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Abstract: In this paper, by introducing two sequences of new numbers and their derivatives, which
are closely related to the Stirling numbers of the first kind, and choosing to employ six known
generalized Kummer’s summation formulas for 2F1(−1) and 2F1(1/2), we establish six classes of
generalized summation formulas for p+2Fp+1 with arguments −1 and 1/2 for any positive integer p.
Next, by differentiating both sides of six chosen formulas presented here with respect to a specific
parameter, among numerous ones, we demonstrate six identities in connection with finite sums
of 4F3(−1) and 4F3(1/2). Further, we choose to give simple particular identities of some formulas
presented here. We conclude this paper by highlighting a potential use of the newly presented
numbers and posing some problems.

Keywords: Gamma function; Psi function; Pochhammer symbol; hypergeometric function 2F1; gener-
alized hypergeometric functions tFu; Gauss’s summation theorem for 2F1(1); Kummer’s summation
theorem for 2F1(−1); generalized Kummer’s summation theorem for 2F1(−1); Stirling numbers of
the first kind
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1. Introduction and Preliminaries

The Pochhammer symbol (ξ)η (ξ, η ∈ C) is defined, in terms of Gamma function Γ
(see, e.g., [1], p. 2 and p. 5), by

(ξ)η =
Γ(ξ + η)

Γ(ξ)
(
ξ + η ∈ C \Z−0 , η ∈ C \ {0}; ξ ∈ C \Z−0 , η = 0

)
=

{
1 (η = 0),

ξ(ξ + 1) · · · (ξ + n− 1) (η = n ∈ N),

(1)

it accepted that (0)0 = 1. Here and throughout, let C, R+, Z, and N represent, respec-
tively, the sets of complex numbers, positive real numbers, integers, and positive integers.
Furthermore, let N0 := N ∪ {0}, Z− := Z \ N0 and Z−0 := Z \ N. Further, throughout
this article, it is assumed that an empty sum and an empty product are read as 0 and 1,
respectively. The generalized hypergeometric series (or function) pFq (p, q ∈ N0), which is
a parametric and logical extension of the Gaussian hypergeometric series 2F1, is defined by
(see, e.g., [1–9])

pFq

[
µ1, . . . , µp ;

ν1, . . . , νq ;
w

]
=

∞

∑
`=0

p
∏
j=1

(µj)`

q
∏
j=1

(νj)`

w`

`!

= pFq(µ1, . . . , µp; ν1, . . . , νq; w).

(2)
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Here it is supposed that the variable w, the numerator parameters µ1, . . . , µp, and the
denominator parameters ν1, . . . , νq take on complex values, provided that

(νj ∈ C \Z−0 ; j = 1, . . . , q). (3)

Then, if a numerator parameter is in Z−0 , the series pFq is found to terminate and
becomes a polynomial in w.

With none of the numerator and denominator parameters being zero or a negative
integer, the series pFq in (2)

(i) diverges for all w ∈ C \ {0}, if p > q + 1;
(ii) converges for all w ∈ C, if p ≤ q;
(iii) converges for |w| < 1 and diverges for |w| > 1 if p = q + 1;
(iv) converges absolutely for |w| = 1, if p = q + 1 and <(v) > 0;
(v) converges conditionally for |w| = 1 (w 6= 1), if p = q + 1 and −1 < <(v) 5 0;
(vi) diverges for |w| = 1, if p = q + 1 and <(v) 5 −1.

where

v :=
q

∑
j=1

νj −
p

∑
j=1

µj (4)

which is called the parametric excess of the series.
Gauss’s famous summation formula [10]:

2F1(κ, λ ; µ ; 1) =
Γ(µ) Γ(µ− κ − λ)

Γ(µ− κ) Γ(µ− λ)(
<(µ− κ − λ) > 0, µ ∈ C \Z−0

) (5)

has been a significant, pioneering, and essential identity, especially in the theories of
hypergeometric and generalized hypergeometric functions, as well as related special
functions. Formula (5) can be proved by using Euler’s integral representation for 2F1(z)
(see, e.g., [6], pp. 44–49) or telescoping (see, e.g., [11], pp. 181–182). Since (5) appeared, a
number of researchers have devoted their arduous, intrigued and penetrated endeavors to
getting summation formulas for the generalized hypergeometric series in (2). As a result,
the generalized hypergeometric series in (2) of the case p = q + 1 have been found to be
classified as follows: q+1Fq in (2) is said to be v-balanced if the parametric excess equals v
and balanced if v = 1. Further, if v = 1 and one of the numerator parameters is a negative
integer, it is called Saalschützian. It is well-poised if the parameters µj, νj can be separately
permuted so that

1 + µ1 = µ2 + ν1 = · · · = µq+1 + νq

and very well-poised if the condition µ2 = 1+ µ1
2 holds true, along with the above condition

for the well-poised nature. Consequently, a large number of summation and transformation
formulas for pFq have been established by means of diverse techniques. In fact, usually,
certain mixed techniques are used in getting a summation formula or a transformation
formula for pFq. Here we recall only several representative techniques which are employed
in deriving some summation and transformation formulas for pFq:

(i) Contiguous function relations (and computer programs) [12–25].
(ii) The idea of partition of the set of nonnegative integers into its terms modulo N applied

to a series involving functions Ψn (n ∈ N0) displayed by

∞

∑
n=0

Ψn =
N−1

∑
r=0

∞

∑
n=0

ΨnN+r (6)
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is ubiquitously employed (see, e.g., [26,27]). In particular, partition of the series into
even and odd terms gives

