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Abstract: A fractional calculus concept is considered in the framework of a Volterra type integro-
differential equation, which is employed for the self-consistent description of the high-gain free-
electron laser (FEL). It is shown that the Fox H-function is the Laplace image of the kernel of the
integro-differential equation, which is also known as a fractional FEL equation with Caputo–Fabrizio
type fractional derivative. Asymptotic solutions of the equation are analyzed as well.
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1. Introduction

In this paper, we discuss a fractional calculus concept for the classical electrodynamics
of free-electron lasers (FEL)s. It is well known that a self-consistent description of FELs
is presented in the framework of an integro-differential equation. The latter can also be
considered as a specific form of a fractional integro-differential equation. We study the
kernel of this equation and show that it can be presented in the form of the Fox H-function.
The Fox H-functions is widely used in fractional calculus, and it plays an essential role in a
variety of applications of fractional calculus [1,2]. Between many of these examples, a new
one is in the field of fractional electrodynamics of the FEL, recently considered in ref. [3].
Experimental implementation and theoretical description of the FEL is a long-lasting prob-
lem that started in the seventies of the last century. This extensively studied phenomenon
is well described and reviewed [4–7], to mention a few. Contemporary studies are also
reflected in recent publications and related to both classical and quantum descriptions [8,9].
In a paradoxical way, the classical electrodynamics of electrons interacting with electro-
magnetic fields explains this quantum lasing phenomenon [4–7,10]. In particular, the
self-consistent evolution in the small-signal slow-varying amplitude approximation (of the
electromagnetic field) is accounted by the Volterra-type integro-differential equation [3].

d
dτ

E(τ) = −iπg0

∫ τ

0
E(τ − τ′)e−ivτ′ e−µτ′2 τ′dτ′ , E(τ = 0) = E0 . (1)

Here τ = (t + z/c)/∆t is a dimensionless gain time-scale, where ∆t is the interaction
time, z is the longitudinal coordinates, t is the current time, and c is the light speed. The
dimensionless parameters of the system include the resonance parameter v, which is
linked to the laser frequency and scaled by ∆t, the small-signal gain coefficient g0, and the
coefficient µ, which relates to a parameter regulating the effects of the gain reduction due
to the electron’s energy distribution [3].

In the absence of the attenuation of the gained signal, µ = 0, this integro-differential
Equation (1) has a solution in the superposition form E(τ) = ∑j Ej exp(iΛjτ), where Ej
and Λj are related to the roots of a cubic equation [10]. Performing the Laplace transform
of Equation (1),

Ẽ(s) = L[E(τ)](s) =
∫ ∞

0
E(τ)e−sτdτ ,
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we have for µ = 0

Ẽ(s) =
E0(s + iv)2

s(s + iv)2 + iπg0
≡ E0(s + iv)2

(s− s1)(s− s2)(s− s3)
, (2)

where E0 is the initial condition for Equation (1). The poles sj are the roots of the cubic
equation

s3 + 2ivs2 − v2s + iπg0 = 0 (3)

determined by the Cardano rule. This equation defines both Λj and Ej.
In the Volterra Equation (1), studied in ref. [3], the integro-differential operator in the

r.h.s. was considered by analogy to the Caputo–Fabrizio fractional derivative [11], which is
a fractional derivative without a singular kernel [3,11]. This fractional derivative/operator
has been treated in the form of an iteration technique, based on an expansion employing
a family of two variable Hermite polynomials that eventually leads to the analytical
solution [3]. Following this fractional calculus concept of refs. [3,11], it is reasonable to
suggest an alternative approach for the kernel of the integral operator, presenting it in
the form of the Fox H-functions. In this case, the Laplace transformation of Equation (1)
becomes feasible for µ 6= 0.

2. Fox H-Function in Laplace Space

Performing the Laplace transformation of Equation (1), one obtains

sẼ(s)− E0 = −iπg0G̃(s)Ẽ(s) , (4)

where G̃(s) is defined by the integral

G̃(s) =
∫ ∞

0
τe−(s+iv)τe−µτ2

dτ . (5)

The way of introducing the Fox H-function inside the integrand, based on the repre-
sentation of the exponential function in the form of the Fox H-function by means of the
Mellin–Barnes integration

e−Z =
1

2πi

∫ c+i∞

c−i∞
Γ(ξ)Z−ξ dξ , (6)

see, e.g., [2,12,13]. Here Γ(ξ) is a gamma function: Γ(ξ + 1) = ξΓ(ξ). Performing the
variable change y = τ2 in the integral (5), we have

G̃(s) =
1
2

∫ ∞

0
e−svy1/2

e−µydy , (7)

where sv = s + iv is used for brevitys sake. Then taking Z = svy1/2 and substituting the
Mellin–Barnes integral (6) inside integration (7), we obtain the chain of transformations
as follows

