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Abstract: A new look at the fractional diffusion equation was done. Using the unified fractional
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1. Introduction

It is no use to refer to the importance of the diffusion equation [1–3], which probably
one of the most studied in applied sciences. Its fractional versions have attracted the
attention of many researchers due to its relation with the alpha stable processes and some
new applications [4–13]. Although such an equation can in general assume different forms
with the introduction of non-linearities and using Rn as working space, we considered only
the simpler linear case and n = 1, which is usually expressed as [14]

xDα
θ u(x, t) = tD

β
∗u(x, t), x ∈ R, t ∈ R+ (1)

where xDα
θ is the Riesz–Feller space fractional derivative, tD

β
∗ is the (Dzherbashian)–Caputo

derivative, and the α, β, θ, are real parameters always restricted as follows

0 < α ≤ 2, |θ| ≤ min{α, 2− α}, 0 < β ≤ 2 (2)

A general solution for Equation (1) was discovered by Mainardi et al. [14]. However,
such a solution is expressed in terms of the Fox H-function [15–19] that, while attractive
from analytical point of view, is very hard to manipulate for obtaining results. This led
to separate consideration of the time-fractional case (α = 2) and the space-fractional case
(β = 1) [8,9,16,18,20–22].

However, there was a “cataclysm”: Hoffmann et al. [23] discovered that the entropy
production rate associated with the diffusion processes had a non-expected variation.
When transiting from the dissipative behavior (β = 1) to the reversible wave propagation
(β = 2), a decrease in the entropy production was expected, but the reverse was observed.
This phenomenon was treated in many studies, trying to find a suitable interpretation and
understanding the possible underlying physical reasons [23–28].

Here, we reformulate the fractional diffusion equation using the unified fractional
derivative [29]. We propose solutions for three regimes: β = α, (neutral case), β > α,
(time dominant case), and β < α (space dominant case). The solutions here proposed are
generalizations of previously known solutions. In particular, the traditional probability
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density functions of the stable distributions were found as special cases. Attending to
the importance of the entropy in this study, we recovered the most important definitions,
mainly the Shannon, Tsallis, and Rényi [17,30–33] definitions. The entropy production
paradox was studied, using a Rényi entropy expression in the frequency domain, when
possible. In particular, this happens with the stable distributions that are defined through
the characteristic function. It is shown that, in such cases, the entropy is “always” −∞,
independently of the scale parameter. However, when considering that β→ 2, the approach
to −∞ is smooth. Therefore, there is no paradox.

The article outlines as follows. In Section 2, the unified fractional derivative is recast
together with its main properties. The derivatives of power functions are also introduced.
The diffusion equation in presented in Section 2.3. The entropy definitions and particular-
izations are presented in Section 3 and computed in Section 3.2. The diffusion equation is
solved in Section 4, starting from the neutral case (Section 4.2) with corresponding entropy
computation and continuing with the time dominant case (Section 4.3) and, at the end, the
space dominant case (Section 4.4). Finally, a discussion and some conclusions are presented.

Remark 1. We adopted here the following assumptions:

• We worked on R.
• We used the two-sided Laplace transform (LT):

F(s) = L[ f (t)] =
∫
R

f (t)e−stdt, (3)

where f (t) is any function defined on R, and F(s) is its transform, provided that it has a
non-empty region of convergence.

• The Fourier transform (FT), F [ f (t)], was obtained from the LT through the substitution
s = iκ, with κ ∈ R.

• For two variable functions, f (x, t), we use a capital letter to represent the Fourier or Laplace
transforms: F(κ, t) = F [ f (x, t)] and F(x, s) = L[ f (x, t)].

• The 2-D transforms are represented by F̄(κ, s) = LF [ f (x, t)].

2. Derivatives and Diffusion Equation
2.1. Definitions and Main Properties

In [29], a unified fractional derivative (UFD) incorporating most of the useful derivatives
was presented and its properties studied. In the following, we describe it.

Definition 1. Let α > −1 if θ 6= ±α, or α ∈ R if θ = ±α. We defined a unified fractional
derivative GL type derivative by:

Dα
θ f (t) := lim

h→0+
h−α

+∞

∑
n=−∞

(−1)n · Γ(α + 1)

Γ
(

α+θ
2 − n + 1

)
Γ
(

α−θ
2 + n + 1

) f (t− nh). (4)

where α is the derivative order and θ the asymmetry parameter. Suitable choices of these parameters
allow us to recover the causal and anti-causal derivatives. The particular, most interesting, cases are

• θ = α—forward GL derivative.
• θ = 0— Riesz derivative.
• θ = 1—Feller derivative.
• α = 0—two-sided GL type Hilbert transform.

With θ = 1, we obtained the usual discrete-time formulation of the Hilbert transform [34].
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Definition 2. Let α > 0. We defined a general integral formulation for the unified anti-derivative
through

D−α
θ f (t) =

1
sin(απ)Γ(α)

∫
R

f (t− τ) sin
[
(α + θ · sgn(τ))

π

2

]
|τ|α−1dτ. (5)

where sgn(.) denotes the signum function.
As above, we obtained:

• θ = α—forward Liouville anti-derivative.
• θ = 0—Riesz potential.
• θ = 1—Feller potental.
• α = 0—Hilbert transform.

With θ = 1, we obtained the usual formulation [35].

Remark 2. The integral in (5) can be regularized in order to become valid for positive orders [36].