∞

∑
n=0

Ψn =
∞

∑
n=0

Ψ2n +
∞

∑
n=0

Ψ2n+1. (7)

The (6) and (7) have been used to get certain identities involving generalized hyper-
geometric series and their extensions (see, e.g., [28–37]). Exton [30] considered the
following two combinations

q+1Fq

[
a1, a2, . . . , aq+1;

b1, b2, . . . , bq;
1

]
+ q+1Fq

[
a1, a2, . . . , aq+1;

b1, b2, . . . , bq;
− 1

]

= 2 2q+2F2q+1


a1

2
,

a1 + 1
2

, . . . ,
aq+1

2
,

aq+1 + 1
2

;

1
2

,
b1

2
,

b1 + 1
2

, . . . ,
bq

2
,

bq + 1
2

;
1


(8)

and

q+1Fq

[
a1, a2, . . . , aq+1;

b1, b2, . . . , bq;
1

]
− q+1Fq

[
a1, a2, . . . , aq+1;

b1, b2, . . . , bq;
− 1

]

= 2

q+1
∏
j=1

aj

q
∏
j=1

bj

2q+2F2q+1


a1 + 1

2
,

a1

2
+ 1, . . . ,

aq+1 + 1
2

,
aq+1

2
+ 1 ;

3
2

,
b1 + 1

2
,

b1

2
+ 1, . . . ,

bq + 1
2

,
bq

2
+ 1 ;

1

.

(9)

If the summation formulas for q+1Fq(1) and q+1Fq(−1) are known, then summation
formulas for 2q+2F2q+1(1) in (8) and (9) can be derived. Obviously, the reverse process
can work.

(iii) The method in (ii) is to obtain summation formulas for certain generalized hyperge-
ometric functions of higher order from those of lower order. Conversely, reduction
formulas of generalized hypergeometric and their extended special functions are to
reduce those of higher order to some other ones of lower order (see, e.g., [14,38–45]).

In connection with the method (iii), for a generalized hypergeometric function pFq(z)
with positive integral differences between certain numerator and denominator parameters,
Karlsson [39] provided a formula expressing the pFq(z) as a finite sum of lower-order
functions as follows (see also [42,46,47]):

pFq

[
b1 + `1, . . . , bn + `n, an+1, . . . , ap ;

b1, . . . , bn, bn+1, . . . , bq ;
z

]

=
`1

∑
j1=0
· · ·

`n

∑
jn=0

A(j1, . . . , jn) zJn

× p−nFq−n

[
an+1 + Jn, . . . , . . . , ap + Jn ;

bn+1 + Jn, . . . , bq + Jn ;
z

]
,

(10)

where Jn = j1 + · · ·+ jn and

A(j1, . . . , jn) =
n

∏
r=1

(
`r

jr

)
·

n
∏

r=2
(br + `r)Jr−1

·
p

∏
r=n+1

(ar)Jn

n
∏

r=1
(br)Jr

·
q

∏
r=n+1

(br)Jn

. (11)
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Here the following constraints are assumed that, with suitable permutation of pa-
rameters, ar = br + `r, `r ∈ N (r = 1, . . . , n), n ≤ min{p, q}, p ≤ q + 1, br ∈ C \ Z−0
(r = 1, . . . , q); if ar ∈ Z−0 for some r ∈ {1, . . . , p}, the condition p ≤ q + 1 is cancelled.

Using (10), Minton’s two summation theorems in [43] for p = q + 1, z = 1 are
derived. Srivastava [45] gave a simpler proof of (10). Gottschalk and Maslen [38] provided
a good account of reduction formulas for the generalized hypergeometric functions of one
variable with some useful comments on (10) and listed certain transformation formulas for
generalized hypergeometric functions in [38].

The content of this paper would be derived from the reduction formula (10). Yet,
in this paper, by introducing two sequences of new numbers and their derivatives as in
Section 2 and using the six generalized summation formulas (15)–(20), we aim to establish
families of generalized summation formulas for t+2Ft+1 (t ∈ N) with their arguments −1
and 1/2 as in Sections 4 and 5. Furthermore, we select to give simple particular identities
of some formulas presented here. By differentiating both sides of two chosen formulas
presented here with respect to a specific parameter, among numerous ones, further, we
demonstrate two identities associated with finite sums of 4F3(−1). We close this article
by emphasizing some of the possible applications for the newly introduced numbers and
presenting certain problems.

For our purpose, we also recall three basic and useful summation formulas for 2F1
due to Kummer [48], p. 134, Entries 1, 2 and 3 (see also [49], Equations (1.3), (1.4) and (1.5);
see further [50]) (the interested reader may refer to [49], p. 853 for clarifications on the first
and true contributors to the following three summation formulae):

Summation Formula 1 due to Kummer:

2F1

[
κ, λ ;

1 + κ − λ ;
− 1

]
=

Γ(1 + κ − λ)Γ
(
1 + κ

2
)

Γ
(
1 + κ

2 − λ
)
Γ(1 + κ)(

κ − λ ∈ C \Z−, <(λ) < 1
)
.

(12)

Summation Formula 2 due to Kummer:

2F1

 κ, λ ;
1
2
(κ + λ + 1) ;

1
2

 =
Γ
(

1
2

)
Γ
(

1
2 κ + 1

2 λ + 1
2

)
Γ
(

1
2 κ + 1

2

)
Γ
(

1
2 λ + 1

2

)
(

κ + λ + 1
2

∈ C \Z−0
)

.

