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Abstract: In this work, we recall some definitions on fractional calculus with discrete-time. Then, we
introduce a discrete-time Hopfield neural network (D.T.H.N.N) with non-commensurate fractional
variable-order (V.O) for three neurons. After that, phase-plot portraits, bifurcation and Lyapunov
exponents diagrams are employed to verify that the proposed discrete time Hopfield neural network
with non-commensurate fractional variable order has chaotic behavior. Furthermore, we use the
0-1 test and C0 complexity algorithm to confirm and prove the results obtained about the presence of
chaos. Finally, simulations are carried out in Matlab to illustrate the results.

Keywords: Hopfield neural network; fractional variable order; chaos; bifurcation; Lyapunov exponents;
C0 complexity; 0-1 test

1. Introduction

Recently, due to its multiple applications, particularly in the context of secure commu-
nication [1–4] and control [5,6], chaotic discrete-time systems have gained a lot of attention.
Lozi map [7], 2-D Hénon system [8], Zeraoulia-Sprott map [9], Baier–Klein map [10], the
generalized Hénon system [11] and the discrete Rössler system [12] are a few examples
of chaotic discrete-time systems with integer order that have been presented over time.
Researchers have lately become more interested in the systems with fractional order that
correspond to the previous chaotic systems with integer order [13].

Fractional-order derivatives are more precise than integer-order derivatives because they
are a great tool for describing the memory effect in a variety of materials and processing [14].

Discrete fractional calculus and fractional difference operators have received the atten-
tion of mathematicians [15–17]. Refs. [18,19] introduced the concept of discrete fractional
calculus to chaotic maps and showed that chaos characteristics remain. For instance, in [20],
the authors analysed the existence of chaos in 2D maps with fractional order, the chaotic
behavior of Ikeda map with a non-integer order was studied in [21], in [22], fractional
chaotic systems with discrete time and without equilibrium points were introduced, and,
in [23], bifurcation and dynamics of systems with fractional and various closed curve
equilibrium points were investigated, while control and dynamics of fractional quadratic
map with no equilibrium points were analysed in [24].

The great interest of taking into account a Caputo fractional difference operator [25] in
the modeling of dynamical systems with discrete time was demonstrated by the pertinent
publications cited above.

Since fractional calculus has more advantages than an integer one, it makes sense for
us to use this approach in studying neural networks’ systems [26–29]. The modeling of
neural networks with fractional order is used to investigate biological neurons for two
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reasons. First, by increasing one degree of freedom, the fractional order increases the
performance of the system. Second, the modeling of neural networks with fractional order
has an infinite memory. Fractional-order neural networks hope to play an important role in
the field of parameter estimation. Neural networks approximation showed higher rates of
approximation at a fractional level [30].

A lot of attention has been paid to the analysis of the dynamics of neural networks
with fractional order, and significant results have been achieved. For instance, in [31], LMI
conditions for global stability of fractional-order neural networks were studied; in Ref. [32],
the authors presented an adaptive model-free synchronization of different fractional-order
neural networks with an application in cryptography, the stability, bifurcation, and chaos of
Hopfield neural networks with a non-integer order were analysed. In [33–37], the stability
of the Hopfield neural networks with fractional order was investigated, in [38], complexity,
chaos and multi-stability of a discrete time Hopfield neural network with variable order
and short memory were studied, whereas, in [39], the dynamics of the fractional order
neural network were analysed. Recently, in [40], a study of discrete time Hopfield neural
network with incommensurate fractional order was presented.

The major purpose of this research is to study the effect of using the non-commensurate
fractional variable-order on the system studied in [40]. The fractional variable-order form
is likely to exhibit even more complex dynamics.

Inspired by the research cited above, firstly, a discrete time Hopfield neural network
with a non-commensurate fractional variable order is proposed. Then, the dynamics of the
presented model are analysed via phase-plot portraits, bifurcation and maximum Lyapunov
exponent (MLE) diagrams. After that, 0-1 test and the C0 complexity algorithm are used
to confirm the chaotic behavior of the system. Finally, the corresponding simulations are
performed.