Some known properties of this derivative can be drawn [36–38]:

1. Fourier transformation

F [Dα
θ f (t)] = |κ|αeiθ π

2 sgn(κ)F(κ) (6)

This property has, as consequence, that

Dα
θ f (t) = cos(θ

π

2
)Dα

0 f (t) + sin(θ
π

2
)Dα

1 f (t) (7)

2. Eigenfunctions
Let f (x) = eiκx, κ, x ∈ R. Then

Dβ
θ eiκx = |κ|βei π

2 θ·sgn(κ)eiκx, (8)

meaning that the complex sinusoids are the eigenfunctions of the UFD with eigenvalue
Ψβ

θ (κ) = |κ|
βei π

2 θ·sgn(κ).
3. Periodicity in θ

The UFD is periodic in θ with period 4

Dβ
θ f (x) = (−1)nDβ

θ+2n f (x), n ∈ Z,

as we observe from (6).
4. Additivity and commutativity of the orders

Dβ1
θ1

Dβ2
θ2

f (x) = Dβ1+β2
θ1+θ2

f (x). (9)

5. Existence of inverse derivative
We defined the identity operator

D0
0 f (x) = f (x). (10)

From this definition and (9), the anti-derivative exists when β2 = −β1 and θ1 = −θ2.
Therefore,

Dβ
θ D−β
−θ f (x) = D−β

−θ Dβ
θ f (x) = f (x). (11)

2.2. Derivatives of Power Functions

The power functions are very important in the theory we present due to the fact that
the solutions of our problem are easily expressed in terms of power series. We considered
three types of powers defined on R:
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• Causal – taε(t),
• Even – |t|a,
• Odd – |t|a sgn(t)

where a ∈ R and ε(t) is the Heaviside unit step. We can show that [36–39]:

1.

Dα
αδ(t) = L[sα] =

t−α−1

Γ(−α)
ε(t) (12)

2.

Dα
0 δ(x) = F−1[|κ|α] =



1
2Γ(−α) cos(α π

2 )
|x|−α−1 =

− Γ(α + 1) sin(απ/2)
π

|x|−α−1
α /∈ N

− (−1)N(2N+1)!
π |x|−2N−2 α = 2N + 1, odd integer

(−1)Nδ(2N)(x) α = 2N, even integer

, (13)

3.

Dα
1 δ(x) = F−1[i|κ|αsgn(κ)] =



− 1
2Γ(−α) sin(α π

2 )
|x|−α−1 sgn(x) =

Γ(α + 1) cos(απ/2)
π

|x|−α−1 sgn(x)
α /∈ N

− (−1)N(2N)!
π |x|−2N−1 sgn(x) α = 2N, even integer

(−1)Nδ(2N+1)(x) α = 2N + 1, odd integer.

(14)

Attending to properties (12) to (14) and a suitable parameter change, we obtained
derivatives of the power functions. We consider the regular cases (orders not equal to
negative integers). The others were obtained from (13) and (14).

1.

Dα
αtµε(t) =

Γ(µ + 1)
Γ(µ− α + 1)

tµ−αε(t) (15)

2.

Dβ
0 |x|

µ =
Γ(µ + 1) sin(µπ/2)

Γ(µ− β) sin((µ− β)π/2)
|x|a−β (16)

3.

Dβ
0 |x|

µ sgn(x) = − Γ(µ + 1) cos(µπ/2)
Γ(µ− β + 1) cos((β− µ)π/2)

|x|µ−β sgn(x) (17)

4.

Dβ
1 |x|

µ =
Γ(µ + 1) sin(µπ/2)

Γ(µ− β + 1) cos((β− µ)π/2)
|x|a−β sgn(x) (18)

5.

Dβ
1 |x|

µ sgn(x) = − Γ(µ + 1) cos(µπ/2)
Γ(µ− β + 1) sin((β− µ)π/2)

|x|a−β (19)

2.3. Formulation of the Diffusion Equation

The above-defined UFD was used to introduce the linear diffusion equation.

Definition 3. Let 0 ≤ α ≤ 2, 0 < β ≤ 2, and −2 < θ ≤ 2, with t, x ∈ R. We defined the
fractional diffusion equation (also, generalized fractional kinetic equation) by [40]:

tD
β
βu(x, t) + C xDα

θ u(x, t) = v(x, t) (20)
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where v(x, t) is the input, and u(x, t) is the output. Only for simplicity, we consider the
C = 1 case.

Let U(x, s) = L[u(x, t)] be the Laplace transform of u(x, t) relatively to t and U(κt) =
F [u(x, t)] the Fourier transform relatively to x. The 2-D Laplace–Fourier transform (LT-
FT) of u(x, t) is denoted by Ū(κ, s) = LF [u(x, t)] [41,42]. Assume also that we want to
compute the output for t > 0 and that there exists an initial-condition (IC) u(x, 0) = v0(x)
with V0(κ) = Fv0(x). Applying both transforms to (20) and attending to the IC (see, [41])
we get:

Ū(κ, s) =
sβ−1

sβ + |κ|αeiθ π
2 sgn(κ)

V0(κ) +
1

sβ + |κ|αeiθ π
2 sgn(κ)

V̄(κ, s) (21)

The LT-FT inverse of the first term on the right gives the free response, while the second
originates the forced term (particular solution). The function

H̄(κ, s) =
1

sβ + |κ|αeiθ π
2 sgn(κ)

is the transfer function of the system defined by (20). Its LT-FT inverse gives the 2-D green
function (impulse response), which we denote by hα,β

θ (x, t) and which, in the zero IC case,
allows us to write

u(x, t) = hα,β
θ (x, t) ∗ ∗v(x, t) (22)

where ∗∗ [42] denotes the 2-D convolution, and v(x, t) is any input function. However, in
agreement with (1), we shall be interested in the free therm only that, if β > 0, it is given by
the solution of

xDα
θ u(x, t) + tD

β
βu(x, t) = 0 (23)

under a suitable IC. If one assumes that u(x, 0) = δ(x) we obtain also an impulse response,
gα,β

θ (x, t) such that

u(x, t) = gα,β
θ (x, t) ∗ v0(x) (24)

that allows to obtain the free therm corresponding to any IC. The function gα,β
θ (x, t) is

given by

gα,β
θ (x, t) = F−1L−1

[
sβ−1

sβ + |κ|αeiθ π
2 sgn(κ)

]
(25)

or, from (21)

Gα,β
θ (κ, t) = L−1 sβ−1

sβ + |κ|αeiθ π
2 sgn(κ)

(26)

As it is well known, from the properties of the Mittag–Leffler function [43],

Gα,β
θ (κ, t) =

∞

∑
n=0

(−1)n|κ|αneinθ π
2 sgn(κ) tβn

Γ(βn + 1)
t > 0. (27)

The FT invertion of Gα,β
θ (κ, t) creates several difficulties that we face later. In the follow-

ing, we are concerned with the computation of the entropy associated to g(x, t) = gα,β
θ (x, t)

(we do not omit the scripts, unless necessary).