(13)

Summation Formula 3 due to Kummer:

2F1

[
κ, 1− κ ;

λ ;
1
2

]
=

21−λ Γ
(

1
2

)
Γ(λ)

Γ
(

1
2 λ + 1

2 κ
)

Γ
(

1
2 λ− 1

2 κ + 1
2

) (
λ ∈ C \Z−0

)
. (14)

Further a number of generalizations and contiguous extensions of the above-mentioned
Kummer’s summation theorems have been given (see, e.g., [16,49,51–54] and the references
therein). Amid this trend, Choi et al. [51], Equations (2.2) and (2.3) presented the following
extensions of (12) (see also [53], Theorems 3 and 4):

2F1

[
κ, λ ;

1 + κ − λ + p ;
− 1

]

=
Γ(1 + κ − λ + p)
2 Γ(κ) (1− λ)p

p

∑
r=0

(
p
r

)
(−1)r Γ

( r+κ
2
)

Γ
( r+κ

2 + 1− λ
)(

p ∈ N0, κ − λ + p ∈ C \Z−, <(λ) < 1 +
p
2

)
(15)
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and

2F1

[
κ, λ ;

1 + κ − λ− p ;
− 1

]

=
Γ(1 + κ − λ− p)

2 Γ(κ)

p

∑
r=0

(
p
r

)
Γ
( r+κ

2
)

Γ
( r+κ

2 + 1− λ− p
)(

p ∈ N0, κ − λ− p ∈ C \Z−, <(λ) < 1− p
2

)
.

(16)

Rakha and Rathie [53], Theorem 1 gave the following generalization of (13):

2F1

 κ, λ ;
1 + κ + λ + p

2
;

1
2

 =
2κ−1Γ( 1+κ+λ+p

2 )Γ( 1−κ+λ−p
2 )

Γ(κ)Γ( 1−κ+λ+p
2 )

×
p

∑
r=0

(
p
r

)
(−1)r Γ

(
κ+r

2
)

Γ( 1+λ+r−p
2 )(

p ∈ N0,
1 + κ + λ + p

2
∈ C \Z−0

)
.

(17)

The following extension of (13) is recorded in [9], p. 491, Entry 7.3.7-2 (see also [53],
Theorem 2):

2F1

 κ, λ ;
1 + κ + λ− p

2
;

1
2

 =
2λ−1Γ( 1+κ+λ−p

2 )

Γ(λ)

p

∑
r=0

(
p
r

) Γ
(

λ+r
2

)
Γ( 1+κ+r−p

2 )(
p ∈ N0,

1 + κ + λ− p
2

∈ C \Z−0
)

.

(18)

Rakha and Rathie ([53], Theorems 5 and 6) provided two generalizations of (14) which,
with the aid of Legendre’s duplication formula for the Gamma function (e.g., [1], p. 6,
Equation (29)), are slightly modified as follows:

2F1

[
κ, 1− κ + p ;

λ ;
1
2

]
=

2p−κ Γ(κ − p) Γ(λ)
Γ(κ) Γ(λ− κ)

×
p

∑
r=0

(−1)r
(

p
r

)
Γ( λ−κ+r

2 )

Γ
(

λ+κ+r
2 − p

)
(
λ ∈ C \Z−0 , p ∈ N0

)
(19)

and

2F1

[
κ, 1− κ − p ;

λ ;
1
2

]
=

2−p−κ Γ(λ)
Γ(λ− κ)

p

∑
r=0

(
p
r

)Γ
(

λ−κ+r
2

)
Γ
(

λ+κ+r
2

)
(
λ ∈ C \Z−0 , p ∈ N0

)
,

(20)

which is a corrected version of [53], Theorem 6.
In addition, we recall the Psi (or digamma) function ψ(z) (see, e.g., [1], pp. 24–33)

defined by

ψ(z) :=
d
dz
{log Γ(z)} = Γ′(z)

Γ(z)
(
z ∈ C \Z−0

)
. (21)

We recall one of the many identities involving the Psi function

ψ(z + n)− ψ(z) =
n

∑
j=1

1
z + j− 1

(n ∈ N). (22)
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Remark 1. Magnus Gösta Mittag–Leffler (1846–1927), a Swedish mathematician (see [55]; see
also [56,57]), invented the function Eα(z) (23) in conjunction with the summation technique for
divergent series, which is eponymously referred to as the Mittag–Leffler function and represented by
the following convergent power series across the whole complex plane:

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
(<(α) > 0, z ∈ C). (23)

The two parameterized Mittag–Leffler function Eα,β(z) is defined by (see, e.g., [58,59])

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
(<(α) > 0, β ∈ C). (24)

There have been a variety of extensions of the Mittag–Leffler functions (23) and (24), most of
which belong to certain special cases of the following Fox-Wright function (see [60–63], [64], p. 21):

pΨq

[
(α1, A1), . . . ,

(
αp, Ap

)
;

(β1, B1), . . . ,
(

βq, Bq
)

;
z

]
=

∞

∑
k=0

p
∏
`=1

Γ(α` + A` k)

q
∏
j=1

Γ
(

β j + Bj k
) zk

k!
, (25)

where z ∈ C, α`, β j ∈ C (` = 1, . . . , p, j = 1, . . . , q), the coefficients A1, . . . , Ap ∈ R+ and
B1, . . . , Bq ∈ R+ such that α` + A`k ∈ C \Z−0 (k ∈ N0) and

1 +
q

∑
j=1

Bj −
p

∑
j=1

Aj = 0. (26)

A particular case of (25) is

pΨq

[
(α1, 1), . . . ,

(
αp, 1

)
;

(β1, 1), . . . ,
(

βq, 1
)

;
z

]
=

p
∏
`=1

Γ(α`)

q
∏
j=1

Γ
(

β j
) pFq

[
α1, . . . , αp ;

β1, . . . , βq ;
z

]
. (27)

In light of (27), the topic of this article may be regarded to be Mittag–Leffler type functions.
Indeed, owing to the range of its applications in fractional calculus, some scholars have

nicknamed the Mittag–Leffler function the “Queen Function of the Fractional Calculus" in the past
(see, e.g., [65]).