G̃(s) =
1
2

∫ ∞

0
e−µy · 1

2πi

∫ c+i∞

c−i∞
Γ(ξ)s−ξ

v y−
ξ
2 dξdy

=
1

4πi

∫ c+i∞

c−i∞
Γ(ξ)s−ξ

v

[∫ ∞

0
e−µyy−

ξ
2 dy
]

dξ

=
1

2µ
· 1

2πi

∫ c+i∞

c−i∞
Γ(ξ)Γ(1− ξ/2)

(
µ−1/2sv

)−ξ
dξ . (8)
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Eventually, we arrive at the definition of the Fox H-function, which is presented in
terms of the Mellin–Barnes integral. Its general definition reads [2]

Hm,n
p,q (Z) = Hm,n

p,q

[
Z
∣∣∣∣ (a1, A1) , . . . , (ap, Ap)

(b1, B1) , . . . , (bq, Bq)

]
=

1
2πi

∫
Ω

Θ(ξ)Z−ξ dξ , (9)

where

Θ(ξ) =

{
∏m

j=1 Γ(bj + Bjξ)
}{

∏n
j=1 Γ(1− aj − Ajξ)

}
{

∏
q
j=m+1 Γ(1− bj − Bjξ)

}{
∏

p
j=n+1 Γ(aj + Ajξ)

} , (10)

with 0 ≤ n ≤ p, 1 ≤ m ≤ q and ai , bj ∈ C, while Ai , Bj ∈ R+, for i = 1 , . . . , p, and
j = 1 , . . . , q. The contour Ω starting at c− i∞ and ending at c + i∞, separates the poles
of the functions Γ(bj + Bjξ), j = 1 , . . . , m from those of the function Γ(1 − ai − Aiξ),
i = 1 , . . . , n.

In our case of Equation (8), Z = µ−1/2(s + iv) and Θ(ξ) = Γ(ξ)Γ(1− ξ/2), while
a1 = b1 = 0 and 2A1 = B1 = 1. Therefore, comparing Equation (8) to Equations (9) and (10)
one obtains

2µG̃(s) = H1,1
1,1

[
iv

µ1/2 (1−
is
v
)

∣∣∣∣ (0, 1/2)
(0, 1)

]
. (11)

Thus, the poles of the Laplace image of the gained signal Ẽ(s) are determined by the
transcendent equation as follows

s− iπg0

2µ
H1,1

1,1

[
ivµ−1/2(1− is/v)

∣∣∣ (0, 1/2)
(0, 1)

]
= 0 . (12)

Limit Case µ = 0

Let us show that for µ = 0, Equation (12) reduces to Equation (6). To that end, the
argument of the Fox H-function Z(s) should be taken as the reciprocal function 1/Z(s)
according to the identity [2]

Hm,n
p,q

[
Z
∣∣∣∣ (ap, Ap)
(bq, Bq)

]
= Hn,m

q,p

[
1
Z

∣∣∣∣ (1− bq, Bq)
(1− ap, Ap)

]
. (13)

Therefore

H1,1
1,1

[
ivµ−1/2(1− is/v)

∣∣∣ 0, 1/2
0, 1

]
= H1,1

1,1

[
µ1/2

(s + iv)

∣∣∣ (1, 1)
(1, 1/2)

]
. (14)

When µ→ 0, the argument 1/Z(s) = µ1/2/(s+ iv)→ 0, as well. Then the asymptotic
behavior of the Fox H-function for the small argument, limiting to zero, reads [2]

Hp,q
m,n(Z) ∼ aZ c, c = min

[
Re bj

Bj

]
.

Taking into account that b1 = 1 and B1 = 1/2, this yields for the r.h.s. of Equation(14)

H1,1
1,1

[
µ1/2(s + iv)−1

∣∣∣ (1, 1)
(1, 1/2)

]
∼ a

(
µ

(s + iv)2

)
. (15)

Taking a = 2 and substituting Equation (15) into Equation (11), we obtain that the latter
reduces to the cubic Equation (6).
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3. Series Expansion and Asymptotics

The Fox H-function can be presented in the form of series expansion [2]. Then we
have the l.h.s. of Equation (14)

H1,1
1,1

[
ivµ−1/2(1− is/v)

∣∣∣ (0, 1/2)
(0, 1)

]
=

∞

∑
r=0

(is/v)r

r!
H1,1

1,1

[
ivµ−1/2

∣∣∣ (0, 1/2)
(r, 1)

]
. (16)

Let us consider asymptotic behavior, when |s/v| � 1 and |vµ−1/2| � 1. Then to
obtain a gained signal at least the first four terms in the expansion should be accounted for.
Then we have

H1,1
1,1

[
ivµ−1/2(1− is/v)

∣∣∣ (0, 1/2)
(0, 1)

]
≈ C0 + iC1s/v− C2s2/2v2 − iC3s3/6v3) , (17)

where
Cr = Cr

(
ivµ1/2

)
= H1,1

1,1

[
ivµ−1/2

∣∣∣ (0, 1/2)
(r, 1)

]
. (18)

Then, Equation (12) reduces to the cubic equation with roots sj = sj(µ, v).
The coefficients of the expansion in the form of the Fox H-functions of large arguments

behave as follows [2]

H1,1
1,1(Z) ≈ Z

d, d = min
Re a1 − 1

A1
= −2 .