Remark 3. Note that, on assuming that α can be zero, we are including an unsolved case. The
β = 0 case corresponds to an eigenvalue problem that is not interesting here.
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3. A New Look at Entropy Computations
3.1. Main Entropies

As known, there are several definitions of entropy [30], even fractional entropy [32,33].
However, only a few are suitable for our objectives. Let P(x, t), x ∈ R, t ∈ R+ be the
probability density function and q a real parameter. The most important entropy definitions are

1. Shannon’s

S1 ≡
∫
R

P(x, t) ln P(x, t)dx (28)

2. Tsallis’

Tq ≡ −
1

1− q

∫
R

P(x, t)
(

1− Pq−1(x, t)
)

dx (29)

We particularize for q = 2 giving

T2 =
∫
R

P(x, t)(1− P(x, t))dx =
∫
R

P(x, t)− P2(x, t)dx = 1−
∫
R

P2(x, t)dx (30)

where we used the result
∫
R P(x, t)dx = 1.

3. Rényi’s

Rq ≡
1

1− q
ln
(∫

R
Pq(x, t)dx

)
(31)

Similarly, for q = 2, we get

R2 = − ln
(∫

R
P2(x, t)dx

)
(32)

Remark 4. Frequently, the entropies use the base-2 logarithm. For this study, the base was not
important. Therefore, we used the one that gives simpler results.

Lemma 1. Let f (x), x ∈ R be a square-integrable real function with FT, F(κ). The Parseval
relation states that [35]∫

R
f 2(x)dx =

1
2π

∫
R

F(κ)F(−κ)dκ =
1

2π

∫
R
|F(κ)|2dκ (33)

since F∗(κ) = F(−κ).

Consequently, we can compute T2 and R2 in the frequency domain respectively by

T2 = 1− 1
2π

∫
R

F(κ)F(−κ)dκ (34)

and

R2 = ln(2π)− ln
(∫

R
F(κ)F(−κ)dκ

)
(35)

Therefore, we only need to compute the “energy”
∫
R F(κ)F(−κ)dκ. Due to the sim-

ilarity of both T2 and R2 we used only one. We adopted R2 for its resemblance with the
Shannon entropy. For application, we set f (x) = P(x, t).

3.2. The Entropy of Some Special Distributions
3.2.1. The Gaussian

Consider the Gaussian distribution in the form

PG(x, t) =
1√
4πt

e−
x2
4t . (36)
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where 2t > 0 is the variance. Its Fourier transform is

FPG(x, t) = e−tκ2
(37)

We took into account the notation used in the expression (27), where we set α = 2,
β = 1, and θ = 0. The Shannon entropy of a Gaussian distribution is obtained without
great difficulty [31]. The Rényi entropy (32) reads

R2 = − ln
(

1
4πt

∫
R

e−
x2
2t dx

)
=

1
2

ln(8πt) (38)

which is a very interesting result: the Rényi entropy R2 of the Gaussian distribution depends on
the logarithm of the variance. A similar result was obtained with the Shannon entropy [31].

3.2.2. The Extreme Fractional Space

Consider the distribution resulting from (26) with β = 2, α < 2 and θ = 0. It is
immediate to see that

Gα,β
θ (κ, t) = L−1 s

s2 + |κ|α = cos
(
|κ|α/2t

)
Therefore, the corresponding Rényi entropy is

R2 = ln(2π)− ln
(∫

R
cos2

(
|κ|α/2t

)
dκ

)
= −∞ (39)

independently of the value of α ∈ [0, 2). This result suggests that, when approaching the
wave limit, β = 2, the entropy decreases without a lower bound.

3.2.3. The Stable Distributions

The above result led us to go ahead and consider again (27), with α < 2, β = 1—
usually denoted by fractional space. We have

Gα,1
θ (κ, t) =

∞

∑
n=0

(−1)n|κ|αneinθ π
2 sgn(κ) tn

n!
= e−|κ|

αeiθ π
2 sgn(κ)t, (40)

that corresponds to a stable distribution, although not expressed in one of the standard
forms [13,44]. We have

R2 = ln(2π)− ln
(∫

R
e−2|κ|α cos(θ π

2 )tdκ

)
The existence of the integral requires that

|θ| < 1.

Under this condition we can compute the integral∫
R

e−2|κ|α cos θ π
2 tdκ = 2

∫ ∞

0
e−2κα cos θ π

2 tdκ = 2Γ(1 + 1/α)
(

2t(cos θ
π

2
)
)−1/α

.

Therefore,

R2 = ln(π)− ln[Γ(1 + 1/α)] +
1
α

ln
[
2t cos

(
θ

π

2

)]
(41)

Let θ = 0 and α = 2, Γ(1 + 1/α) =
√

π
2 . We obtained (38). These results show that

the symmetric stable distributions behave similarly to the Gaussian distribution when
referring to the variation in t as shown in Figure 1.
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Figure 1. Rényi entropy (41) as a function of t(≥ 0.1), for several values of α = 1
4 n, n = 1, 2, · · · , 8

and θ = 0.

It is important to note that for t above some threshold, the entropy for α < 2 is
greater than the entropy of the Gaussian (see Figure 2). This must be contrasted with the
well-known property: the Gaussian distribution has the largest entropy among the fixed
variance distributions [31]. This fact may have been expected, since the stable distributions
have infinite variance. Therefore, it must be important to see how the entropy changes
with α. It evolutes as illustrated in Figure 3 and shows again that for t above a threshold,
the Gaussian distribution has lower entropy than the stable distributions. For t→ 0, the
entropy decreases without bound (41).