2. Sequences of New Numbers

Numerous polynomials, numbers, their extensions, degenerations, and new poly-
nomials and new numbers have been developed and studied, owing primarily to their
potential applications and use in a diverse variety of research fields (see, e.g., [66–71] and
the references therein). For example, Bernoulli polynomials and numbers are among most
important and useful ones (see, e.g., [5], pp. 35–40, [1], Sections 1.7 and 1.8). As with Defini-
tions 1 and 2, this section introduces two sequences of new numbers and their derivatives
that are and will be useful (at the very least) for our current and related study topics.
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Definition 1. A sequence of new numbers
{
Aj(α, `)

}`
j=0 is defined by

(α + k)` = (α + k)(α + k + 1) · · · (α + k + `− 1)

:=
`

∑
j=0
Aj(α, `) k(k− 1) · · · (k− j + 1)

(k ∈ N0, ` ∈ N, α ∈ C)

(28)

and
A0(α, 0) := 1 (α ∈ C). (29)

Definition 2. A sequence of new numbers
{
Bj(α, `)

}`
j=0 is defined by

Bj(α, `) :=
d

dα
Aj(α, `) (` ∈ N, α ∈ C) (30)

and
B0(α, 0) := 0 (α ∈ C). (31)

Both of the following lemmas may be used to represent the numbers in Definitions 1
and 2 explicitly.

Lemma 1. Let α ∈ C and ` ∈ N0. Then

`

∑
j=ν

Aj(α, `) s(j, ν) =
`

∑
j=ν

(−1)`+js(`, j)
(

j
ν

)
αj−ν (ν = 0, 1, . . . , `). (32)

Also

Aj(α, `) =
(
`

j

)
(α)`
(α)j

=

(
`

j

)
(α + j)`−j (j = 0, 1, . . . , `). (33)

Lemma 2. Let α ∈ C and ` ∈ N0. Then

`

∑
j=ν

Bj(α, `) s(j, ν) =
`

∑
j=ν

(−1)`+j j s(`, j)
(

j− 1
ν

)
αj−1−ν

(ν = 0, 1, . . . , `).

(34)

Also

Bj(α, `) =
(
`

j

)
(α + j)`−j

`−1

∑
k=j

1
α + k

(j = 0, 1, . . . , `). (35)

Proof of Lemma 1. The Stirling numbers s(m, r) of the first kind are recalled and defined
by the generating function (see, e.g., [1], Section 1.6)

ω(ω− 1) · · · (ω−m + 1) =
m

∑
r=0

s(m, r)ωr. (36)

We use (36) to expand the Pochhammer symbol (1) as follows:

(ω)m = ω(ω + 1) · · · (ω + m− 1) =
m

∑
r=0

(−1)m+r s(m, r)ωr, (37)

where (−1)m+r s(m, r) indicates the number of permutations of m symbols, which possesses
exactly r cycles.
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Applying (36) and (37) to (28), we obtain

`

∑
j=0

(−1)`+js(`, j)
j

∑
ν=0

(
j
ν

)
αj−ν kν =

`

∑
j=0
Aj(α, `)

j

∑
ν=0

s(j, ν) kν. (38)

Using a series rearrangement technique (see, e.g., [72], Equation (1.24))

`

∑
j=0

j

∑
ν=0

f (j, ν) =
`

∑
ν=0

`

∑
j=ν

f (j, ν) (39)

in (38), we get

`

∑
ν=0

`

∑
j=ν

(−1)`+js(`, j)
(

j
ν

)
αj−ν kν =

`

∑
ν=0

`

∑
j=ν

Aj(α, `) s(j, ν) kν. (40)

Now the desired identity (32) follows from (40).
The identity (33) can be obtained by matching the right-handed members of (10) and

(50) when n = 1.

Proof of Lemma 2. Differentiating both sides of (32) and (33) yields (44) and (35), respec-
tively.

We recall the following identities (see, e.g., [1], Section 1.6):

s(m, 0) =

{
1 (m = 0)

0 (m ∈ N),
s(m, m) = 1,

s(m, 1) = (−1)m+1 (m− 1)!, s(m, m− 1) = −
(

m
2

) (41)

and
m

∑
r=1

s(m, r) = 0 (m ∈ N \ {1});
m

∑
r=0

(−1)m+r s(m, r) = m!;

m

∑
j=r

s(m + 1, j + 1)mj−r = s(m, r).
(42)

The identity (32), with the aid of (41) and (42), or the identity (33) can give explicit
expressions for any ` ∈ N with 0 ≤ j ≤ ` and α ∈ C. For example,

A`(α, `) = 1 (` ∈ N). (43)

A0(α, 1) = α, A0(α, 2) = α + α2, A1(α, 2) = 2 + 2 α,

A0(α, 3) = 2α + 3α2 + α3, A1(α, 3) = 6 + 9α + 3α2, A2(α, 3) = 6 + 3α,

A0(α, 4) = 6 α + 11 α2 + 6 α3 + α4, A1(α, 4) = 24 + 44 α + 24 α2 + 4 α3,

A2(α, 4) = 36 + 30 α + 6 α2, A3(α, 4) = 12 + 4 α.

