based on Kirchhoff’s law, the following equation can be obtained from the circuit
diagram in Figure 17:

·
X =

R3

R2R4C1
Y− R3

R1R4C1
X,

·
Y = − R9

R7R10C2
Y− R9

R8R10C2
0.1XZ, (19)

·
Z =

R16

R13R17C3
0.1Y2 +

R16

R15R17C3
V1 +

R16

R14R17C3
0.1XY.

The circuit consisted of three functional modules: addition, integration, and inversion,
and the three channels corresponded to the three variables of the system. As shown in
Figure 17, the circuit included nineteen resistors, three capacitors, nine TL082CP operational
amplifiers, and three analog multipliers (the output gain was 0.1). The power supply
voltage was ±17 V. The coefficients of system (2) were a = 12, b = 100, c = 10, and k = 4.6,
and the values of the circuit components were C1 = C2 = C3 = 100 nF, R1 = R2 = 8.333 kΩ,
R3 = R9 = R16 = 100 kΩ, R4 = R5 = R6 = R7 = R10 = R11 = R12 = R15 = R17 = R18 =
R19 = 10 kΩ, R8 = R13 = 1 kΩ, R14 = 0.217 kΩ, and V1 = −1 V.

https://www.ni.com/zh-cn/suppot/downloads
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The designed circuit was successfully implemented in Multisim, and the results are
reported in Figure 18. The results of the circuit implementation agreed with the numerical
simulation results, which validated the realizability of the proposed new system (2).

Figure 17. Circuit diagram of the new hidden attractor chaotic system.
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(a) (b)

Figure 18. Phase portraits of the circuit from Multisim: (a) X-Z plane and (b) X-Y plane.

6. Offset Boosting Control and Adaptive Synchronization of New System

Engineering applications for variable-boostable systems show considerable promise,
and they are simple to control once offsets are added [63,64]. As the offset changes, bipolar
or unipolar signals may be produced. We select z as the state variable, since it only occurs
once in system (2). The control parameter w has the ability to boost the state variable z. As
a result, the offset-boosted system can be written as

dx
dt

= a(y− x),

dy
dt

= −cy− x(z + w), (20)

dz
dt

= y2 − b + kxy,

where the control parameter w is a constant.
We select parameter values of a = 12, b = 100, c = 10, and k = 4.6, and the initial

values of the variables were all set to 1. As shown in Figure 19, it is evident from the
attractors with various offsets into the y-z phase space and the time sequence diagram that
a chaotic signal could change from being a bipolar signal to a unipolar signal. As the value
of the control parameter w changed, the attractor moved up and down along the z-axis. For
example, when w was taken as 0, a bipolar signal existed. When the value of w was taken
as −75, a positive unipolar signal appeared, while a negative unipolar signal appeared
when w was taken as 40.
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Figure 19. (a) Chaotic attractors with different offsets w in the y-z plane; (b) State z with different
values of the offset boosting controller w.
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It can be seen from the above discussion that our new proposed system has an easy-
to-control nature, and the adjustment of the overall signal can be achieved simply by
changing a single parameter, i.e., adding an offset w to the variable z to achieve a shift in
the z-direction, which has potential in engineering applications.

Chaotic synchronization is the key to achieving chaotic and confidential communica-
tion. There are various schemes for synchronization [65], and in this section, we take an
adaptive synchronization approach to realize the chaotic synchronization of two identical
systems with unknown parameters due to its robustness and simple implementation.

The following master system is the new hidden attractor chaotic system we introduced:

·
xm = a(ym − xm),
·

ym = −cym − xmzm, (21)
·

zm = y2
m − b + kxmym,

and the slave system adopts the following form by adding adaptive controls ux, uy, and uz
for each of the three directions:

·
xs = a(ys − xs) + ux,
·

ys = −cys − xszs + uy, (22)
·

zs = y2
s − b + kxsys + uz.

The synchronization error is set to

ex = xs − xm,

ey = ys − ym, (23)

ez = zs − zm.

Then, the error dynamics of the slave system (22) and master system (21) can be
written as

·
ex = a(ey − ex) + ux,
·

ey = −cey − xszs + xmzm + uy, (24)
·

ez = y2
s − y2

m + kxsys − kxmym + uz.

The examination of the stability of the error system is based on the transformation of
the synchronization issue between the master and slave systems. The adaptive controller
selected in this scheme is

ux = −â(t)(ey − ex)− k1ex,

uy = ĉ(t)ey + xszs − xmzm − k2ey, (25)

uz = −y2
s + y2

m − k̂(t)xsys + k̂(t)xmym − k3ez,

in which k1, k2, and k3 are positive gain constants and â(t), b̂(t), ĉ(t), and k̂(t) are parameter
estimates. Therefore, substituting Equation (25) into Equation (24) and simplifying it yields

·
ex = (a− â(t))(ey − ex)− k1ex,
·

ey = −(c− ĉ(t))ey − k2ey, (26)
·

ez = (k− k̂(t))xsys − (k− k̂(t))xmym − k3ez.
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The parameter estimation error is set to

ea(t) = a− â(t),

eb(t) = b− b̂(t), (27)

ec(t) = c− ĉ(t),

ek(t) = k− k̂(t).