Figure 2. Threshold in t above which the Rényi entropy of the symmetric stable distributions is
greater than the entropy of the Gaussian for 0.1 ≤ α < 2.

It is important to remark that a θ 6= 0 introduces a negative parcel in (41). Therefore,
for the same α and β, the symmetric distributions have greater entropy than the asymmetric.

3.2.4. The Generalised Distributions

The results we obtained led us to consider (27) again but with 0 ≤ α < 2, 0 < β ≤ 2—
usually denoted by fractional time-space. We have

Gα,β
θ (κ, t) =

∞

∑
n=0

(−1)n|κ|αneinθ π
2 sgn(κ) tβn

Γ(βn + 1)
(42)
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Remark 5. We do not guarantee that the Fourier inverse g(x, t) = F−1Gα,β
θ (κ, t) as function of

x is positive so that it can be considered as a probability density function. Therefore, we assume that
for the parameters at hand, g(x, t) is really positive.

Figure 3. Rényi entropy (41) as function of the order, α, for t = 2n, n = −2,−1, 0, 1, 2, with θ = 0.

The computation of the entropy in this case is not so simple and complete as in the
previous case. However, some conclusions can be drawn. As Gα,β

θ (−κ, t) = Gα,β
−θ (κ, t), we

can write

R2 = ln(2π)− ln
(∫

R
Gα,β

θ (κ, t)Gα,β
−θ (κ, t)dκ

)
= ln(2π)− ln

(
2
∫ ∞

0
Gα,β

θ (κ, t)Gα,β
−θ (κ, t)dκ

)
= ln(π)− ln

(∫ ∞

0
Gα,β

θ (κ, t)Gα,β
−θ (κ, t)dκ

)
It is a simple matter to show that

Gα,β
θ (κ, t)Gα,β

−θ (κ, t) =
∞

∑
n=0

ane−iθn π
2 |κ|αn tβn

Γ(βn + 1)

where

an =
n

∑
k=0

(
βn
βk

)
eiθk π

2

Therefore,

R2 = ln(π)− ln

(∫ ∞

0

[
∞

∑
n=0

ane−iθn π
2 kαn tβn

Γ(βn + 1)

]
dκ

)

= ln(π)− ln

(∫ ∞

0

[
∞

∑
n=0

ane−iθn π
2

vβn

Γ(βn + 1)

]
vβ/α−1dv

)
− ln

(
β

αt
β
α

)

and
R2 = ln(π)− ln(

β

α
R0(α, β)) +

β

α
ln(t) (43)

where R0(α, β) =
∫ ∞

0

[
∑∞

n=0 ane−iθn π
2 vβn

Γ(βn+1)

]
vβ/α−1dv. The third term on the right points

to an effect of increasing the entropy with the increment of β.
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The results presented above suggest a smooth monotone increase in the entropy for
t > 0, since the entropy production

dR2

dt
=

β

αt
(44)

is always positive. It is important to compute the entropy variation with the orders. Con-
cerning α, this is not very difficult. It gives

∂R2

∂α
=

1
α
− A

β

α2 − ln(t)
β

α2 (45)

with A =
∫ ∞

0

[
∑∞

n=0 ane−iθn π
2 vβn

Γ(βn+1)

]
vβ/α−1 ln(v)dv. The derivative relatively to β does

not give a so-simple expression, which is the reason why we did not compute it. The A
integral plays a very important role, but it is not easy to obtain its value. Later, we compute
it for the neutral case (α = β).

4. Equation Solutions
4.1. Some Preliminary Results

Let us introduce the representation [14,36]

Ψα
θ = |κ|αeiθ π

2 sgn(κ). (46)

Assuming that Ψα
θ is constant, we can interpret (21) as the LT of a Mittag–Leffler

function, as we did above (42). Therefore, we can write:

G(κ, t) =
∞

∑
n=0

(−1)nΨαn
θn

tβn

Γ(βn + 1)
(47)

As a Fourier transform, this function has to verify

lim
|κ|→∞

|G(κ, t)| = 0. (48)

Let z = −Ψα
θ tβ. Attending to the properties of the Mittag–Leffler function [43,45], we

must have
Re(z

1
β ) < 0.

Since,
z = eiπ |κ|αeiθ π

2 sgn(κ)tβ

So,

z
1
β = ei π

β |κ|
α
β ei θ

β
π
2 sgn(κ)t.

Therefore, we must have

cos
[(
±θ + 2

β

)
π

2

]
< 0

which implies that
β− 2 < θ < 2− β (49)

If β > 1, we can extend the above relation to include the extrema of the interval, since
lim|κ|→∞|G(κ, t)| = 0 already, but more slowly, as the decrease is no longer exponential.
Therefore, we assumed |θ| ≤ 2− β.
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4.2. The Neutral Case (α = β)
4.2.1. α = β < 2

We started the solution of the diffusion equation by considering the α = β case, which
can be treated easily from (47). It can be stated as:

Theorem 1. Let β = α > 0 derivative orders define the differential Equation (23). The solution of
the initial value problem stated by the LT-FT Ḡ(κ, s), with |θ| ≤ 2− β, is given by

gβ
θ (x, t) =

1
π|x|

tβ

|x|β sin
(
(β + θ)π

2
)

1 + 2 tβ

|x|β cos
(
(β + θ)π

2
)
+ t2β

|x|2β

=
1

π|x|

|x|β
tβ sin

(
(β + θ)π

2
)

1 + 2 |x|
β

tβ cos
(
(β + θ)π

2
)
+ |x|2β

t2β

(50)

Proof. This theorem has been demonstrated earlier [14,46], using the formulation in terms
of a Mellin–Barnes integral. Here, we present a proof that arrives directly from the LT of
the Mittag–Leffler function.