Differentiating both sides of (32) with respect to α, we get

`

∑
j=ν

Bj(α, `) s(j, ν) =
`

∑
j=ν

(−1)`+j j s(`, j)
(

j− 1
ν

)
αj−1−ν

(ν = 0, 1, . . . , `).

(44)
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Likewise, the relation (44), with the aid of (41) and (42), or the identity (35) can give
explicit expressions for any ` ∈ N with 0 ≤ j ≤ ` and α ∈ C. For example,

B`(α, `) = 0 (` ∈ N). (45)

B0(α, 1) = 1, B0(α, 2) = 1 + 2α, B1(α, 2) = 2,

B0(α, 3) = 2 + 6α + 3α2, B1(α, 3) = 9 + 6α, B2(α, 3) = 3,

B0(α, 4) = 6 + 22 α + 18 α2 + 4α3, B1(α, 4) = 44 + 48 α + 12 α2,

B2(α, 4) = 30 + 12 α, B3(α, 4) = 4.

Remark 2.

(i) (α + k)` is a polynomial in both α and k of the same degree `.
(ii) Aj(α, `) is a polynomial in α of degree `− j.
(iii) Bj(α, `) is a polynomial in α of degree `− j− 1.

(iv) The generalized harmonic numbers H(s)
n (α) are defined by (see, e.g., [73], Equation (1.3))

H(s)
n (α) :=

n

∑
k=1

1
(k + α)s

(
n ∈ N, s ∈ C, α ∈ C \Z−

)
, (46)

where H(1)
n (α) := Hn(α) and H(s)

n (0) := H(s)
n are the harmonic numbers of order s (see,

e.g., [73], Equation (1.2))

H(s)
n :=

n

∑
k=1

1
ks (n ∈ N, s ∈ C) (47)

and H(1)
n := Hn are the harmonic numbers (see, e.g., [73], Equation (1.1))

Hn :=
n

∑
k=1

1
k

(n ∈ N). (48)

It follows from (35) and (46) that

Bj(α, `) =
(
`

j

)
(α + j)`−j

(
H`(α− 1)− Hj(α− 1)

)
. (49)

3. Reduction Theorems in Terms of the Sequence in Definition 1

In this section, using the sequence in Definition 1, we present certain reduction
formulas for pFq.

Theorem 1. Let ` ∈ N, 1 ≤ min{p, q}, p ≤ q + 1, b, br ∈ C \ Z−0 (r = 2, . . . , q); if
b + `, ar ∈ Z−0 for some r ∈ {2, . . . , p}, the condition p ≤ q + 1 is cancelled. Then

pFq

[
b + `, a2, . . . , ap ;

b, b2, b3, . . . , bq ;
z

]
=

1
(b)`

`

∑
j=0
Aj(b, `) zj

×

p
∏

r=2
(ar)j

q
∏

r=2
(br)j

p−1Fq−1

[
a2 + j, . . . , ap + j ;

b2 + j, b3 + j, . . . , bq + j ;
z

]
.

(50)
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Proof. Let L1 be the left member of (50). Then using the identity

(b + `)k
(b)k

=
(b)k+`

(b)` (b)k
=

(b + k)`
(b)`

(51)

to expand L1 gives

L1 =
1

(b)`

∞

∑
k=0

(b + k)` (a2)k · · · (ap)k

k! (b2)k · · · (bq)k
zk. (52)

Employing (28) in (52), we obtain

L1 =
1

(b)`

`

∑
j=0
Aj(b, `)

∞

∑
k=j

(a2)k · · · (ap)k

(k− j)! (b2)k · · · (bq)k
zk.

Setting k− j = k′ and dropping the prime on k yields

L1 =
1

(b)`

`

∑
j=0
Aj(b, `)

∞

∑
k=0

(a2)k+j · · · (ap)k+j

k! (b2)k+j · · · (bq)k+j
zk+j

=
1

(b)`

`

∑
j=0
Aj(b, `) zj

p
∏

r=2
(ar)j

q
∏

r=2
(br)j

∞

∑
k=0

(a2 + j)k · · · (ap + j)k

k! (b2 + j)k · · · (bq + j)k
zk,

which is instantly apparent to be equivalent to the right-handed component of (50).

Theorem 2. Let ar = br + `r, `r ∈ N (r = 1, . . . , n), n ≤ min{p, q}, p ≤ q + 1, br ∈ C \Z−0
(r = 1, . . . , q); if ar ∈ Z−0 for some r ∈ {1, . . . , p}, the condition p ≤ q + 1 is cancelled. Then

pFq

[
b1 + `1, . . . , bn + `n, an+1, . . . , ap ;

b1, . . . , bn, bn+1, . . . , bq ;
z

]

=
1

n
∏

r=1
(br)`r

`1

∑
j1=0
· · ·

`n

∑
jn=0
A(j1, . . . , jn) zJn

× p−nFq−n

[
an+1 + Jn, . . . , . . . , ap + Jn ;

bn+1 + Jn, . . . , bq + Jn ;
z

]
,

(53)

where Jn = j1 + · · ·+ jn and J0 = 0 and

A(j1, . . . , jn) =
n

∏
r=1
Ajr (br + Jr−1, `r)

p
∏

r=n+1
(ar)Jn

q
∏

r=n+1
(br)Jn

. (54)

Proof. We may proceed with induction on n in order to demonstrate (53). This may be
accomplished by applying the proof of Theorem 1 repeatedly. We omit specifics.