2. Preliminaries on Discrete Fractional Calculus

In this section, we present some definitions according to fractional discrete calculus to
describe the discrete time Hopfield neural network (D.T.H.N.N.) with an incommensurate
fractional variable-order.

Discrete Fractional Calculus

Let h be a function defined on a time scale Nβ = {β, β + 1, β + 2, ...}.

• The η-th fractional sum for the function h is defined as [16]:

∆−η
β h(r) =

1
Γ(η)

r−η

∑
ρ=β

(r− ρ− 1)(η−1)h(ρ), r ∈ Nβ+η , η > 0, (1)

where

(r− ρ− 1)(η−1) =
Γ(r− ρ)

Γ(r− ρ− η + 1)
, (2)

which represents the falling factorial function.
• The η-Caputo fractional difference operator for the function h is defined as [25]:

C∆η
βh(r) = ∆−(k−η)

a ∆kh(r), (3)

where k = [η] + 1, r ∈ Nβ+k−η , and η /∈ N.
Using the Formulas (1) and (2), we obtain:
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C∆η
βh(r) =

1
Γ(k− η)

r−(k−η)

∑
ρ=β

Γ(r− ρ)

Γ(r− ρ− k− η + 1)
∆k

ρh(ρ), (4)

where ∆k
ρ is the k-th integer difference operator defined as:

∆kh(r) = ∆(∆k−1h(r)) =
k

∑
j=0

(
k
j

)
(−1)k−jh(r + j), r ∈ Nβ. (5)

3. The Discrete-Time Neural Network with an Incommensurate Fractional Variable
Order

Sivasundaram and Kaslik [41] described the model of the Hopfield fractional neural
network consisting of m neurons as follows:

cDγj xj(r) = −αjxj(r) +
m

∑
j=1

Aj,ihj(xi(r)) + Ej, ∀r > 0, ∀j = 1, 2, ..., m. (6)

Given that:

• hj : R→ R represents the activation function of the neurons;
• A = (Aji)m×m denotes the weights matrix which describes the connection between i

and j neurons;
• αj > 0 represents the self-regulating neurons’ parameters;
• Ej are the external inputs; in our work, they are equal to 0.

Note that cDγj is the Caputo fractional order derivative defined as:

cDγj h(r) =
1

Γ(1− γj)

∫ r

r0

(r− ρ)−γj h(ρ)dρ, (7)

where the fractional order γj ∈ (0, 1].
Here, we consider a system with three neurons. To simplify calculations, herein choose

hj(xi) = tanh(xi), αj = 1, and the matrix A is chosen as:

A =

−1.4 1.2 −7
1.1 0 2.8
P −2 4

. (8)

As a result, we obtain the following Hopfield neural network with continuous time:
cDγ1 x1(r) = −x1(r)− 1.4tanh(x1(r)) + 1.2tanh(x2(r))− 7tanh(x3(r)),
cDγ2 x2(r) = −x2(r) + 1.1tanh(x1(r)) + 2.8tanh(x3(r)),
cDγ3 x3(r) = −x3(r) + Ptanh(x1(r))− 2tanh(x2(r)) + 4tanh(x3(r)).

(9)

From system (9), we obtain a new D.T.H.N.N with incommensurate fractional variable-
order by replacing the operator cDγi with the Caputo-like difference operator with fractional
variable-order c∆γi(r), which can be given by:
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c∆γ1(r)x1(r) = −x1(r + γ1(r)− 1)− 1.4tanh(x1(r + γ1(r)− 1)) + 1.2tanh(x2(r + γ1(r)− 1))
−7tanh(x3(r + γ1(r)− 1)),

c∆γ2(r)x2(r) = −x2(r + γ2(r)− 1) + 1.1tanh(x1(r + γ2(r)− 1)) + 2.8tanh(x3(r + γ2(r)− 1)),
c∆γ3(r)x3(r) = −x3(r + γ3(r)− 1) + Ptanh(x1(r + γ3(r)− 1))− 2tanh(x2(r + γ3(r)− 1))

+4tanh(x3(τ + γ3(r)− 1)),

(10)

with r ∈ Nβ+1−γj(r), γj(r) being the variable order and γj(r) ∈ (0, 1], j = 1, 2, 3.