Consider the relation (47). We intend to compute its inverse FT. For starting, let us
reverse the roles of the variables t and κ

G(κ, t) =
∞

∑
n=0

(−1)ntβn |κ|βneiθn π
2 sgn(κ)

Γ(βn + 1)
(51)

Besides, note that

|κ|βneiθn π
2 sgn(κ) =

{
κβneiθn π

2 κ > 0
(−κ)βne−iθn π

2 κ < 0

and

g(x, t) =
1

2π

∫
R

∞

∑
n=0

(−1)ntβn |κ|βneiθn π
2 sgn(κ)

Γ(βn + 1)
eiκxdκ =

1
2π

∫ ∞

0

∞

∑
n=0

(−1)neiθn π
2 tβn κβn

Γ(βn + 1)
eiκxdκ+

1
2π

∫ ∞

0

∞

∑
n=0

(−1)ne−iθn π
2 tβn κβn

Γ(βn + 1)
e−iκxdκ

Using a well-known property of the Mittag–Leffler function [43], we obtain

g(x, t) =
1

2π

(−ix)β−1

(−ix)β + eiθ π
2 tβ

+
1

2π

(ix)β−1

(ix)β + e−iθ π
2 tβ

=
1
π

|x|β−1tβ sin
(
(β + θ)π

2
)

|x|2α + 2|x|βtβ cos
(
(β + θ)π

2
)
+ t2β

that proves the theorem. This theorem is in agreement with similar result obtained in [40]
when solving the generalized fractional kinetic equation.

For the particular θ = 0 case, we get

gβ
0 (x, t) =

1
π|x|

|x|β
tβ sin

(
β π

2
)

1 + 2 |x|
β

tβ cos
(

β π
2
)
+ |x|2β

t2β

(52)

With β = 1, we obtain

g(x, t) =
1
π

t
|x|2 + t2 (53)
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that is the well-known Cauchy kernel.

4.2.2. The Entropy of the α = β < 2 Case

For simplicity, let us set

q(v) =
v sin

(
(β + θ)π

2
)

v2 + 2v cos
(
(β + θ)π

2
)
+ 1

Now, we are going to return back to (52) and compute the corresponding Rényi entropy:

R2 = − ln
(∫

R

1
π2|x|2 q2((|x|/t)β)dx

)
(54)

With a variable change, v = (|x|/t)β, we obtain:(∫
R

1
π2|x|2 q2((|x|/t)β)dx

)
=

2 sin2((β + θ)π
2 )

π2βt

∫ ∞

0

v1−1/β(
v2 + 2v cos

(
(β + θ)π

2
)
+ 1
)2 dx

The integral A(β) =
∫ ∞

0
v1−1/β

(v2+2v cos((β+θ) π
2 )+1)

2 dv has different behaviour for β less

or greater than 1. For the most interesting case, β ≥ 1, we can use an integration in the
complex plane with the help of the residue theorem. We obtain

A(β) =
∫ ∞

0

v1−1/β(
v2 + 2v cos

(
(β + θ)π

2
)
+ 1
)2 dv = −π

cos
(
(β + θ)π

2
)

sin3((β + θ)π
2 ) sin(π

β )

and then

R2 = − ln

(
−

2 cos
(
(β + θ)π

2
)

π sin((β + θ)π
2 ) sin(π

β )βt

)
= − ln

(
−2 cot

(
(β + θ)π

2
)

π sin(π
β )βt

)
(55)

so that

R2 = − ln

(
−2 cot

(
(β + θ)π

2
)

π sin(π
β )β

)
+ ln(t) (56)

For β ≥ 1, the Rényi entropy increases with ln(t), which implies that the correspond-
ing entropy production is independent of the derivative order:

dR2

dt
=

1
t

In particular, it is important to study the behavior of R2 when β→ 1, and when θ = 0.
We obtained a 0/0 indeterminacy, which raised gives the value ln(π) + ln(t).

As we have the expression of the neutral distribution given by (52), we can try to
compute the corresponding Shannon entropy. Without loosing generality, having in mind
expression (50), we can assume θ = 0. Therefore, we can write

S1 = −
(

2
π

∫ ∞

0

[
1
x

q((x/t)β)

]
ln
[

1
πx

q((x/t)β)

]
dx
)
= −

(
2

πβ

∫ ∞

0
q(v) ln

[
1

πtv1/β
q(v)

]
1
v

dv
)

(57)

that can be written as

S1 = − 2
πβ

∫ ∞

0
q(v) ln[q(v)]

1
v

dv +
2 ln(πt)

πβ

∫ ∞

0
q(v)

1
v

dv +
2

πβ2

∫ ∞

0
q(v)

ln(v)
v

dv. (58)

We can show that ∫ ∞

0
q(v)

1
v

dv = β
π

2
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and ∫ ∞

0
q(v)

ln(v)
v

dv = 0

Then
S1 = ln(πt)− 2

πβ

∫ ∞

0
q(v) ln[q(v)]

1
v

dv (59)

which shows that the dependence of S1 on β is rather complicated, but the entropy produc-
tion is simple and given by:

dS1

dt
=

1
t

that decreases with t, but is independent of β. This result gave rise to the entropy produc-
tion paradox.

4.2.3. The α = β = 2 Case: There Is No Paradox

The α = β = 2, θ = 0 case corresponds to a singular situation, since [46]

lim
β→2

g(x, t) =
1
2
[δ(x + t) + δ(x− t)],

the wave regime. The form of g(x, t), a generalized function, prevents a direct calculation
of entropy. Therefore, we can define the Rényi entropy corresponding to this case as a limit
when β→ 2. Then,

R2 = lim
β→2
− ln

(
−2 cot

(
β π

2
)

π sin(π
β )β

)
+ ln(t) (60)

The Rényi entropy depends directly on ln(t) implying that the entropy production is
independent of the derivative orders. However,

R2 = lim
β→2
− ln

(
−2 cot

(
β π

2
)

π sin(π
β )β

)
= −∞ (61)

independently of t. Therefore, when the order β approaches 2, the Rényi entropy decreases
“smoothly” to −∞. This is illustrated in Figure 4, which suggests the presence of the general-
ized function δ(β− 2) [46].