Remark 3. we have

n

∏
r=1
Ajr (br + Jr−1, `r) =

n

∏
r=1

(
`r

jr

) (br)`r+Jr−1

(br)Jr

. (55)

The case n = 1 of (55) is easily found to yield the equivalent relation (33).
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4. Generalized Summation Theorems 5 mm Based on (16), (18) and (20)

The following theorems provide generalized summation formulae for the t+2Ft+1
(t ∈ N) with its arguments −1 and 1

2 .

4.1. Generalized Summation Formulas Based on (16)

Theorem 3. Let `, m ∈ N0 with ` ≤ m, and α, β ∈ C. Furthermore, let α− β−m ∈ C \ Z−
and c ∈ C \Z−0 . Further let <(β) < 2−m−`

2 . Then

3F2

[
α, β, c + ` ;

1 + α− β−m, c ;
− 1

]
=

Γ(1 + α− β−m)

2 (c)` Γ(α)

×
`

∑
j=0

(−1)j(β)jAj(c, `)
m−j

∑
r=0

(
m− j

r

) Γ
(

r+j+α
2

)
Γ
(

r+j+α
2 + 1− β−m

) .

(56)

Proof. In view of (29), the case ` = 0 of (56) is found to become the identity (16). Without
loss of generality, assume that ` is a positive integer. Let L1 be the left-handed member of
(56). Then using the identity

(c + `)k
(c)k

=
(c)k+`

(c)` (c)k
=

(c + k)`
(c)`

(57)

to expand L1 gives

L1 =
1

(c)`

∞

∑
k=0

(α)k (β)k (c + k)`
k! (1 + α− β−m)k

(−1)k. (58)

Employing (28) in (58), we obtain

L1 =
1

(c)`

`

∑
j=0
Aj(c, `)

∞

∑
k=j

(α)k (β)k (−1)k

(k− j)! (1 + α− β−m)k
.

Setting k− j = k′ and dropping the prime on k yields

L1 =
1

(c)`

`

∑
j=0
Aj(c, `)

∞

∑
k=0

(α)j+k (β)j+k (−1)j+k

k! (1 + α− β−m)j+k

=
1

(c)`

`

∑
j=0
Aj(c, `)

(−1)j(α)j (β)j

(1 + α− β−m)j

∞

∑
k=0

(α + j)k (β + j)k (−1)k

k! (j + 1 + α− β−m)k

=
1

(c)`

`

∑
j=0
Aj(c, `)

(−1)j(α)j (β)j

(1 + α− β−m)j
2F1

[
α + j, β + j ;

j + 1 + α− β−m ;
− 1

]
.

For the last 2F1(−1), replacing α, λ, and p by α + j, β + j, and m− j, respectively, in
(16), we obtain the desired summation formula (56).
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Theorem 4. Let `, ρ, m ∈ N0 with `+ ρ ≤ m, and α, β ∈ C. Furthermore, let α− β− m ∈
C \Z− and c, d ∈ C \Z−0 . Further let <(β) < 2−m−`−ρ

2 . Then

4F3

[
α, β, c + `, d + ρ ;

1 + α− β−m, c, d ;
− 1

]
=

Γ(1 + α− β−m)

2 (c)` (d)ρ Γ(α)

×
ρ

∑
ν=0

`

∑
j=0

(−1)ν+j(β)ν+jAj(c + ν, `)Aν(d, ρ)

×
m−ν−j

∑
r=0

(
m− ν− j

r

) Γ
(

r+ν+j+α
2

)
Γ
(

r+ν+j+α
2 + 1− β−m

) .

(59)

Proof. As in the beginning of the proof of Theorem 3, here also let assume that ` and ρ are
positive integers. Let L2 be the left member of (59). Then, using (51), we have

L2 =
∞

∑
k=0

(α)k (β)k (c + `)k (d + ρ)k
k! (1 + α− β−m)k (c)k (d)k

(−1)k

=
1

(d)ρ

∞

∑
k=0

(α)k (β)k (c + `)k (d + k)ρ

k! (1 + α− β−m)k (c)k
(−1)k.

Employing (28) in the last sum, here, with the aid of (56), as in the similar process of
proof of Theorem 3, we can prove the identity (59). We omit the details.

Theorem 5. Let t, `1, . . . , `t, m ∈ N0 with jt ≤ m. Furthermore, let α, β ∈ C, and α− β−m ∈
C \Z−, and c1, . . . , ct ∈ C \Z−0 . Further let <(β) < 2−m−lt

2 . Then

t+2Ft+1

[
α, β, c1 + `1, . . . , ct + `t ;

1 + α− β−m, c1, . . . , ct ;
− 1

]
=

Γ(1 + α− β−m)

2 Γ(α)
t

∏
j=1

(cj)`j

×
`t

∑
jt=0
· · ·

`1

∑
j1=0

(−1)jt(β)jt

t

∏
k=1
Ajk (ck + jt − jk, `k)

×
m−jt

∑
r=0

(
m− jt

r

) Γ
(

r+jt+α
2

)
Γ
(

r+jt+α
2 + 1− β−m

) ,

(60)

where

lt :=
t

∑
η=1

`η (t ∈ N) and jk :=
k

∑
η=1

jη (k ∈ N). (61)

Proof. By using mathematical induction on t ∈ N, we may replicate the procedure used to
establish Theorem 4 and therefore show the conclusion here. The specifics are avoided.

