

Article Abstract Fractional Monotone Approximation with Applications

George A. Anastassiou 匝

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA; ganastss@memphis.edu

Abstract: Here we extended our earlier fractional monotone approximation theory to abstract fractional monotone approximation, with applications to Prabhakar fractional calculus and non-singular kernel fractional calculi. We cover both the left and right sides of this constrained approximation. Let $f \in C^p([-1,1])$, $p \ge 0$ and let L be a linear abstract left or right fractional differential operator such that $L(f) \ge 0$ over [0,1] or [-1,0], respectively. We can find a sequence of polynomials Q_n of degree $\le n$ such that $L(Q_n) \ge 0$ over [0,1] or [-1,0], respectively. Additionally f is approximated quantitatively with rates uniformly by Q_n with the use of first modulus of continuity of $f^{(p)}$.

Keywords: monotone fractional approximation; abstract fractional calculus; fractional linear differential operator; Prabhakar fractional calculus; non-singular kernel fractional calculi

AMS 2020 Mathematics Subject Classification: 41A10; 41A17; 41A25; 41A28; 41A29

1. Introduction

The topic of monotone approximaton initiated in 1965, Ref. [12] by O. Shisha, and became a major trend in approximation theory. The original problem was: given a positive integer k, approximate with rates a given function f whose kth derivative is ≥ 0 by polynomials $(Q_n)_{n \in \mathbb{N}}$ having the same property.

In 1985, Ref. [2], the author and O. Shisha continued this study by replacing the kth derivative with a linear differential operator of order k involving ordinary derivatives, again the approximation was with rates.

Later, in 1991, Ref. [3], the author extended this kind of study in two dimensions, etc. In 2015, Ref. [4] (see chapters 1–8) went a step further, by starting the fractional monotone approximation, in that the linear differential operator is a fractional one, involving left or right side Caputo fractional derivatives.

To give a flavor of it, we need:

Definition 1 ([5], p. 50). Let $\alpha > 0$ and $\lceil \alpha \rceil = m \in \mathbb{N} (\lceil \cdot \rceil)$ is the ceiling of the number). Consider $f \in C^m(\lceil -1, 1 \rceil)$. We define the left side Caputo fractional derivative of f of order α as follows:

$$\left(D_{*-1}^{\alpha}f\right)(x) = \frac{1}{\Gamma(m-\alpha)} \int_{-1}^{x} (x-t)^{m-\alpha-1} f^{(m)}(t) dt, \tag{1}$$

for any $x \in [-1, 1]$, where Γ is the gamma function. We set

$$D^0_{*-1}f(x) = f(x), \ D^m_{*-1}f(x) = f^{(m)}(x), \ \forall \ x \in [-1, 1].$$

In addition, to motivate our work, we mention:

Theorem 1 ([4], p. 2). Let h, k, p be integers, $0 \le h \le k \le p$ and let f be a real function, with $f^{(p)}$ continuous in [-1, 1] and first modulus of continuity $\omega_1(f^{(p)}, \delta)$, where $\delta > 0$. Let $\alpha_j(x)$, j = h, h + 1, ..., k be real functions, defined and bounded on [-1, 1] and assume for $x \in [0, 1]$

Citation: Anastassiou, G.A. Abstract Fractional Monotone Approximation with Applications. *Fractal Fract.* **2021**, *5*, 158. https://doi.org/10.3390/ fractalfract5040158

Academic Editor: Vassili Kolokoltsov

Received: 19 August 2021 Accepted: 27 September 2021 Published: 9 October 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). that $\alpha_h(x)$ is either \geq some number $\alpha > 0$ or \leq some number $\beta < 0$. Let the real numbers $\alpha_0 = 0 < \alpha_1 \leq 1 < \alpha_2 \leq 2 < \ldots < \alpha_p \leq p$. Here $D_{*-1}^{\alpha_j} f$ stands for the left Caputo fractional derivative of f of order α_j anchored at -1. Consider the linear left fractional differential operator

$$L := \sum_{j=h}^{k} \alpha_j(x) \left[D_{*-1}^{\alpha_j} \right]$$
⁽²⁾

and suppose, throughout [0, 1],

$$L(f) \ge 0. \tag{3}$$

Then, for any $n \in \mathbb{N}$, there exists a real polynomial $Q_n(x)$ of degree $\leq n$ such that

$$L(Q_n) \ge 0 \text{ throughout } [0,1], \tag{4}$$

and

$$\max_{-1 \le x \le 1} |f(x) - Q_n(x)| \le C n^{k-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right),$$
(5)

where C is a constant independent of n or f. *As you see the monotonicity property here is true only on the critical interval* [0,1].

We will use the following important result:

Theorem 2 (see: [6] by S.A. Teljakovskii and [7] by R.M. Trigub). Let $n \in \mathbb{N}$. Be given a real function g, with $g^{(p)}$ continuous in [-1,1], there exists a real polynomial $q_n(x)$ of degree $\leq n$ such that

$$\max_{1 \le x \le 1} \left| g^{(j)}(x) - q_n^{(j)}(x) \right| \le R_p n^{j-p} \omega_1 \left(g^{(p)}, \frac{1}{n} \right), \tag{6}$$

j = 0, 1, ..., p, where R_p is a constant independent of n or g.

In this article, we perform abstract fractional calculus, left and right monotone approximation theory of Caputo type, and then we apply our results to Prabhakar fractional Calculus, generalized non-singular fractional calculus, and parametrized Caputo-Fabrizio non-singular fractional calculus.

Next, we build the related necessary fractional calculi background.

2. Fractional Calculi

Here, we need to be very specific in preparation for our main results.

2.1. Abstract Fractional Calculus

Let $h, k \in \mathbb{Z}_+$, $p \in \mathbb{N}$: $0 \le h \le k \le p$. Let also $\mathbb{N} \not\supseteq \alpha_j > 0$, $j = 1, \ldots, p$, such that $\alpha_0 = 0 < \alpha_1 < 1 < \alpha_2 < 2 < \alpha_3 < 3 < \ldots < \alpha_p < p$. That is $\lceil \alpha_j \rceil = j, j = 1, \ldots, p$; $\lceil \alpha_0 \rceil = 0$.

Consider the integrable functions $k_j := K_{\alpha_j} : [0,2] \rightarrow \mathbb{R}_+, j = 0, 1, \dots, p$. Here, $g \in C^p([-1,1])$.

We consider the following abstract left side Caputo type fractional derivatives:

$$\binom{k_j D_{*-1}^{\alpha_j} g}{x_{*-1}} (x) := \int_{-1}^x k_j (x-t) g^{(j)}(t) dt,$$
 (7)

 $j = 1, \ldots, p; \forall x \in [-1, 1].$

Similarly, we define the corresponding right side generalized Caputo type fractional derivatives:

$$\binom{k_j D_{1-g}^{\alpha_j}}{x_j}(x) := (-1)^j \int_x^1 k_j (t-x) g^{(j)}(t) dt,$$
(8)

$$j=1,\ldots,p; \forall x\in [-1,1].$$

We set

$$\binom{k_j D_{*-1}^j g}{x} (x) := g^{(j)}(x); \ \binom{k_j D_{1-}^j g}{x} (x) := (-1)^j g^{(j)}(x),$$
 (9)

for $j = 1, \ldots, p$, and also we set

$$\binom{k_0 D_{*-1}^0 g}{x} := \binom{k_0 D_{1-}^0 g}{x} := g(x),$$
 (10)

 $\forall x \in [-1,1].$

We will assume that

$$\int_{0}^{1} k_h(z) dz \ge 1$$
, when $h \ne 0$. (11)

In the usual Caputo fractional derivatives case, it is

$$k_j(z) = rac{z^{j-lpha_j-1}}{\Gamma(j-lpha_j)}, \ j = 1, \dots, p; \ \forall \, z \in [0,2],$$
 (12)

and (11) is fulfilled, by the fact that $\Gamma(h - \alpha_h + 1) \leq 1$, see [4], p. 6.