3.1. Dynamical Analysis and Numerical Simulations

The goal of this section is to illustrate the dynamics of the D.T.H.N.N with incommen-
surate fractional variable order (10) via numerical simulation.

Now, according to the theorem cited in [42], the unique solution of the system (10) is
given by:

x1(r) = x1(β) + 1
Γ(γ1(r))

r−γ1(r)
∑

τ=β+1−γ1(r)
(r− τ − 1)(γ1(r)−1){−x1(τ + γ1(r)− 1)

−1.4tanh(x1(τ + γ1(r)− 1)) + 1.2tanh(x2(τ + γ1(r)− 1))− 7tanh(x3(τ + γ1(r)− 1))},

x2(r) = x2(β) + 1
Γ(γ2(r))

r−γ2(r)
∑

τ=β+1−γ2(r)
(r− τ − 1)(γ2(r)−1){−x2(τ + γ2(r)− 1)

+1.1tanh(x1(τ + γ2(r)− 1)) + 2.8tanh(x3(τ + γ2(r)− 1))},

x3(r) = x3(β) + 1
Γ(γ3(r))

r−γ3(r)
∑

τ=β+1−γ3(r)
(r− τ − 1)(γ3(r)−1){−x3(τ + γ3(r)− 1)

+Ptanh(x1(τ + γ3(r)− 1))− 2tanh(x2(τ + γ3(r)− 1)) + 4tanh(x3(τ + γ3(r)− 1))}.

(11)

Take β = 0 and since (r− τ − 1)(γj(r)−1) = Γ(r−τ)
Γ(r−τ−γj(r)+1) , and the numerical formula

of the system (10) is designed as:

x1
n+1 = x1

0 +
n
∑

j=0

Γ(n−j+γ1(j))
Γ(γ1(j))Γ(n−j+1){−x1

j − 1.4tanh(x1
j ) + 1.2tanh(x2

j )− 7tanh(x3
j )},

x2
n+1 = x2

0 +
n
∑

j=0

Γ(n−j+γ2(j))
Γ(γ2(j))Γ(n−j+1){−x2

j + 1.1tanh(x1
j ) + 2.8tanh(x3

j )},

x3
n+1 = x3

0 +
n
∑

j=0

Γ(n−j+γ3(j))
Γ(γ3(j))Γ(n−j+1){−x3

j + Ptanh(x1
j )− 2tanh(x2

j ) + 4tanh(x3
j )},

(12)

with the known initial condition x1
0 = x1(0), x2

0 = x2(0), x3
0 = x3(0).

To study the effect of the fractional variable order on the D.T.H.N.N (10), we take
P = 0.57 and the initial condition (x1

0, x2
0, x3

0) = (0, 0.01, 0), where the fractional variable
order is chosen as: γ1(r) = tanh(r), γ2(r) = 1

1+e−r and γ3(r) = r
1+r .

Firstly, we draw the discrete time evolution of the states as shown in Figure 1.
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Figure 1. Time evolution of the states x1, x2 and x3 of the D.T.H.N.N with incommensurate fractional
V.O (10).

We observe that the states x1, x2 and x3 of the system (10) exhibit chaotic behaviour,
but we do not rely on it to determine the nature of the dynamic; for this reason, we need to
plot the trajectories in the state space.

Figure 2 depicts the plot of phase portraits of our system (10), which displays a
chaotic attractor.
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Figure 2. Phase-plot portraits of the D.T.H.N.N with incommensurate fractional variable-order (10).