Concerning the Shannon entropy, let us return to relation (59). We were unable to
compute the integral analytically. In Figure 5, we illustrate the numerically computed
entropy. As seen, it suggests that the Shannon entropy goes also to −∞ as the order
approaches 2.

Figure 4. Rényi entropy as function of β ∈ (1, 1.99) for t = 1, 2, · · · , 5.
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Figure 5. Shannon entropy as function of β ∈ (1, 1.99) for t = 5n, n = 0, 1, · · · , 5.

4.3. Time-Dominant Case (α < β)

We are going ahead to the computation of the inverse FT of G(κ, t) for α < β. Here,
we may have some difficulties in the calculation of F−1Ψαn

θn when αn is a positive integer,
since Dirac impulses and derivatives will appear in agreement with (13) and (14). However,
this may not be considered as a great problem, since they affect only the value at x = 0 and
state only a coherence with initial condition.

As
Ψαn

θn = |κ|αneinθ π
2 sgn(κ) = |κ|αn

[
cos(θ

π

2
n) + i sin(θ

π

2
n) sgn(κ)

]
,

using (13) and (14) we can obtain the FT inverse of Ψαn
θn as [36]

F−1Ψαn
θn =

sin[(α + θ · sgn(x))nπ/2]
sin(αnπ)Γ(−α)

|x|−α−1 |x| > 0. (62)

However, using the reflection property of the gamma function, sin(αnπ)
π = − 1

Γ(−αn)Γ(1+αn) ,
we can write:

F−1Ψαn
θn =

sin[(α + θ · sgn(x))nπ/2]
π

Γ(αn + 1)|x|−αn−1 |x| > 0 (63)

It is interesting to separate the symmetric and anti-symmetric terms:

F−1Ψαn
θn =

sin(αnπ/2) cos(θnπ/2)
π

Γ(αn + 1)|x|−αn−1 +
cos(αnπ/2) sin(θnπ/2)

π
Γ(αn + 1)|x|−αn−1 sgn(x) (64)

These results lead us to announce the following theorem.

Theorem 2. Let β > α. The inverse Fourier transform of G(κ, t), defined by (47), is given by

gα,β
θ (x, t) =

1
π|x|

∞

∑
n=0

(−1)n sin(αnπ/2) cos(θnπ/2)
Γ(αn + 1)
Γ(βn + 1)

|x|−αntβn

+ sgn(x)
1

π|x|
∞

∑
n=0

(−1)n cos(αnπ/2) sin(θnπ/2)
Γ(αn + 1)
Γ(βn + 1)

|x|−αntβn

=
1

π|x|
∞

∑
n=0

(−1)n sin[(α + θ sgn(x))nπ/2]
Γ(αn + 1)
Γ(βn + 1)

|x|−αntβn

(65)
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We must note that the convergence of the series depends mainly on the factor
Γ(αn + 1)
Γ(βn + 1)

. It is immediate to conclude that

lim
n→∞

Γ(αn + 1)
Γ(βn + 1)

=


∞ α > β

0 α < β

1 α = β.

(66)

Therefore, relation (65) is interesting for α < β. It generalizes the results previously
obtained for β = 1 in the context of the stable distributions [44].

Example 1. Let β = 2α. Then
Γ(αn + 1)
Γ(βn + 1)

=
1
2

Γ(αn)
Γ(2αn)

As Γ(2z) = Γ(z)Γ(z + 1/2)22z−1/
√

π [47],

Γ(αn + 1)
Γ(βn + 1)

=
1√
π

2−2αn

Γ(αn + 1/2)

we obtain from (65)

gα,β
θ (x, t) =

1√
π|x|

∞

∑
n=0

(−1)n sin[(α + θ sgn(x))nπ/2]
2−2αn

Γ(αn + 1/2)
|x|−αnt2αn (67)

With α = 1/2 and θ = ±1/2, the Lévi–Smirnov distributions emerge.

Remark 6. The entropy of the α = 1, β = 2 case was computed in (39)

4.4. Space-Dominant Case (α > β)

When α > β, the approach we followed above is not suitable, since the series becomes
divergent. Therefore, we have to find a way where the two orders play reverse roles.

Theorem 3. Let α > β and α > 1. The Fourier inverse of G(κ, t), (47), is now given by

g(x, t) =
1

απ

∞

∑
n=0

(−1)n cos
(
(2n + 1)

πθ

2α

)
Γ((2n + 1)β/α)

(2n)!
sin((2n + 1)πβ/α)

sin((2n + 1)π/α)
x2nt−(2n+1)β/α

+
1

απ

∞

∑
n=0

(−1)n sin
(
(2n + 2)

πθ

2α

)
Γ((2n + 2)β/α)

(2n + 1)!
sin((2n + 2)πβ/α)

sin((2n + 2)π/α)
x2n+1t−(2n+2)β/α

(68)

Remark 7. We must note that (68) is a generalization for any β less than α of the results known
for the stable distributions corresponding to β = 1 that emerges as a particular case.

Proof. We write the inverse of (21) as

g(x, t) =
1

(2π)2i

∫
γ

∫
R

1
s

sβ

sβ + Ψα
θ

esteiκxdsdκ, (69)

where γ is a vertical straight line in the right half complex plane. From it, define a new
integration path γu that results from γ by the transformation u = sβ that will be used in
the integrand. This path consists of two half straight lines making angles of ±β π

2 with the
real axis. Then, we obtain:

g(x, t) =
1

β(2π)2i

∫
γu

∫
R

1
u + Ψα

θ

eu
1
β teiκxdudκ, (70)
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However,
1

u + Ψα
θ

=
∫ ∞

0
e−Ψα

θ τe−uτdτ,

that allows us to write

g(x, t) =
1

β(2π)2i

∫ ∞

0

∫
γβ

∫
R

e−Ψα
θ τev

1
β teiκxdvdκe−vτdτ =

1
β2πi

∫ ∞

0

∫
γβ

I(x, τ)ev
1
β t e−vτ dv dτ. (71)

We are going to consider first the inverse FT

I(x, τ) =
1

2π

∫
R

e−Ψα
θ τeiκxdκ

If we expand e−Ψα
θ τ in Taylor series, we are led to the results obtained in Section 4.3.