2.2. About Prabhakar Fractional Calculus

Here, we follow [8,9].

We consider the Prabhakar function (also known as the three parameter Mittag-Leffler function), (see [10], p. 97; [11])

$$E^{\gamma}_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{(\gamma)_k}{k! \Gamma(\alpha k + \beta)} z^k, \tag{13}$$

where Γ is the gamma function; $\alpha, \beta > 0, \gamma \in \mathbb{R}, z \in \mathbb{R}$, and $(\gamma)_k = \gamma(\gamma + 1)...(\gamma + k - 1)$. It is $E^0_{\alpha,\beta}(z) = \frac{1}{\Gamma(\beta)}$.

Let $a, b \in \mathbb{R}$, a < b and $x \in [a, b]$; $f \in C([a, b])$. The left and right Prabhakar fractional integrals are defined ([8,9]) as follows:

$$\left(e_{\rho,\mu,\omega,a+}^{\gamma}f\right)(x) = \int_{a}^{x} (x-t)^{\mu-1} E_{\rho,\mu}^{\gamma} \left[\omega(x-t)^{\rho}\right] f(t) dt, \tag{14}$$

and

$$\left(e_{\rho,\mu,\omega,b-}^{\gamma}f\right)(x) = \int_{x}^{b} (t-x)^{\mu-1} E_{\rho,\mu}^{\gamma} \left[\omega(t-x)^{\rho}\right] f(t) dt, \tag{15}$$

where $\rho, \mu > 0; \gamma, \omega \in \mathbb{R}$.

Functions (14) and (15) are continuous, see [8].

Next, let $f \in C^N([a, b])$, where $N = \lceil \mu \rceil$, $(\lceil \cdot \rceil)$ is the ceiling of the number), $0 < \mu \notin \mathbb{N}$. We define the Prabhakar-Caputo left and right fractional derivatives of order μ ([8,9]) as follows ($x \in [a, b]$):

$$({}^{C}D^{\gamma}_{\rho,\mu,\omega,a+}f)(x) = \int_{a}^{x} (x-t)^{N-\mu-1} E^{-\gamma}_{\rho,N-\mu} [\omega(x-t)^{\rho}] f^{(N)}(t) dt,$$
 (16)

with ${}^{C}D_{\rho,0,\omega,a+}^{\gamma}f := f; {}^{C}D_{\rho,N,\omega,a+}^{\gamma}f := f^{(N)}, N \in \mathbb{N}$, and

$$\binom{C}{D_{\rho,\mu,\omega,b-}^{\gamma}} f(x) = (-1)^N \int_x^b (t-x)^{N-\mu-1} E_{\rho,N-\mu}^{-\gamma} [\omega(t-x)^{\rho}] f^{(N)}(t) dt,$$
(17)

with ${}^{C}D_{\rho,0,\omega,b-}^{\gamma}f := f; {}^{C}D_{\rho,N,\omega,b-}^{\gamma}f := (-1)^{N}f^{(N)}, N \in \mathbb{N}.$ One can rewrite (16) and (17) as

$$\binom{C}{\rho}_{\rho,\mu,\omega,a+f}(x) = \binom{e^{-\gamma}}{\rho,N-\mu,\omega,a+f}[N](x),$$
(18)

$$\left({}^{C}D^{\gamma}_{\rho,\mu,\omega,b-}f\right)(x) = (-1)^{N} \left(e^{-\gamma}_{\rho,N-\mu,\omega,b-}f^{[N]}\right)(x), \tag{19}$$

 $\forall x \in [a, b].$

Clearly, the functions (18) and (19) are continuous.

By [8], we have that

$$\left(e_{\rho,\mu,\omega,a+}^{\gamma}f\right)(x) = \int_{a}^{x} (x-t)^{\mu-1} \left(\sum_{k=0}^{\infty} \frac{(\gamma)_{k}}{k!\Gamma(\rho k+\mu)} \left(\omega(x-t)^{\rho}\right)^{k}\right) f(t)dt$$

$$= \sum_{k=0}^{\infty} \frac{(\gamma)_{k}\omega^{k}}{k!\Gamma(\rho k+\mu)} \int_{a}^{x} (x-t)^{(\rho k+\mu)-1} f(t)dt,$$

$$(20)$$

 $\forall x \in [a, b].$ That is

$$\left(e_{\rho,\mu,\omega,a+1}^{\gamma}\right)(x) = \sum_{k=0}^{\infty} \frac{(\gamma)_k \omega^k}{k! \Gamma(\rho k + \mu)} \int_a^x (x-t)^{(\rho k + \mu)-1} dt = \sum_{k=0}^{\infty} \frac{(\gamma)_k \omega^k}{k! \Gamma(\rho k + \mu)} \frac{(x-a)^{(\rho k + \mu)}}{(\rho k + \mu)} = \sum_{k=0}^{\infty} \frac{(\gamma)_k \omega^k}{k! \Gamma(\rho k + \mu + 1)} (x-a)^{(\rho k + \mu)} = (x-a)^{\mu} \sum_{k=0}^{\infty} \frac{(\gamma)_k}{k! \Gamma(\rho k + \mu + 1)} [\omega(x-a)^{\rho}]^k = (x-a)^{\mu} E_{\rho,\mu+1}^{\gamma} (\omega(x-a)^{\rho}).$$

So, we have proved that

$$\left(e_{\rho,\mu,\omega,a+}^{\gamma}1\right)(x) = (x-a)^{\mu}E_{\rho,\mu+1}^{\gamma}\left(\omega(x-a)^{\rho}\right),\tag{22}$$

 $\forall x \in [a, b].$

Similarly, we have

$$\left(e_{\rho,\mu,\omega,b-1}^{\gamma}1\right)(x) = \sum_{k=0}^{\infty} \frac{(\gamma)_{k}\omega^{k}}{k!\Gamma(\rho k + \mu)} \int_{x}^{b} (t-x)^{(\rho k+\mu)-1} dt = \sum_{k=0}^{\infty} \frac{(\gamma)_{k}\omega^{k}}{k!\Gamma(\rho k + \mu)} \frac{(b-x)^{(\rho k+\mu)}}{(\rho k + \mu)} = \sum_{k=0}^{\infty} \frac{(\gamma)_{k}\omega^{k}}{k!\Gamma(\rho k + \mu + 1)} (b-x)^{(\rho k+\mu)} = (b-x)^{\mu} \sum_{k=0}^{\infty} \frac{(\gamma)_{k}}{k!\Gamma(\rho k + \mu + 1)} \left[\omega(b-x)^{\rho}\right]^{k} = (b-x)^{\mu} E_{\rho,\mu+1}^{\gamma} (\omega(b-x)^{\rho}).$$

$$(23)$$

So, it holds

$$(e^{\gamma}_{\rho,\mu,\omega,b-}1)(x) = (b-x)^{\mu}E^{\gamma}_{\rho,\mu+1}(\omega(b-x)^{\rho}),$$
 (24)

 $\forall x \in [a, b].$ Next, we take [a, b] = [-1, 1].