3.2. Bifurcation Diagram and Maximum Lyapunov Exponents

Now, in order to explore the presence of chaos, we consider the bifurcation diagram
and maximum Lyapunov exponents of the state x1 by varying the parameter P in the
interval [0, 1.5] with the step ∆P = 0.0025. Note that we calculate the maximum L.E using
the algorithm of Jacobian matrix [43].

In our case, the matrix Jj of the system (10) is given by:

Jj =


α1

i α2
i α3

i

β1
i β2

i β3
i

γ1
i γ2

i γ3
i

, (13)

where
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α
j
i = α

j
0 +

n
∑

i=0

Γ(n−i+q1(i))
Γ(n−i+1)Γ(q1(i))

(−α
j
i − 1.4α

j
i(1− (tanh(x1(i)))2) + 1.2β

j
i(1− (tanh(x2(i)))2)

−7γ
j
i(1− (tanh(x3(i)))2)),

β
j
i = β

j
0 +

n
∑

i=0

Γ(n−i+q2(i))
Γ(n−i+1)Γ(q2(i))

(−β
j
i + 1.1α

j
i(1− (tanh(x1(i)))2) + 2.8γ

j
i(1− (tanh(x3(i)))2)),

γ
j
i = γ

j
0 +

n
∑

i=0

Γ(n−i+q3(i))
Γ(n−i+1)Γ(q3(i))

(−γ
j
i + Pα

j
i(1− (tanh(x1(i)))2)− 2β

j
i(1− (tanh(x2(i)))2)

+4γ
j
i(1− (tanh(x3(i)))2)),

(14)

j = 1, 2, 3.
Finally, the maximum L.E has the following formula:

λk(x0) = lim
i→∞

1
i

ln | λ
(i)
k |, f or k = 1, 2, 3. (15)

Note that λk are the eigenvalues of the matrix Jj.
As can be observed in the bifurcation and the Maximum L.E represented in Figure 3

and Figure 4, respectively, upon varying the parameter P, system (10) exhibits complex
dynamics which include chaos and quasi-periodic behavior. In particular, system (10) is
chaotic when the parameter P ∈ [0.56, 0.61], where the value of the maximum Lyapunov
exponents is positive, while for the rest of values of the parameter P, the system is quasi-
periodic since it can not be periodic because fractional order systems cannot have periodic
non-constant solutions (for more details, see [44–46]), where the value of the maximum
Lyapunov exponents is negative.

Figure 3. Bifurcation diagram versus the parameter P of the D.T.H.N.N with incommensurate
fractional V.O (10).
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Figure 4. Maximum Lyapunov exponents versus P of D.T.H.N.N with incommensurate fractional
V.O (10).

3.3. C0 Complexity

To analyse the complex behaviour of systems, the C0 complexity [47] is used based on
the inverse Fourier transform.

For a sequence [φ(0), ..., φ(M− 1)], the algorithm of the C0 complexity is given as follows:

• We calculate the discrete Fourier transform of the sequence [φ(0), ..., φ(M− 1)] as:

ΦM(m) =
M−1

∑
j=0

φ(j) exp−2πi(jm/M), m = 0, ..., M− 1. (16)

• The mean square value is given as:

GM =
1
M

M−1

∑
m=0
|ΦM(m)|2. (17)

• We set

Φ̄M(m) =

{
ΦM(m) i f |ΦM(m)|2 > rGM,
0 i f |ΦM(m)|2 ≤ rGM.