Then Cr = µ/v2 for r = 0, 1, 2, 3, and we have

H1,1
1,1

[
ivµ−1/2(1− is/v)

∣∣∣ (0, 1/2)
(0, 1)

]
≈ −µ/v2(1 + is/v− s2/2v2 − is3/6v3) . (19)

Thus, by analogy with Equation (12), the poles of Ẽ(s) are determined by a cubic
equation, which now reads

s3 − 3vis2 − 12v5

πg0

(
1 +

πg0

2v2

)
s + 6v3i = 0 . (20)

Note that this expression is independent of µ, which results from the asymptotic
consideration for both |s/v| � 1 and |vµ−1/2| � 1.

In any case of the cubic equation, the solution is the superposition of three waves

E(τ) =
3

∑
j=1

Eje
sjτ , (21)

where sj are roots of the cubic equation, which is an approximation of Equation (12) that
also determine Ej with the initial condition ∑3

j=1 Ej = E0.

Asymptotics of Small τ and Series Expansion

Disregarding the fractional concept, related to the Fox H-function and looking for the
asymptotic solution of Equation (1) for the small gain time-scale τ � 1, a simplified con-
sideration can be suggested as follows. Noting that the Laplace image G̃(s) in Equation (5)
is a table integral [14], which reads

G̃(s) = − d
d s

√
π

4µ
e
(s+iv)2

4µ Erfc
(

s + iv
µ1/2

)
. (22)
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Taking into account the asymptotic behavior of the Erfc-function for the large values
of |s + iv| � 1 [15], we have

G̃(s) ≈ − d
d s

√
π

4µ

µ1/2

2(s + iv)

[
1 +

∞

∑
n=1

(2n− 1)!!
(
−2(s + iv)2

µ

)−n]
≈ π1/2

4(s + iv)2 . (23)

Therefore, the initial gain solution of Equation (1) is G(τ) = ∑3
j=1 Eje

sjτ , where sj is
the root of the cubic equation.

Taking into account that Equations (5), (11) and (22) describe the same image G̃(s), we
obtain the asymptotic series expansion for |s + iv| � 1, which reads

H1,1
1,1

[
(s + iv)µ−1/2

∣∣∣∣ (0, 1/2)
(0, 1)

]
≈ π1/2µ

2(s + iv)2

[
1 +

∞

∑
n=1

(2n− 1)!!
(
−2(s + iv)2

µ

)−n]
. (24)

4. Conclusions

A fractional calculus concept was considered in the framework of a Volterra type
integro-differential equation, which is known is employed for the self-consistent description
of the high-gain free-electron laser (FEL). We have shown that the Fox H-function can be
employed for the Laplace image of the kernel of the integro-differential equation. The
analysis was performed in the framework of the Laplace transformation with respect to
the gain time-scale τ. Note that the FEL geometry can be chosen in such a way that τ > 0.
This approach makes it possible to obtain an exact analytical expression for the Laplace
image of the gained signal Ẽ(s), and its singular behavior is determined by the roots of
the transcendent Equation (12). Further analytical analysis is possible (and presented)
in the asymptotic approximation for both large τ � 1 and small τ � 1. In either case,
these solutions are described by cubic equations with coefficients depending on µ. It is
worth mentioning that an alternating approach to the electron energy distribution has
been considered as well [16] in the framework of the fractional generalization of the FEL
Equation (1) with µ = 0.

Discussing a mathematical aspects related to fractional calculus, it should be admitted
that, the r.h.s. of Equation (1) can be considered as an FEL fractional derivative by analogy
with the Caputo–Fabrizio fractional derivative [11,17], which reads as follows

DCF f (τ) =
m(α)

1− α

∫ τ

a
f (ξ)e−

τ−ξ
1−α dξ , (25)

where m(α) is a normalization term with constant α. Therefore the FEL fractional derivative
reads

DFEL f (τ) =
∫ τ

0
e−iv(τ−ξ)e−µ(τ−ξ)2

(τ − ξ) f (ξ)dξ . (26)

Therefore, the Laplace image of the kernel of the FEL fractional derivative, G̃(s)
obtained in Equation (11) is the Fox H-function in Laplace space. We also note in passing
that DFEL in Equation (26) differs from those introduced in ref. [3] by the term (τ −
ξ) f (ξ)→ ξ f (ξ).
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