Thus, Thus,

$$\left(e_{\rho,\mu,\omega,-1+}^{\gamma}1\right)(x) = (x+1)^{\mu}E_{\rho,\mu+1}^{\gamma}(\omega(x+1)^{\rho}),$$
(25)

and

$$\left(e_{\rho,\mu,\omega,1-}^{\gamma}1\right)(x) = (1-x)^{\mu}E_{\rho,\mu+1}^{\gamma}(\omega(1-x)^{\rho}),$$
 (26)

 $\forall x \in [-1,1].$

Clearly, then we get

$$\left(e_{\rho,N-\mu,\omega,-1+}^{-\gamma}1\right)(x) = (x+1)^{N-\mu} E_{\rho,N-\mu+1}^{-\gamma} \left(\omega(x+1)^{\rho}\right),\tag{27}$$

$$\left(e_{\rho,N-\mu,\omega,1-}^{-\gamma}1\right)(x) = (1-x)^{N-\mu} E_{\rho,N-\mu+1}^{-\gamma} \left(\omega(1-x)^{\rho}\right),\tag{28}$$

 $\forall x \in [-1,1].$

Here, it is $N - \mu > 0$. By assumption we take $\rho > 0$, $\gamma < 0$ and, for convenience, we consider only $\omega > 0$.

Therefore, we derive the basic Hardy type inequalities:

$$\left\| e_{\rho,N-\mu,\omega,-1+}^{-\gamma} 1 \right\|_{\infty,[-1,1]} \le 2^{N-\mu} E_{\rho,N-\mu+1}^{-\gamma}(2^{\rho}\omega), \tag{29}$$

and

$$\left\| e_{\rho,N-\mu,\omega,1-}^{-\gamma} 1 \right\|_{\infty,[-1,1]} \le 2^{N-\mu} E_{\rho,N-\mu+1}^{-\gamma}(2^{\rho}\omega).$$
(30)

2.3. From Generalized Non-Singular Fractional Calculus

We need

Definition 2. Here, we use the multivariate analogue of generalized Mittag-Leffler function, see [12], defined for $\lambda, \gamma_i, \rho_i, z_i \in \mathbb{C}$, $Re(\rho_i) > 0$ (j = 1, ..., m) in terms of a multiple series of the form: (a)1

$$E_{(\rho_{j}),\lambda}^{(\gamma_{j})}(z_{1},...,z_{m}) = E_{(\rho_{1},...,\rho_{m}),\lambda}^{(\gamma_{1})}(z_{1},...,z_{m}) = \sum_{k_{1},...,k_{m}=0}^{\infty} \frac{(\gamma_{1})_{k_{1}}...(\gamma_{m})_{k_{m}}}{\Gamma\left(\lambda + \sum_{j=1}^{m} k_{j}\rho_{j}\right)} \frac{z_{1}^{k_{1}}...z_{m}^{k_{m}}}{k_{1}!...k_{m}!},$$
(31)

where $(\gamma_j)_{k_i}$ is the Pochhammer symbol, Γ is the gamma function. By [13], p. 157, (31) converges for $Re(\rho_i) > 0, j = 1, ..., m$.

In what follows, we will use the particular case of $E^{(\gamma_1,...,\gamma_m)}_{(\rho,...,\rho),\lambda}[\omega_1 t^{\rho},...,\omega_m t^{\rho}]$, denoted by $E_{(\rho),\lambda}^{(\gamma_j)}[\omega_1 t^{\rho}, \dots, \omega_m t^{\rho}]$, where $0 < \rho < 1, t \ge 0, \lambda > 0, \gamma_j \in \mathbb{R}$ with $(\gamma_j)_{k_j} :=$ $\gamma_{j}(\gamma_{j}+1)...(\gamma_{j}+k_{j}-1), \omega_{j} \in \mathbb{R}-\{0\}, \text{ for } j=1,...,m.$

Let now $f \in C^{n+1}([a, b]), n \in \mathbb{Z}_+$.

We define the Caputo type generalized left fractional derivative with non-singular kernel of order $n + \rho$, as

$$D_{a*}^{n+\rho}f(x) := \frac{CA}{(\gamma_j)} D_{a*}^{n+\rho,\lambda} f(x) :=$$

$$\frac{A(\rho)}{1-\rho} \int_a^x E_{(\rho),\lambda}^{(\gamma_j)} \left[\frac{-\omega_1 \rho}{1-\rho} (x-t)^{\rho}, \dots, \frac{-\omega_m \rho}{1-\rho} (x-t)^{\rho} \right] f^{(n+1)}(t) dt, \qquad (32)$$

 $\forall x \in [a, b].$

Similarly, we define the Caputo type generalized right fractional derivative with non-singular kernel of order $n + \rho$, as

$$D_{b-}^{n+\rho}f(x) := \frac{CA}{(\gamma_j)(\omega_j)}D_{b-}^{n+\rho,\lambda}f(x) :=$$

-1)ⁿ⁺¹ $\frac{A(\rho)}{1-\rho}\int_x^b E_{(\rho),\lambda}^{(\gamma_j)} \left[\frac{-\omega_1\rho}{1-\rho}(t-x)^{\rho},\ldots,\frac{-\omega_m\rho}{1-\rho}(t-x)^{\rho}\right]f^{(n+1)}(t)dt,$ (33)

 $\forall x \in [a, b].$

(-

Above $A(\rho)$ is a normalizing constant.

The above derivatives (32), (33) generalize the Atangana-Baleanu fractional derivatives [14].

We mention the following Hardy type inequalities:

Theorem 3 ([15]). *All as above with* $\gamma_j > 0, j = 1, ..., m; \lambda = 1$ *. Then*

$$\left\{ \left\| D_{a*}^{n+\rho} f \right\|_{\infty}, \left\| D_{b-}^{n+\rho} f \right\|_{\infty} \right\} \leq \frac{(b-a)|A(\rho)|}{1-\rho}$$
$$E_{(\rho),2}^{(\gamma_j)} \left[\frac{|\omega_1|\rho}{1-\rho} (b-a)^{\rho}, \dots, \frac{|\omega_m|\rho}{1-\rho} (b-a)^{\rho} \right] \left\| f^{(n+1)} \right\|_{\infty} < \infty, \tag{34}$$

where $n \in \mathbb{Z}_+$.

We also mention:

Theorem 4 ([15]). *All as above with* $\gamma_j > 0$, j = 1, ..., m, and $\lambda > 0$, $0 < \rho < 1$, etc. Then

$$D_{a*}^{n+\rho}f, D_{b-}^{n+\rho}f \in C([a,b]), n \in \mathbb{Z}_+.$$

We rewrite (32) and (33), and for [a, b] = [-1, 1].