Therefore, we need to use another method. One possibility is the use of the integration in
the complex plane with application of the Cauchy theorem as done in [44] for the stable
distribution study. Here, we will follow a different method. We can write

I(x, τ) =
1

2π

∫ ∞

0
e−καeiθ π

2 τeiκxdκ +
1

2π

∫ ∞

0
e−καe−iθ π

2 τe−iκxdκ

Note that the second integral results from the first with the substitutions θ → −θ and
x → −x. Therefore,

I(x, τ) =
1
π

Re
{∫ ∞

0
e−|κ|

αeiθ π
2 τeiκxdκ

}
If α = 1,

I(x, τ) =
1
π

[
1

eiθ π
2 τ − ix

+
1

e−iθ π
2 τ + ix

]
(72)

that must be substituted in (71). We are going to continue with the α > 1 case. Perform the
substitution v = κα in I(x, τ) and use the Taylor series of the exponential to obtain

1
π

∫ ∞

0
e−|κ|

αeiθ π
2 τeiκxdκ =

1
απ

∫ ∞

0
e−veiθ π

2 τeiv1/αxv1/α−1dv =
1

απ

∞

∑
n=0

xn

n!
in
∫ ∞

0
e−veiθ π

2 τv(n+1)/α−1dv

Assume that |θ| < 1. Then,
∫ ∞

0 e−veiθ π
2 τv(n+1)/α−1dv is the LT of the function v(n+1)/α−1,

(v > 0), which reads ∫ ∞

0
e−veiθ π

2 τv(n+1)/α−1dv =
Γ((n + 1)/α)

ei[(n+1) πθ
2α ]τ(n+1)/α

and gives
1
π

∫ ∞

0
e−|κ|

αeiθ π
2 τeiκxdκ =

1
απ

∞

∑
n=0

xn

n!
ine−i[(n+1) πθ

2α ]τ−(n+1)/α

As we are only interested in the real terms, we obtain

I(x, τ) =
1

απ

∞

∑
n=0

(−1)n cos
(
(2n + 1)

πθ

2α

)
Γ((2n + 1)/α)

(2n)!
x2n

τ(2n+1)/α

+
1

απ

∞

∑
n=0

(−1)n sin
(
(2n + 2)

πθ

2α

)
Γ((2n + 2)/α)

(2n + 1)!
x2n+1

τ(2n+2)/α

(73)

The first term is an even function, while the second is odd. Now, return back to (71)
and insert there the result expressed in (73) to get
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g(x, t) =
1

αβπ

∞

∑
n=0

(−1)n cos
(
(2n + 1)

πθ

2α

)
Γ((2n + 1)/α)

(2n)!
1

2πi

∫
γβ

∫ ∞

0

x2n

τ(2n+1)/α
eu

1
β te−uτdudτ

+
1

αβπ

∞

∑
n=0

(−1)n sin
(
(2n + 2)

πθ

2α

)
Γ((2n + 2)/α)

(2n + 1)!
1

2πi

∫
γβ

∫ ∞

0

x2n+1

τ(2n+2)/α
eu

1
β te−uτdudτ

(74)

and

g(x, t) =
1

αβπ

∞

∑
n=0

(−1)n cos
(
(2n + 1)

πθ

2α

)
Γ((2n + 1)/α)

(2n)!
x2n 1

2πi

∫
γβ

∫ ∞

0

1
τ(2n+1)/α

eu
1
β te−uτdudτ

+
1

αβπ

∞

∑
n=0

(−1)n sin
(
(2n + 2)

πθ

2α

)
Γ((2n + 2)/α)

(2n + 1)!
x2n+1 1

2πi

∫
γβ

∫ ∞

0

1
τ(2n+2)/α

eu
1
β te−uτdudτ

(75)

Consider the LT
∫ ∞

0 x−aewxdx. If a > 0, it is a singular integral. To continue, we adopt
Hadamard’s procedure by recovering only the finite part, so that we can make:∫ ∞

0
x−aewxdx = wa−1Γ(−a + 1)

Therefore,∫ ∞

0

1
τ(2n+1)/α

e−uτdτ = u(2n+1)/α−1Γ
(
− (2n + 1)

α
+ 1
)

and
∫ ∞

0

1
τ(2n+2)/α

e−uτdτ = u(2n+2)/α−1Γ
(
− (2n + 2)

α
+ 1
)

from which

1
2πi

∫
γβ

∫ ∞

0

1
τ(2n+1)/α

eu
1
β te−uτdudτ =

Γ
(
− (2n+1)

α + 1
)

2πi

∫
γβ

u(2n+1)/α−1eu
1
β tdu = β

Γ
(
− (2n+1)

α + 1
)

Γ
(
− (2n+1)β

α + 1
) t−(2n+1)β/α

and

1
2πi

∫
γβ

∫ ∞

0

1
τ(2n+2)/α

eu
1
β te−uτdudτ =

Γ
(
− (2n+2)

α + 1
)

2πi

∫
γβ

u(2n+2)/α−1eu
1
β tdu = β

Γ
(
− (2n+2)

α + 1
)

Γ
(
− (2n+2)β

α + 1
) t−(2n+2)β/α

Finally,

g(x, t) =
1

απ

∞

∑
n=0

(−1)n cos
(
(2n + 1)

πθ

2α

)Γ
(
(2n+1)

α

)
(2n)!

Γ
(
− (2n+1)

α + 1
)

Γ
(
− (2n+1)β

α + 1
) x2nt−(2n+1)β/α

+
1

απ

∞

∑
n=0

(−1)n sin
(
(2n + 2)

πθ

2α

)Γ
(
(2n+2)

α

)
(2n + 1)!

Γ
(
− (2n+2)

α + 1
)

Γ
(
− (2n+2)β

α + 1
) x2n+1t−(2n+2)β/α

(76)

Using the reflection property of the Gamma function, we can rewrite (76) as shown
in (68).