Then, we obtain

·
ea = −

·
â,

·
eb = −

·
b̂, (28)

·
ec = −

·
ĉ,

·
ek = −

·
k̂.

The error dynamics can be rewritten as follows:

·
ex = ea(ey − ex)− k1ex,
·

ey = −ecey − k2ey, (29)
·

ez = ekxsys − ekxmym − k3ez.

The quadratic Lyapunov function can be constructed as follows:

V =
1
2
(e2

x + e2
y + e2

z + e2
a + e2

b + e2
c + e2

k). (30)

Differentiating V along the trajectories of the system yields

·
V = −k1e2

x − k2e2
y − k3e2

z − ea(
·
â− ex(ey − ex))− eb

·
b̂− ec(

·
ĉ + e2

y)− ek(
·
k̂ + ezxmym − ezxsys). (31)

Thus, the parameter estimates can be set as

·
â = ex(ey − ex) + k4ea,
·
b̂ = k5eb, (32)
·
ĉ = −e2

y + k6ec,
·
k̂ = ezxsys − ezxmym + k7ek,

where k4, k5, k6, and k7 are positive gain constants.
We obtained a negative definite Lyapunov function:

·
V = −k1e2

x − k2e2
y − k3e2

z − k4e2
a − k5e2

b − k6e2
c − k7e2

k . (33)

According to Lyapunov stability theory, under the adaptive controller, all the syn-
chronization errors ex, ey, and ez and parameter estimation errors ea, eb, ec, and ek globally
and exponentially converge to 0 when the initial values are chosen at random. Therefore,
through the above theoretical analysis, it is known that the master system and the slave
system can be fully synchronized.

The effectiveness of the proposed approach was verified by numerical simulations,
which are described as follows. The parameters were set as (a, b, c, k) = (12, 100, 10, 4.6),
which resulted in a hidden chaotic attractor. The gain constants were selected as



Fractal Fract. 2022, 6, 740 22 of 25

ki = 3 (i = 1, 2, 3, 4, 5, 6, 7). The initial values of the master system, slave system, and
parameter estimates were taken as

(xm(0), ym(0), zm(0)) = (−1, 2.5,−4), (xs(0), ys(0), zs(0)) = (−0.5,−0.5,−5), (â(0), b̂(0), ĉ(0), k̂(0)) = (2, 113, 15, 10) (34)

Figure 20 displays the full synchronization of the respective states of the master and
slave systems. It can be seen that after a short time, the state trajectories of the master
system xm, ym and zm gradually overlapped with the slave system xs, ys and zs. The time-
histories of the synchronization errors and parameter estimation errors are also shown in
Figure 21, which indicate that all the errors asymptotically converged to zero with time.
In summary, the simulation results of this new hidden chaotic system demonstrated the
operability of the chaotic circuit and adaptive synchronization control.
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Figure 20. Time evolution diagrams of the master and slave systems showing results of the complete
synchronization of the respective states: (a) x variable, (b) y variable, and (c) z variable.
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Figure 21. Time evolution of (a) synchronization errors ex, ey, and ez, and (b) parameter estimation
errors ea, eb, ec, and ek.
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7. Conclusions

On the basis of the generalized Sprott C system, we added a nonlinear cross-term to
the third equation to construct a new hidden attractor chaotic system that has two stable
equilibria. To quantitatively examine its chaotic properties, several tools, including the
Lyapunov exponent spectrum, power spectrum, and the Poincaré first return map, were
applied. The influences of four parameters on the dynamical behaviors of the system were
explored by means of bifurcation diagrams, maximum Lyapunov exponent spectra, and
division diagrams of two parameters, and the rich and complex dynamical behaviors of
the system were also presented in combination with the phase portraits. Meanwhile, the
existence of various coexisting attractors was discovered, which indicated a multi-stability
phenomenon. Furthermore, we calculated the unstable periodic orbits embedded in the
hidden chaotic attractor with the help of the variational method, and we encoded and
classified the cycles using six-letter symbolic dynamics. Finally, a circuit simulation, offset
boosting control, and adaptive synchronization linked this hidden attractor chaotic system
to physical experiments and verified the practicality of the system.

We believe that the periodic orbit coding method used in this paper can provide a
reference for analyzing periodic orbits in other hidden attractor chaotic systems. More
results from studies on the applications of the proposed hidden attractor chaotic system
will be revealed in future research. Moreover, the hidden attractors in fractional-order
systems have also attracted extensive attention in recent years. When a single parameter
changes, self-excited, hidden, or nonhyperbolic chaotic attractors will appear in a new
fractional-order chaotic system with different families of hidden and self-excited attrac-
tors [66]. In a new fractional-order chaotic system without any equilibrium points based
on a fracmemristor, the hidden chaotic attractors are propagated infinitely using a trigono-
metric function [67]. We can investigate the fractional-order system corresponding to this
hidden attractor chaotic system to gain a better grasp of the complexity of chaotic systems
and their variety of practical applications. To present the multi-stability of coexisting attrac-
tors, memristor chaotic systems can also be introduced. Attention should also be paid to the
FPGA implementation of chaotic systems, which will be the focus of our subsequent work.
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