Let $\mu > 0$ with $\mu \notin \mathbb{N}$ and $\lceil \mu \rceil = n \in \mathbb{N}$. That is $0 < 1 - n + \mu < 1$, and let $f \in C^n([-1,1])$. Then, we have

$$D_{-1*}^{\mu}f(x) := {CA \atop (\gamma_j)(\omega_j)} D_{-1*}^{\mu,\lambda}f(x) :=$$

$$\frac{A(1-n+\mu)}{n-\mu} \int_{-1}^{x} E_{(1-n+\mu),\lambda}^{(\gamma_j)} \left[\frac{-\omega_1(1-n+\mu)}{n-\mu} (x-t)^{1-n+\mu}, \dots, \frac{-\omega_m(1-n+\mu)}{n-\mu} (x-t)^{1-n+\mu} \right] f^{(n)}(t) dt,$$
(35)

and

$$(-1)^{n} \frac{A(1-n+\mu)}{n-\mu} \int_{x}^{1} E_{(1-n+\mu),\lambda}^{(\gamma_{j})} \left[\frac{-\omega_{1}(1-n+\mu)}{n-\mu} (t-x)^{1-n+\mu}, \dots, \frac{-\omega_{m}(1-n+\mu)}{n-\mu} (t-x)^{1-n+\mu} \right] f^{(n)}(t) dt,$$
(36)

 $\forall x \in [-1,1].$

We will set $D_{-1*}^0 f = f$, $D_{1-}^0 f = f$, and $D_{-1*}^m f = f^{(m)}$, $D_{1-}^m f = (-1)^m f^{(m)}$, when $m \in \mathbb{N}$.

 $D_1^{\mu} f(x) := CA \sum_{\lambda \in \mathcal{A}} D_1^{\mu,\lambda} f(x) :=$

We make

Remark 1. Fractional Calculi of Sections 2.2 and 2.3 are special cases of abstract fractional calculus, see Section 2.1. In particular, the important condition (11) is fulfilled.

So, we will verify $\int_0^1 k_h(z) dz \ge 1$, $h \ne 0$. (I) First, for Section 2.2: We notice that $\int_0^1 N - \mu - 1 \pi - \gamma$ (10)

$$\int_0^1 z^{N-\mu-1} E_{\rho,N-\mu}^{-\gamma}(\omega z^{\rho}) dz =$$

(here ρ , *N* – μ > 0, γ < 0, ω > 0)

$$\int_{0}^{1} z^{N-\mu-1} \sum_{k=0}^{\infty} \frac{(-\gamma)_{k}}{k! \Gamma(\rho k+N-\mu)} (\omega z^{\rho})^{k} dz =$$

$$\sum_{k=0}^{\infty} \frac{(-\gamma)_{k} \omega^{k}}{k! \Gamma(\rho k+N-\mu)} \int_{0}^{1} z^{N-\mu-1} z^{\rho k} dz =$$

$$\sum_{k=0}^{\infty} \frac{(-\gamma)_{k} \omega^{k}}{k! \Gamma(\rho k+N-\mu)} \int_{0}^{1} z^{(\rho k+N)-\mu-1} dz =$$

$$\sum_{k=0}^{\infty} \frac{(-\gamma)_{k} \omega^{k}}{k! \Gamma(\rho k+N-\mu+1)} = E_{\rho,N-\mu+1}^{-\gamma}(\omega) \ge 1,$$
(37)

for suitable $\omega > 0$.

(II) Next, for Section 2.3:

Here $\gamma_j > 0, j = 1, ..., m; \lambda = 1; \mathbb{N} \not\supseteq \mu > 0, \lceil \mu \rceil = n \in \mathbb{N}, \omega_j < 0, j = 1, ..., m$. Without loss of generality we assume that $A(1 - n + \mu) > 0$. We have that

$$\frac{A(1-n+\mu)}{n-\mu} \int_0^1 E_{(1-n+\mu),1}^{(\gamma_j)} \left[\frac{-\omega_1(1-n+\mu)}{n-\mu} z^{1-n+\mu}, \\ \dots, \frac{-\omega_m(1-n+\mu)}{n-\mu} z^{1-n+\mu} \right] dz =$$

(here $0 < 1 - (n - \mu) = 1 - n + \mu < 1$)

$$\frac{A(1-n+\mu)}{n-\mu} \int_{0}^{1} \left[\sum_{k_{1},\dots,k_{m}=0}^{\infty} \frac{(\gamma_{1})_{k_{1}}\dots(\gamma_{m})_{k_{m}}}{\Gamma\left(1+\left(\sum_{j=1}^{m}k_{j}\right)(1-n+\mu)\right)} \right] \\
\frac{\prod_{j=1}^{m} \left(\left(\frac{-\omega_{j}(1-n+\mu)}{n-\mu}\right)^{k_{j}} z^{(1-n+\mu)} \sum_{j=1}^{m}k_{j}}{k_{1}!\dotsk_{m}!} \right) \\
= \left(\frac{A(1-n+\mu)}{\Gamma\left(1+\left(\sum_{j=1}^{m}k_{j}\right)(1-n+\mu)\right)} \frac{\prod_{j=1}^{m} \left(\frac{-\omega_{j}(1-n+\mu)}{n-\mu}\right)^{k_{j}}}{k_{1}!\dotsk_{m}!} \int_{0}^{1} z^{(1-n+\mu)} \sum_{j=1}^{m}k_{j}} dz \quad (38)$$

$$= \left(\frac{A(1-n+\mu)}{n-\mu}\right) \sum_{k_{1},\dots,k_{m}=0}^{\infty} \frac{(\gamma_{1})_{k_{1}}\dots(\gamma_{m})_{k_{m}}}{\Gamma\left(2+\left(\sum_{j=1}^{m}k_{j}\right)(1-n+\mu)\right)} \frac{\prod_{j=1}^{m} \left(\frac{-\omega_{j}(1-n+\mu)}{n-\mu}\right)^{k_{j}}}{k_{1}!\dotsk_{m}!} \\
= \frac{A(1-n+\mu)}{n-\mu} E_{(1-n+\mu),2}^{(\gamma_{j})} \left(\frac{-\omega_{1}(1-n+\mu)}{n-\mu},\dots,\frac{-\omega_{m}(1-n+\mu)}{n-\mu}\right) \ge 1, \quad (39)$$

for suitable $\omega_j < 0$, for $j = 1, \ldots, m$.

We also need

Definition 3. Let $f \in C^n([-1,1])$, $\mathbb{N} \not\supseteq \mu > 0$, $\lceil \mu \rceil = n \in \mathbb{N}$; $\omega < 0$. That is $0 < 1 - n + \mu < 1$. The parametrized Caputo-Fabrizio non-singular kernel fractional derivatives, left and right of order μ , respectively, are given as follows (also see [16]):

$${}^{CF}_{\omega}D^{\mu}_{-1+}f(x) := \frac{1}{n-\mu} \int_{-1}^{x} \exp\left(-\frac{(1-n+\mu)\omega}{n-\mu}(x-t)\right) f^{(n)}(t)dt,$$
(40)

$${}_{\omega}^{CF} D_{1-}^{\mu} f(x) := \frac{(-1)^n}{n-\mu} \int_x^1 \exp\left(-\frac{(1-n+\mu)\omega}{n-\mu}(t-x)\right) f^{(n)}(t) dt, \tag{41}$$

 $\forall x \in [-1,1].$

Equations (40) and (41) are special cases of (7) and (8).

We make

Remark 2. We want to evaluate

$$\infty > \int_0^1 \exp\left(-\frac{(1-n+\mu)\omega}{n-\mu}z\right) dz$$

 $(call \ \delta := -\frac{(1-n+\mu)\omega}{n-\mu})$

$$= \int_{0}^{1} e^{\delta z} dz = \frac{1}{\delta} e^{\delta z} |_{0}^{1} = \frac{1}{\delta} \left(e^{\delta} - 1 \right) = \frac{e^{\delta}}{\delta} - \frac{1}{\delta} = \frac{\sum_{k=0}^{\infty} \frac{\delta^{k}}{k!}}{\delta} - \frac{1}{\delta}$$
(42)
$$= \sum_{k=0}^{\infty} \frac{\delta^{k-1}}{k!} = \sum_{k=0}^{\infty} \left(\frac{\left(\frac{1-n+\mu}{n-\mu}\right)^{k-1} (-\omega)^{k-1}}{k!} \right) \ge 1,$$

∞ _{ck}

for suitable $\omega < 0$.