Example 2. Let θ = 0, α = 2, and β = 1. As Γ(n + 1/2) = (2n)!
√

π
4nn! , we obtain the Gaussian

introduced in Section 3.2.

Example 3. Let α = 2β. We have:

g(x, t) =
1

απ

∞

∑
n=0

(−1)n cos
(
(2n + 1)

πθ

2α

)
Γ(n + 1/2)

(2n)!
sin((2n + 1)π/2)
sin((2n + 1)π/α)

x2nt−n−1/2
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As Γ(n + 1/2) = (2n)!
√

π
4nn! , we obtain

g(x, t) =
1

α
√

πt

∞

∑
n=0

cos
(
(2n + 1)

πθ

2α

)
1

4nn!
1

sin((2n + 1)π/α)
x2nt−n

Now, particularize to θ = 0 and α = 4
3 ,

g(x, t) =
1

α
√

πt

∞

∑
n=0

1
4nn!

1
sin
(
(2n + 1) 3π

4
) x2nt−n

However,

1
sin
(
(2n + 1) 3π

4
) , n = 0, 1, · · · =

√
2[1, 1, −1, −1, 1, · · · ] = 2 sin

(
(n + 1)

3π

4

)
= −iei((n+1) 3π

4 ) + ie−i((n+1) 3π
4 )

and
∞

∑
n=0

ei((n+1) 4π
3 )

4nn!
x2nt−nt = ei 4π

3

∞

∑
n=0

x2ei 3π
4

4t
n!

= ei 3π
4 e

x2ei 3π
4

4t

which leads to

g(x, t) = −iei 3π
4 e

x2ei 3π
4

4t + ie−i 3π
4 e

x2e−i 3π
4

4t =
1 + i√

2
e

x2(−1+i)
4
√

2t +
1− i√

2
e

x2(−1−i)
4
√

2t

giving

g(x, t) = 2e−
x2

4
√

2t cos
(

x2

4
√

2t
+

π

4

)
(77)

Remark 8. With α = 4
5 , 4

7 , 4
9 , · · · , we obtain other solutions similar to (77).

Example 4. Again with α = 2β and θ = 0, as above, we set α = 8
5 , to obtain

g(x, t) =
1

α
√

πt

∞

∑
n=0

1
4nn!

1
sin
(
(2n + 1) 5π

8
) x2nt−n

With some work and the help of the relation sin φ
2 = 1−cos φ

2 , we obtain one period of the
function 1

sin((2n+1) 5π
8 )

that we state as P = [a, −b, −a, b, −a, b, a, −b] where a =
√

8− 2
√

2

and b =
√

8 + 2
√

2, so that

P = [2.2741, −3.2907, −2.2741, 3.2907, −2.2741, 3.2907, 2.2741, −3.2907]

Using the discrete Fourier transform [34] we conclude that

1
sin
(
(2n + 1) 5π

8
) = Aei(2π 1

8 n+φ) + A∗e−i(2π 1
8 n+φ) + Bei(2π 3

8 n+ψ) + B∗e−i(2π 3
8 n+ψ), n = 0, 1, 2, · · ·

with A = 6.5830/8, B = 14.5830/8, φ = 0.7572π, and ψ = −0.1010π. With these expressions
we obtain a sum of two functions like (77).

Remark 9. With α = 8
7 , 8

9 , · · · , we obtain other similar solutions.

Excepting in particular cases, the entropy computation is not easy to perform as we
showed in Section 3.2.4.
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5. Discussion and Conclusions

The traditional fractional diffusion equation was based on the Caputo time derivative
and on a space pseudo-derivative defined in the frequency domain. The Caputo derivative
has the initial-condition drawback [41,42]. The use of a time derivative defined on R avoids
such a problem. Concerning the space derivative, which was defined implicitly before, it was
here considered as a particular case of the unified derivative, the Riesz–Feller derivative [36],
which was defined both by a GL-type derivative and by a Riesz–Feller integral.

A main point in the diffusion studies concerns the entropy computations and the
corresponding entropy paradox. This seems to be a consequence of two facts: the incom-
plete entropy computations due to the inherent difficulties and a hasty application of scale
invariance. To enable the acquisition of tangible results, we considered a particular case
of each Tsallis and Rényi entropies, corresponding to setting the parameter that defines
them at the value 2. This allows us to express the entropy in terms of the “energy” of the
probability density function or, using the Parseval relation, its frequency version. With
this procedure, we could compute the entropy of the neutral case and of the stable dis-
tributions. We showed that really the entropy in the wave regime is −∞, and even it
increases with time. However, more importantly, the entropy decreases continuously when
β approaches 2. The scale invariance is questionable. If we take G(κ, s) (26), we can write

G(κ, s) =
sβ−1

sβ + |κ|αeiθ π
2 sgn(κ)

=
1
s

1

1 + |κ|αeiθ π
2 sgn(κ)s−β

,

which suggests that the
1
s

factor destroys the scale invariance.
The search for solutions of the diffusion equation was done differently from the

traditional method. We studied first the neutral case, having obtained the known solution,
but using a different easier procedure. For it, we obtained an expression for the Rényi
entropy. Then, we considered the dominant time and dominant space cases, where we
obtained generalizations of known results obtained before in the study of stable processes.
In the dominant space case, we could not solve the equation with all the generality, namely,
for low values of the orders. This will remain an open problem. It is important to remark
that the scale invariance is different in both regimes. The solutions we obtained assumed
the form of series that, while convergent, give rise to numerical difficulties. Perhaps integral
solutions can avoid such problems.

Another problem that resulted from examples we presented is the inexistence of a pos-
itivity criterion: we found solutions that are not positive and then cannot be considered as
probablility density functions. In [48] (p. 265), there is a necessary condition that the Fourier
transform of positive functions must verify, but it seems there is no sufficient condition.

Independently of the probabilistic interpretation of the solution, the proposed method-
ology can be used in other similar equations, as the ones we obtain by joining other terms
with different derivative orders [42].
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