(18)

• We define the inverse Fourier transform of Φ̄M as follows:

φ̄(j) =
1
M

M−1

∑
m=0

Φ̄(m) exp2πi(jm/M), j = 0, ..., M− 1. (19)

Finally, the formula of the C0 complexity is defined as:

C0 =

M−1
∑

j=0
|φ(j)− φ̄(j)|2

M−1
∑

j=0
|φ(j)|2

. (20)

The plot of C0 complexity is shown in Figure 5, and we can observe that the value
of the C0 complexity of the proposed system (10) increases when the parameter P passes
through the range [0.56, 0.61], which confirms that the proposed system is chaotic in this
range, so the C0 algorithm measures the complexity effectively.
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Figure 5. The C0 complexity versus P of the D.T.H.N.N with incommensurate V.O (10).

3.4. The 0-1 Test Method for Chaos

Another method that can be used to test chaos of the proposed D.T.H.N.N with
incommensurate fractional V.O is a "0–1 test", which was first presented by Gottwald and
Melbourne [48] to detect the existence of chaos from a time series.

Firstly, we consider a time series (w(i))i=1,...,N and c a random constant in the interval
(0, π). Then, we define two translation variables as follows:

pc(m) =
m

∑
i=1

w(i)cos(ic), qc(m) =
m

∑
i=1

w(i)sin(ic), m = 1, 2, ..., N. (21)

In addition, we present the formula of the mean square displacement:

Mc(m) =
1
N

N

∑
i=1

((pc(i + m)− pc(i))2 + (qc(i + m)− qc(i))2), m <
N
10

. (22)

Finally, the asymptotic growth rate is defined by:

Kc = lim
m→∞

log Mc

log m
. (23)

Now, in order to determine the presence of chaos, we need the plot of the asymptotic
growth rate K = median(Kc) and the plot of qc and pc in the p− q plane. When K is closer
to 1 and the trajectories of qc and pc are Brownian, the map is chaotic, whereas, when K is
closer to 0 and the trajectories of qc and pc are bounded, the map is regular.

Figure 6 depicts the 0–1 test versus P of the D.T.H.N.N with an incommensurate
fractional variable order (10). One can observe that, when P ∈ [0.56, 0.61], the value of the
growth rate K is closer to 1, which indicates the presence of chaos, while the value of the
growth rate K is closer to 0 for the rest of values of the system parameter P, which proves
that the proposed system (10) is quasi-periodic.

The pc − qc plots are shown in Figure 7 for different values of the parameter P with
the same initial conditions used previously. In particular, when P = 0.1 and P = 0.7, the
trajectories of qc and pc are bounded, and the system (10) is quasi-periodic. When P = 0.59
and P = 0.6 the trajectories of qc and pc are Brownian and the system (10) is chaotic, which
is extremely similar to the results obtained in Figure 6.
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Figure 6. The 0-1 test versus P of the D.T.H.N.N with incommensurate fractional V.O (10).
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Figure 7. The plot of p versus q for the D.T.H.N.N with incommensurate fractional V.O (10) for
different values of the system parameter P. .
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We observe that the results of the 0-1 test agree well with the results obtained in bifur-
cation and the largest Lyapunov exponents’ diagrams and the C0 complexity algorithm.

4. Conclusions and Future Research Directions

Based on the discrete time Hopfield neural network with incommensurate fractional
order, this research has presented a Caputo-difference form of the discrete time Hopfield
neural network with an incommensurate fractional variable-order. Phase-plot portraits,
bifurcation and maximum Lyapunov exponents diagrams have shown the complexity of
the dynamics of the proposed model. In addition, the 0-1 test and C0 complexity algorithm
have been employed to prove and confirm the presence of chaos in a small interval. The
obtained results give us insight into the behavior of the discrete time Hopfield neural
network system when using fractional variable order.

The future research directions that will depend on the results obtained in this work
are in two directions: the first is theoretical and the second is practical. The theoretical
aspect lies in the formulation of discrete time neural networks with strong and appropriate
fractional operators, whether from an analytical or numerical point of view, while the
practical aspect lies in the actual application of this type of network, especially in encryption
and secure communications; the authors also aim to find electrical circuits that represent
this type of network, due to the dynamic property of these neural networks proven to be
suitable for these types of applications.
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