So, again condition (11) is fulfilled.

3. Main Results

We give

Theorem 5. Let h, k, p be integers, $0 \le h \le k \le p \in \mathbb{N}$ and let f be a real function, $f^{(p)}$ is continuous in [-1,1] with modulus of continuity $\omega_1(f^{(p)}, \delta), \delta > 0$. Let $\alpha_j(x), j = h, h + 1, \ldots, k$ be real functions, defined and bounded on [-1,1] and assume for $x \in [0,1]$ that $\alpha_h(x)$ is either \ge some number $\alpha > 0$ or \le some number $\beta < 0$. Let the real numbers $\alpha_0 = 0 < \alpha_1 < 1 < \alpha_2 < 2 < \ldots < \alpha_p < p$. Here, we adopt the abstract fractional calculus terminology and assumptions from above. So, ${}^{k_j}D_{*-1}^{\alpha_j}f$ stands for the abstract left Caputo type fractional derivative of order α_j anchored at -1. We consider the linear abstract left fractional differential operator

$$L := \sum_{j=h}^{k} \alpha_j(x) \begin{bmatrix} k_j D_{*-1}^{\alpha_j} \end{bmatrix}$$
(43)

and suppose, throughout [0,1],

$$L(f) \ge 0$$

Then, for any $n \in \mathbb{N}$ *, there exists a real polynomial* $Q_n(x)$ *of degree* $\leq n$ *such that*

$$L(Q_n) \ge 0 \ throughout \ [0,1], \tag{44}$$

$$\max_{-1 \le x \le 1} |f(x) - Q_n(x)| \le C n^{k-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right), \tag{45}$$

where C is independent of n or f.

Proof. Let $n \in \mathbb{N}$. By Theorem 2 given a real function g, with $g^{(p)}$ continuous in [-1, 1], there exists a real polynomial $q_n(x)$ of degree $\leq n$ such that

$$\max_{-1 \le x \le 1} \left| g^{(j)}(x) - q_n^{(j)}(x) \right| \le R_p n^{j-p} \omega_1 \left(g^{(p)}, \frac{1}{n} \right), \tag{46}$$

 $j = 0, 1, \ldots, p$, where R_p is independent of n or g. We notice that $(x \in [-1, 1])$

$$\begin{aligned} \left| \binom{k_{j}}{D_{*-1}^{\alpha_{j}}} g (x) - \binom{k_{j}}{D_{*-1}^{\alpha_{j}}} q_{n} (x) \right| &= \\ \left| \int_{-1}^{x} k_{j}(x-t) g^{(j)}(t) dt - \int_{-1}^{x} k_{j}(x-t) q_{n}^{(j)}(t) dt \right| &= \\ \left| \int_{-1}^{x} k_{j}(x-t) \left(g^{(j)}(t) - q_{n}^{(j)}(t) \right) dt \right| &\leq \\ \int_{-1}^{x} k_{j}(x-t) \left| g^{(j)}(t) - q_{n}^{(j)}(t) \right| dt \overset{(46)}{\leq} \\ \left(\int_{-1}^{x} k_{j}(x-t) dt \right) R_{p} n^{j-p} \omega_{1} \left(g^{(p)}, \frac{1}{n} \right) &= \\ \left(\int_{0}^{x+1} k_{j}(z) dz \right) R_{p} n^{j-p} \omega_{1} \left(g^{(p)}, \frac{1}{n} \right) \leq \left(\int_{0}^{2} k_{j}(z) dz \right) R_{p} n^{j-p} \omega_{1} \left(g^{(p)}, \frac{1}{n} \right). \end{aligned}$$

We have proved that

$$\left| \binom{k_{j} D_{*-1}^{\alpha_{j}} g}{k_{j}(z) dz} (x) - \binom{k_{j} D_{*-1}^{\alpha_{j}} q_{n}}{n} (x) \right| \leq$$

$$\left(\int_{0}^{2} k_{j}(z) dz \right) R_{p} n^{j-p} \omega_{1} \left(g^{(p)}, \frac{1}{n} \right), \quad \forall x \in [-1, 1].$$

$$\max_{-1 \leq x \leq 1} \left| \binom{k_{j} D_{*-1}^{\alpha_{j}} g}{k_{j}(z) dz} (x) - \binom{k_{j} D_{*-1}^{\alpha_{j}} q_{n}}{n} (x) \right| \leq$$

$$\left(\int_{0}^{2} k_{j}(z) dz \right) R_{p} n^{j-p} \omega_{1} \left(g^{(p)}, \frac{1}{n} \right), \quad j = 1, \dots, p.$$

$$(48)$$

So, we have

That is:

$$\max_{-1 \le x \le 1} \left| \binom{k_j D_{*-1}^{\alpha_j} g}{k_j} (x) - \binom{k_j D_{*-1}^{\alpha_j} q_n}{k_j} (x) \right| \le \lambda_j R_p n^{j-p} \omega_1 \left(g^{(p)}, \frac{1}{n} \right), \tag{49}$$

where

$$\lambda_j := \int_0^2 k_j(z) dz, \quad j = 1, \dots, p.$$
 (50)

,

Inequality (49) is valid when j = 0 by (46), and we can set $\lambda_0 = 1$. Put

$$s_j \equiv \sup_{-1 \le x \le 1} \left| \alpha_h^{-1}(x) \alpha_j(x) \right|, \quad j = h, \dots, k,$$
(51)

and

$$\eta_n := R_p \omega_1\left(f^{(p)}, \frac{1}{n}\right) \left(\sum_{j=h}^k s_j \lambda_j n^{j-p}\right).$$
(52)

I. Suppose, throughout [0,1], $\alpha_h(x) \ge \alpha > 0$. Let $Q_n(x)$, $x \in [-1,1]$, be a real polynomial of degree $\le n$ so that

$$\max_{-1 \le x \le 1} \left| {}^{k_j} D_{*-1}^{\alpha_j} \left(f(x) + \eta_n (h!)^{-1} x^h \right) - \left({}^{k_j} D_{*-1}^{\alpha_j} Q_n \right)(x) \right| \stackrel{(49)}{\le} \lambda_j R_p n^{j-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right),$$
(53)

 $j=0,1,\ldots,p.$

In particular, (j = 0) holds

 $\max_{-1 \le x \le 1} \left| \left(f(x) + \eta_n(h!)^{-1} x^h \right) - Q_n(x) \right| \stackrel{(53)}{\le} R_p n^{-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right), \tag{54}$

and

$$\max_{-1 \le x \le 1} |f(x) - Q_n(x)| \le \eta_n (h!)^{-1} + R_p n^{-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right) =$$

$$(h!)^{-1} R_p \omega_1 \left(f^{(p)}, \frac{1}{n} \right) \left(\sum_{j=h}^k s_j \lambda_j n^{j-p} \right) + R_p n^{-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right) \le$$

$$R_p \omega_1 \left(f^{(p)}, \frac{1}{n} \right) n^{k-p} \left(1 + (h!)^{-1} \sum_{j=h}^k s_j \lambda_j \right).$$
(55)