4.2. Generalized Summation Formulas Based on (18)

Theorem 6. Let `, m ∈ N0, and α, β ∈ C. Furthermore, let c, 1+α+β−m
2 ∈ C \Z−0 . Then

3F2

 α, β, c + ` ;
1 + α + β−m

2
, c ;

1
2

 =
2β−1 Γ

(
1+α+β−m

2

)
Γ(β) (c)`

×
`

∑
j=0

(α)jAj(c, `)
m

∑
r=0

(
m
r

) Γ
(

β+j+r
2

)
Γ
(

1+α−m+j+r
2

) .

(62)
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Proof. The proof would run in parallel with that of Theorem 3 with the aid of (18). The
details are omitted.

Theorem 7. Let ρ, `, m ∈ N0, and α, β ∈ C. Furthermore, let c, d, 1+α+β−m
2 ∈ C \Z−0 . Then

4F3

 α, β, c + `, d + ρ ;
1 + α + β−m

2
, c, d ;

1
2

 =
2β−1 Γ

(
1+α+β−m

2

)
(c)` (d)ρ Γ(β)

×
ρ

∑
ν=0

`

∑
j=0

(α)ν+jAν(d, ρ)Aj(c + ν, `)
m

∑
r=0

(
m
r

) Γ
(

β+ν+j+r
2

)
Γ
(

1+α−m+ν+j+r
2

) .

(63)

Proof. The proof would continue in the same manner as that of Theorem 4, aided by (62).
We omit specifics.

Theorem 8. Let t, `1, . . . , `t, m ∈ N0, and α, β ∈ C. Furthermore, let c, d, 1+α+β−m
2 ∈

C \Z−0 . Then

t+2Ft+1

 α, β, c1 + `1, . . . , ct + `t ;
1 + α + β−m

2
, c1, . . . , ct ;

1
2

 =
2β−1Γ

(
1+α+β−m

2

)
Γ(β)

t
∏

k=1
(ck)`k

×
`t

∑
jt=0
· · ·

`1

∑
j1=0

(α)jt
Ajk (ck + jt − jk, `k)

m

∑
r=0

(
m
r

) Γ
(

β+r+jt
2

)
Γ
(

1+α−m+r+jt
2

) ,

(64)

where jk is the same as in (61).

Proof. The proof would be accomplished by following the lines of that of Theorem 5. The
involved details are omitted.

4.3. Generalized Summation Formulas Based on (20)

Theorem 9. Let `, m ∈ N0 with 2` ≤ m. Furthermore, let α ∈ C, and β, c ∈ C \Z−0 . Then

3F2

[
α, 1− α−m, c + ` ;

β, c ;
1
2

]
=

2−α−mΓ(β)

(c)` Γ(β− α)

×
`

∑
j=0

(α)j (1− α−m)jAj(c, `)
m−2j

∑
r=0

(
m− 2j

r

) Γ
(

β−α+r
2

)
Γ
(

β+α+r
2 + j

) .

(65)

Proof. The proof would run in parallel with that of Theorem 3 with the aid of (20). The
details are omitted.

Theorem 10. Let ρ, `, m ∈ N0 with 2(` + ρ) ≤ m. Furthermore, let α ∈ C, and β, c, d ∈
C \Z−0 . Then

4F3

[
α, 1− α−m, c + `, d + ρ ;

β, c, d ;
1
2

]
=

2−α−mΓ(β)

(c)` (d)ρ Γ(β− α)

×
ρ

∑
ν=0

`

∑
j=0

(α)ν+j (1− α−m)ν+jAν(d, ρ)Aj(c + ν, `)

×
m−2ν−2j

∑
r=0

(
m− 2ν− 2j

r

) Γ
(

β−α+r
2

)
Γ
(

β+α+r
2 + ν + j

) .

(66)
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Proof. The proof would run in line with that of Theorem 4 with the help of (65). We omit
the details.

Theorem 11. Let t, `1, . . . , `t, m ∈ N0 with 2jt ≤ m. Furthermore, let α ∈ C and β, c1, . . . , ct ∈
C \Z−0 . Then

t+2Ft+1

[
α, 1− α−m, c1 + `1, . . . , ct + `t ;

β, c1, . . . , ct ;
1
2

]
=

2−α−m Γ(β)

Γ(β− α)
t

∏
k=1

(ck)`k

×
`t

∑
jt=0
· · ·

`1

∑
j1=0

(α)jt
(1− α−m)jt

t

∏
k=1
Ajk (ck + jt − jk, `k)

×
m−2jt

∑
r=0

(
m− 2jt

r

) Γ
(

β−α+r
2

)
Γ
(

β+α+r
2 + jt

) ,

(67)

where jk is the same as in (61).

Proof. The proof would flow along the lines of that of Theorem 5. The involved details are
omitted.

5. Generalized Summation Theorems 5 mm Based on (15), (17) and (19)

The following theorems offer generalized summation formulae for the t+2Ft+1 (t ∈ N)
and its arguments −1 and 1

2 . The proofs of each theorem are skipped here, principally
because they can be checked in the same manner as the preceding section’s counterpart.

5.1. Generalized Summation Formulas Based on (15)

Theorem 12. Let `, m ∈ N0, and α, β ∈ C. Furthermore, let α − β + m ∈ C \ Z− and
c ∈ C \Z−0 . Further let <(β) < 2+m−`

2 . Then

3F2

[
α, β, c + ` ;

1 + α− β + m, c ;
− 1

]
=

Γ(1 + α− β + m)

2 (c)` Γ(α) (1− β)m

×
`

∑
j=0
Aj(c, `)

m+j

∑
r=0

(
m + j

r

) (−1)r Γ
(

α+r+j
2

)
Γ
(

1− β + α+r−j
2

) .