That is:

$$\max_{-1 \le x \le 1} |f(x) - Q_n(x)| \le R_p \left(1 + (h!)^{-1} \sum_{j=h}^k s_j \lambda_j \right) n^{k-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right), \tag{56}$$

proving (45). Here,

 $L = \sum_{j=h}^{k} \alpha_j(x) \left[{}^{k_j} D_{*-1}^{\alpha_j} \right],$

and suppose, throughout [0, 1], $Lf \ge 0$. So over $0 \le x \le 1$, using (52) and (53), we have

$$\alpha_{h}^{-1}(x)L(Q_{n}(x)) = \alpha_{h}^{-1}(x)L(f(x)) + \frac{\eta_{n}}{h!} {}^{k_{h}}D_{*-1}^{\alpha_{h}}x^{h} + \sum_{j=h}^{k} \alpha_{h}^{-1}(x)\alpha_{j}(x) \Big[{}^{k_{j}}D_{*-1}^{\alpha_{j}}Q_{n}(x) - {}^{k_{j}}D_{*-1}^{\alpha_{j}}f(x) - \frac{\eta_{n}}{h!} {}^{k_{j}}D_{*-1}^{\alpha_{j}}x^{h} \Big] \ge$$

$$\frac{\eta_{n}}{h!} {}^{k_{h}}D_{*-1}^{\alpha_{h}}x^{h} - \left(\sum_{k}^{k}s_{j}\lambda_{j}n^{j-p}\right)R_{p}\omega_{1}\left(f^{(p)}, \frac{1}{n}\right) = \frac{\eta_{n}}{h!} {}^{k_{h}}D_{*-1}^{\alpha_{h}}x^{h} - \eta_{n} =:\varphi$$
(57)

$$\frac{\eta_n}{h!} k_h D_{*-1}^{\alpha_h} x^h - \left(\sum_{j=h}^n s_j \lambda_j n^{j-p}\right) R_p \omega_1\left(f^{(p)}, \frac{1}{n}\right) = \frac{\eta_n}{h!} k_h D_{*-1}^{\alpha_h} x^h - \eta_n =: \varphi$$

$$w \text{ then } \alpha_k = 0 \text{ and } \varphi = 0$$

(if h = 0, then $\alpha_h = 0$, and $\varphi = 0$). If $h \neq 0$, then

$$\varphi = \eta_n \left(\frac{k_h D_{*-1}^{\alpha_h} x^h}{h!} - 1 \right) = \eta_n \left(\int_{-1}^x k_h(x-t) dt - 1 \right) = \eta_n \left(\int_0^{x+1} k_h(z) dz - 1 \right) \ge \eta_n \left(\int_0^1 k_h(z) dz - 1 \right) \ge 0$$
(58)

by the assumption (11): $\int_0^1 k_h(z) dz \ge 1$, when $h \ne 0$.

Hence, in both cases, we get

$$L(Q_n(x)) \ge 0, \ x \in [0,1].$$
 (59)

II. Suppose, throughout [0, 1], $\alpha_h(x) \le \beta < 0$. In this case let $Q_n(x)$, $x \in [-1, 1]$, be a real polynomial of degree $\le n$ such that

$$\max_{-1 \le x \le 1} \left| {}^{k_j} D_{*-1}^{\alpha_j} \left(f(x) - \eta_n (h!)^{-1} x^h \right) - \left({}^{k_j} D_{*-1}^{\alpha_j} Q_n \right) (x) \right| \stackrel{(49)}{\le} \lambda_j R_p n^{j-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right),$$
(60)

 $j=0,1,\ldots,p.$

In particular, (j = 0) holds

$$\max_{-1 \le x \le 1} \left| \left(f(x) - \eta_n(h!)^{-1} x^h \right) - Q_n(x) \right| \stackrel{(60)}{\le} R_p n^{-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right), \tag{61}$$

and

$$\max_{1\leq x\leq 1} |f(x) - Q_n(x)| \leq \eta_n (h!)^{-1} + R_p n^{-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right) \stackrel{\text{(as before)}}{\leq}$$

$$R_p \omega_1 \left(f^{(p)}, \frac{1}{n} \right) n^{k-p} \left(1 + (h!)^{-1} \sum_{j=h}^k s_j \lambda_j \right).$$
(62)

That is, (45) is again true.

Again suppose, throughout [0, 1], $Lf \ge 0$. Also if $0 \le x \le 1$, then

$$\alpha_{h}^{-1}(x)L(Q_{n}(x)) = \alpha_{h}^{-1}(x)L(f(x)) - \frac{\eta_{n}}{h!} {}^{k_{h}}D_{*-1}^{\alpha_{h}}x^{h} + \sum_{j=h}^{k} \alpha_{h}^{-1}(x)\alpha_{j}(x) \Big[{}^{k_{j}}D_{*-1}^{\alpha_{j}}Q_{n}(x) - {}^{k_{j}}D_{*-1}^{\alpha_{j}}f(x) + \frac{\eta_{n}}{h!} {}^{k_{j}}D_{*-1}^{\alpha_{j}}x^{h} \Big] \stackrel{(60)}{\leq} \frac{\eta_{n}}{h!} {}^{k_{h}}D_{*-1}^{\alpha_{h}}x^{h} + \left(\sum_{j=h}^{k} s_{j}\lambda_{j}n^{j-p}\right)R_{p}\omega_{1}\left(f^{(p)}, \frac{1}{n}\right) = -\frac{\eta_{n}}{h!} {}^{k_{h}}D_{*-1}^{\alpha_{h}}x^{h} + \eta_{n} =:\psi$$
where $\alpha_{h} = 0$, and $\psi = 0$).

(if h = 0, then $\alpha_h = 0$, and $\psi =$ If $h \neq 0$, then

$$\psi = \eta_n \left[1 - \frac{k_h D_{*-1}^{\alpha_h} x^h}{h!} \right] = \eta_n \left[1 - \int_{-1}^x k_h (x-t) dt \right] =$$
(63)
$$\eta_n \left[1 - \int_0^{x+1} k_h(z) dz \right] \le \eta_n \left[1 - \int_0^1 k_h(z) dz \right] \le 0.$$

Hence, again, in both cases

$$L(Q_n(x)) \ge 0, \ \forall \ x \in [0,1].$$
 (64)

We also present

Theorem 6. Let h, k, p be integers, $0 \le h \le k \le p \in \mathbb{N}$, where h is even, and let f be a real function, $f^{(p)}$ is continuous in [-1, 1] with modulus of continuity $\omega_1(f^{(p)}, \delta), \delta > 0$. Let $\alpha_j(x)$, $j = h, h + 1, \ldots, k$ be real functions, defined and bounded on [-1, 1] and assume for $x \in [-1, 0]$

$$L := \sum_{j=h}^{k} \alpha_j(x) \begin{bmatrix} k_j D_{1-}^{\alpha_j} \end{bmatrix}$$
(65)

and suppose, throughout [-1,0],

$$L(f) \ge 0.$$

Then, for any $n \in \mathbb{N}$ *, there exists a real polynomial* $Q_n(x)$ *of degree* $\leq n$ *such that*

$$L(Q_n) \ge 0 \quad throughout \ [-1,0], \tag{66}$$

and

$$\max_{-1 \le x \le 1} |f(x) - Q_n(x)| \le C n^{k-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right), \tag{67}$$

where C is independent of n or f.

Proof. Let $x \in [-1, 1]$, we observe that

$$\left| \binom{k_{j}}{D_{1-g}^{\alpha_{j}}}(x) - \binom{k_{j}}{D_{1-g}^{\alpha_{j}}}(x) \right| = \left| \int_{x}^{1} k_{j}(t-x)g^{(j)}(t)dt - \int_{x}^{1} k_{j}(t-x)q_{n}^{(j)}(t)dt \right| = \left| \int_{x}^{1} k_{j}(t-x)\left(g^{(j)}(t) - q_{n}^{(j)}(t)\right)dt \right| \leq \int_{x}^{1} k_{j}(t-x)\left|g^{(j)}(t) - q_{n}^{(j)}(t)\right|dt \leq (68)$$

$$\left(\int_{x}^{1} k_{j}(t-x)dt \right)R_{p}n^{j-p}\omega_{1}\left(g^{(p)}, \frac{1}{n}\right) = \left(\int_{0}^{1-x} k_{j}(z)dz \right)R_{p}n^{j-p}\omega_{1}\left(g^{(p)}, \frac{1}{n}\right) \leq \left(\int_{0}^{2} k_{j}(z)dz \right)R_{p}n^{j-p}\omega_{1}\left(g^{(p)}, \frac{1}{n}\right).$$
The part is, we have derived

That is, we have derived

$$\max_{-1 \le x \le 1} \left| \binom{k_j D_{1-g}^{\alpha_j}}{2} (x) - \binom{k_j D_{1-g}^{\alpha_j}}{2} q_n (x) \right| \le \left(\int_0^2 k_j(z) dz \right) R_p n^{j-p} \omega_1 \left(g^{(p)}, \frac{1}{n} \right), \quad j = 1, \dots, p.$$
(69)

We call

$$\lambda_j := \int_0^2 k_j(z) dz, \quad j = 1, \dots, p.$$
 (70)

Therefore, we can write

$$\max_{-1 \le x \le 1} \left| \binom{k_j D_{1-}^{\alpha_j} g}{1-g} (x) - \binom{k_j D_{1-}^{\alpha_j} q_n}{1-g} (x) \right| \le \lambda_j R_p n^{j-p} \omega_1 \left(g^{(p)}, \frac{1}{n} \right), \tag{71}$$

for j = 1, ..., p.

Inequality (71) is valid when j = 0 by (6), so we can set $\lambda_0 = 1$. Put

$$s_j \equiv \sup_{-1 \le x \le 1} \left| \alpha_h^{-1}(x) \alpha_j(x) \right|, \quad j = h, \dots, k,$$
(72)

$$\eta_n := R_p \omega_1\left(f^{(p)}, \frac{1}{n}\right) \left(\sum_{j=h}^k s_j \lambda_j n^{j-p}\right).$$
(73)

I. Suppose, throughout [-1,0], $\alpha_h(x) \ge \alpha > 0$. Let $Q_n(x)$, $x \in [-1,1]$, be a real polynomial of degree $\le n$ so that

$$\max_{-1 \le x \le 1} \left| {}^{k_j} D_{1-}^{\alpha_j} \left(f(x) + \eta_n (h!)^{-1} x^h \right) - \left({}^{k_j} D_{1-}^{\alpha_j} Q_n \right)(x) \right| \stackrel{(71)}{\le} \lambda_j R_p n^{j-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right),$$
(74)

 $j = 0, 1, \dots, p$. In particular (j = 0) holds

$$\max_{-1 \le x \le 1} \left| \left(f(x) + \eta_n(h!)^{-1} x^h \right) - Q_n(x) \right| \stackrel{(74)}{\le} R_p n^{-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right), \tag{75}$$

and, as earlier,

$$\max_{-1 \le x \le 1} |f(x) - Q_n(x)| \le R_p \left(1 + (h!)^{-1} \sum_{j=h}^k s_j \lambda_j \right) n^{k-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right), \tag{76}$$

proving (67).

Here,

$$L = \sum_{j=h}^{k} \alpha_j(x) \begin{bmatrix} k_j D_{1-}^{\alpha_j} \end{bmatrix},$$

and suppose, throughout [-1, 0], $Lf \ge 0$. So over $-1 \le x \le 0$, we get

$$\alpha_{h}^{-1}(x)L(Q_{n}(x)) = \alpha_{h}^{-1}(x)L(f(x)) + \frac{\eta_{n}}{h!} {}^{k_{h}}D_{1-}^{\alpha_{h}}x^{h} + \sum_{\substack{j=h\\j=h}}^{k} \alpha_{h}^{-1}(x)\alpha_{j}(x) \Big[{}^{k_{j}}D_{1-}^{\alpha_{j}}Q_{n}(x) - {}^{k_{j}}D_{1-}^{\alpha_{j}}f(x) - \frac{\eta_{n}}{h!} {}^{k_{j}}D_{1-}^{\alpha_{j}}x^{h} \Big] \stackrel{(74)}{\geq}$$

$$\frac{\eta_{n}}{h!} {}^{k_{h}}D_{1-}^{\alpha_{h}}x^{h} - \left(\sum_{j=h}^{k} s_{j}\lambda_{j}n^{j-p}\right)R_{p}\omega_{1}\left(f^{(p)}, \frac{1}{n}\right) = \frac{\eta_{n}}{h!} {}^{k_{h}}D_{1-}^{\alpha_{h}}x^{h} - \eta_{n} =: \xi$$

(if h = 0, then $\alpha_h = 0$, and $\xi = 0$). If $h \neq 0$, then

$$\xi = \eta_n \left(\frac{k_h D_{1-}^{\alpha_h} x^h}{h!} - 1 \right) = \eta_n \left((-1)^h \int_x^1 k_h (t-x) dt - 1 \right) =$$

(*h* is even)

$$\eta_n \left(\int_x^1 k_h(t-x)dt - 1 \right) = \eta_n \left(\int_0^{1-x} k_h(z)dz - 1 \right) \ge \\\eta_n \left(\int_0^1 k_h(z)dz - 1 \right) \ge 0,$$
(78)

by the assumption (11): $\int_0^1 k_h(z) dz \ge 1$, when $h \ne 0$. Hence, in both cases, we get

$$L(Q_n(x)) \ge 0, \ x \in [-1, 0].$$
 (79)

II. Suppose, throughout [-1,0], $\alpha_h(x) \leq \beta < 0$. Let $Q_n(x)$, $x \in [-1,1]$, be a real polynomial of degree $\leq n$ so that

$$\max_{-1 \le x \le 1} \left| {}^{k_j} D_{1-}^{\alpha_j} \left(f(x) - \eta_n (h!)^{-1} x^h \right) - \left({}^{k_j} D_{1-}^{\alpha_j} Q_n \right)(x) \right| \stackrel{(71)}{\le} \lambda_j R_p n^{j-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right),$$
(80)

 $j = 0, 1, \ldots, p$.

In particular (j = 0) holds

$$\max_{-1 \le x \le 1} \left| \left(f(x) - \eta_n(h!)^{-1} x^h \right) - Q_n(x) \right| \stackrel{(80)}{\le} R_p n^{-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right), \tag{81}$$

and, as earlier,

$$\max_{-1 \le x \le 1} |f(x) - Q_n(x)| \le R_p \left(1 + (h!)^{-1} \sum_{j=h}^k s_j \lambda_j \right) n^{k-p} \omega_1 \left(f^{(p)}, \frac{1}{n} \right), \tag{82}$$

proving (67).

Again, suppose, throughout [-1, 0], $Lf \ge 0$. Also if $-1 \le x \le 0$, then

$$\alpha_{h}^{-1}(x)L(Q_{n}(x)) = \alpha_{h}^{-1}(x)L(f(x)) - \frac{\eta_{n}}{h!} {}^{k_{h}}D_{1-}^{\alpha_{h}}x^{h} + \sum_{j=h}^{k} \alpha_{h}^{-1}(x)\alpha_{j}(x) \Big[{}^{k_{j}}D_{1-}^{\alpha_{j}}Q_{n}(x) - {}^{k_{j}}D_{1-}^{\alpha_{j}}f(x) + \frac{\eta_{n}}{h!} {}^{k_{j}}D_{1-}^{\alpha_{j}}x^{h} \Big] \stackrel{(80)}{\leq}$$

$$-\frac{\eta_{n}}{h!} {}^{k_{h}}D_{1-}^{\alpha_{h}}x^{h} + \left(\sum_{j=h}^{k} s_{j}\lambda_{j}n^{j-p}\right)R_{p}\omega_{1}\left(f^{(p)}, \frac{1}{n}\right) = -\frac{\eta_{n}}{h!} {}^{k_{h}}D_{1-}^{\alpha_{h}}x^{h} + \eta_{n}$$

$$= \eta_{n}\left(1 - \frac{{}^{k_{h}}D_{1-}^{\alpha_{h}}x^{h}}{h!}\right) =: \rho$$

(if h = 0, then $\alpha_h = 0$, and $\rho = 0$). If $h \neq 0$, then

$$\rho = \eta_n \left(1 - \int_x^1 k_h(t - x) dt \right) = \eta_n \left(1 - \int_0^{1 - x} k_h(z) dz \right) \le$$

$$\eta_n \left(1 - \int_0^1 k_h(z) dz \right) \le 0.$$
(84)

Hence, in both cases, we get, again

$$L(Q_n(x)) \ge 0, \ \forall \ x \in [-1, 0].$$
 (85)

Conclusion 1. Clearly Theorem 5 generalizes Theorem 1, and Theorem 6 generalizes Theorem 2.2, *p*. 12 of [4]. Furthermore, there, the approximating polynomial Q_n depends on f, η_n , h; which η_n depends on n, R_p , n, k, s_j , λ_j ; which λ_j depends on k_j . I.e. polynomial Q_n among others depends on the type of fractional calculus we use.

Consequently, Theorem 5 is valid for the following left fractional linear differential operators: (1)

$$L_1 := \sum_{j=h}^{k} \alpha_j(x) \left[{}^C D^{\gamma}_{\rho, \alpha_j, \omega, -1+} \right], \tag{86}$$

where $\rho > 0$, $\gamma < 0$, and $\omega > 0$ large enough (from Prabhakar fractional calculus, see (16)); (2)

$$L_{2} := \sum_{j=h}^{k} \alpha_{j}(x) \left[D_{-1*}^{\alpha_{j}} \right], \tag{87}$$

(see (35)) where $\gamma_j > 0$, j = 1, ..., m; $\lambda = 1$; and small enough $\omega_j < 0$, j = 1, ..., m (from generalized non-singular fractional calculus);

and (3)

$$L_3 := \sum_{j=h}^{k} \alpha_j(x) \begin{bmatrix} CF \\ \omega \end{bmatrix} D_{-1+}^{\alpha_j} \end{bmatrix},$$
(88)

with $\omega < 0$, sufficiently small (from parametrized Caputo-Fabrizio non-singular kernel fractional calculus).

Similarly, Theorem 6 is valid for the following right fractional linear differential operators: (1)*

$$L_1^* := \sum_{j=h}^k \alpha_j(x) \Big[{}^C D^{\gamma}_{\rho, \alpha_j, \omega, 1-} \Big], \tag{89}$$

where $\rho > 0$, $\gamma < 0$, and $\omega > 0$ large enough (from Prabhakar fractional calculus, see (17)); (2)*

$$L_{2}^{*} := \sum_{j=h}^{k} \alpha_{j}(x) \left[D_{1-}^{\alpha_{j}} \right], \tag{90}$$

(see (36)) where $\gamma_j > 0$, j = 1, ..., m; $\lambda = 1$; and small enough $\omega_j < 0$, j = 1, ..., m (from generalized non-singular fractional calculus);

and (3)*

$$L_3^* := \sum_{j=h}^k \alpha_j(x) \begin{bmatrix} CF \\ \omega \end{bmatrix} D_{1-}^{\alpha_j}, \qquad (91)$$

with $\omega < 0$, sufficiently small (from parametrized Caputo-Fabrizio non-singular kernel fractional calculus).

Our developed abstract fractional monotone approximation theory with its applications involves weaker conditions than the one with ordinary derivatives ([2]) and can cover many diverse general cases in a multitude of complex settings and environments.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Shisha, O. Monotone approximation. Pac. J. Math. 1965, 15, 667–671. [CrossRef]
- Anastassiou, G.A.; Shisha, O. Monotone approximation with linear differential operators. J. Approx. Theory 1985, 44, 391–393. [CrossRef]
- 3. Anastassiou, G.A. Bivariate Monotone Approximation. Proc. Am. Math. Soc. 1991, 112, 959–964. [CrossRef]
- 4. Anastassiou, G.A. Frontiers in Approximation Theory; World Scientific Publ. Corp.: Hackensack, NJ, USA; Singapore, 2015.
- 5. Diethelm, K. *The Analysis of Fractional Differential Equations*, 1st ed.; Lecture Notes in Mathematics; Springer: New York, NY, USA; Heidelberg, Germany, 2010; Volume 2004.
- 6. Teljakovskii, S.A. Two theorems on the approximation of functions by algebraic polynomials. *Mat. Sb.* **1966**, *70*, 252–265. (In Russian); *Am. Math. Soc. Trans.* **1968**, *77*, 163–178. (In English)
- 7. Trigub, R.M. Approximation of functions by polynomials with integer coefficients. *Izv. Akad. Nauk SSSR Ser. Mat.* **1962**, *26*, 261–280. (In Russian)
- 8. Anastassiou, G.A. Foundations of Generalized Prabhakar-Hilfer fractional Calculus with Applications. 2021, submitted.
- 9. Polito, F.; Tomovski, Z. Some properties of Prabhakar-type fractional calculus operators. Fract. Differ. 2016, 1, 73–94. [CrossRef]

- 10. Gorenflo, R.; Kilbas, A.; Mainardi, F.; Rogosin, S. *Mittag-Leffler Functions, Related Topics and Applications*; Springer: Heidelberg, Germany; New York, NY, USA, 2014.
- 11. Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A practical Guide to Prabhakar Fractional Calculus. *Fract. Calc. Appl. Anal.* 2020, 23, 9–54. [CrossRef]
- 12. Saxena, R.K.; Kalla, S.L.; Saxena, R. Multivariate analogue of generalized Mittag-Leffler function. *Integral Transform Special Funct*. **2011**, *22*, 533–548. [CrossRef]
- 13. Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kompe' de Feriet's double hypergeometric series. *Math. Nachr.* **1972**, *53*, 151–159. [CrossRef]
- 14. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. *Therm. Sci.* **2016**, *20*, 763–769. [CrossRef]
- 15. Anastassiou, G.A. Multiparameter Fractional Differentiation with non singular kernel. 2021, submitted.
- 16. Losada, J.; Nieto, J.J. Properties of a New Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 2015, 1, 87–92.