(68)

Theorem 13. Let `, ρ, m ∈ N0, and α, β ∈ C. Furthermore, let α − β + m ∈ C \ Z− and
c, d ∈ C \Z−0 . Further let <(β) < 2+m−`−ρ

2 . Then

4F3

[
α, β, c + `, d + ρ ;

1 + α− β + m, c, d ;
− 1

]

=
Γ(1 + α− β + m)

2 Γ(α) (d)ρ (c)` (1− β)m

ρ

∑
ν=0

`

∑
j=0
Aν(d, ρ)Aj(c + ν, `)

×
m+ν+j

∑
r=0

(
m + ν + j

r

) (−1)r Γ
(

α+r+ν+j
2

)
Γ
(

1− β + α+r−ν−j
2

) .

(69)

Theorem 14. Let t, `1, . . . , `t, m ∈ N0. Furthermore, let α, β ∈ C, and α− β + m ∈ C \ Z−,
and c1, . . . , ct ∈ C \Z−0 . Further let <(β) < 2+m−lt

2 . Then
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t+2Ft+1

[
α, β, c1 + `1, . . . , ct + `t ;

1 + α− β + m, c1, . . . , ct ;
− 1

]
=

Γ(1 + α− β + m)

2 Γ(α) (1− β)m
t

∏
j=1

(cj)`j

×
`t

∑
jt=0
· · ·

`1

∑
j1=0

t

∏
k=1
Ajk (ck + jt − jk, `k)

×
m+jt

∑
r=0

(
m + jt

r

) Γ
(

α+r+jt
2

)
Γ
(

1− β +
α+r−jt

2

) ,

(70)

where lt and jk (t, k ∈ N) are the same as in (61).

5.2. Generalized Summation Formulas Based on (17)

Theorem 15. Let `, m ∈ N0, and α, β ∈ C. Furthermore, let c, 1+α+β+m
2 ∈ C \Z−0 . Then

3F2

 α, β, c + ` ;
1 + α + β + m

2
, c ;

1
2

 =
2α−1

Γ(α) (c)`

Γ( 1+α+β+m
2 )Γ( 1−α+β−m

2 )

Γ( 1−α+β+m
2 )

×
`

∑
j=0

(β)jAj(c, `)
m

∑
r=0

(
m
r

) (−1)r Γ
(

α+j+r
2

)
Γ( 1+β+j+r−m

2 )
.

(71)

Theorem 16. Let ρ, `, m ∈ N0, and α, β ∈ C. Furthermore, let c, d, 1+α+β+m
2 ∈ C \Z−0 . Then

4F3

 α, β, c + `, d + ρ ;
1 + α + β + m

2
, c, d ;

1
2

 =
2α−1Γ( 1+α+β+m

2 )Γ( 1−α+β−m
2 )

Γ(α)Γ( 1−α+β+m
2 ) (d)ρ (c)`

×
ρ

∑
ν=0

`

∑
j=0
Aj(c + ν, `)Aν(d, ρ) (β)ν+j

m

∑
r=0

(
m
r

) (−1)r Γ
(

α+ν+j+r
2

)
Γ( 1+β+ν+j+r−m

2 )
.

(72)

Theorem 17. Let t, `1, . . . , `t, m ∈ N0, and α, β ∈ C. Furthermore, let c, d, 1+α+β+m
2 ∈

C \Z−0 . Then

t+2Ft+1

 α, β, c1 + `1, . . . , ct + `t ;
1 + α + β + m

2
, c1, . . . , ct ;

1
2

 =
2α−1Γ( 1+α+β+m

2 )Γ( 1−α+β−m
2 )

Γ(α)Γ( 1−α+β+m
2 )

t
∏

k=1
(ck)`k

×
`t

∑
jt=0
· · ·

`1

∑
j1=0

(β)jt Ajk (ck + jt − jk, `k)
m

∑
r=0

(
m
r

) (−1)r Γ
(

α+r+jt
2

)
Γ( 1+β+r−m+jt

2 )
,

(73)

where jk is the same as in (61).

5.3. Generalized Summation Formulas Based on (19)

Theorem 18. Let `, m ∈ N0. Furthermore, let α ∈ C, and β, c ∈ C \Z−0 . Then

3F2

[
α, 1− α + m, c + ` ;

β, c ;
1
2

]
=

2m−α Γ(α−m) Γ(β)

Γ(α) Γ(β− α) (c)`

×
`

∑
j=0

(−1)jAj(c, `)
m+2j

∑
r=0

(−1)r
(

m + 2j
r

)
Γ( β−α+r

2 )

Γ
(

β+α+r
2 −m− j

) .
(74)

Theorem 19. Let ρ, `, m ∈ N0. Furthermore, let α ∈ C, and β, c, d ∈ C \Z−0 . Then
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4F3

[
α, 1− α + m, c + `, d + ρ ;

β, c, d ;
1
2

]
=

2m−α Γ(α−m) Γ(β)

Γ(α) Γ(β− α) (c)`(d)ρ

×
ρ

∑
ν=0

`

∑
j=0

(−1)ν+jAj(c + ν, `)Aν(d, ρ)

×
m+2(ν+j)

∑
r=0

(−1)r
(

m + 2(ν + j)
r

)
Γ( β−α+r

2 )

Γ
(

β+α+r
2 −m− ν− j

) .

(75)

Theorem 20. Let t, `1, . . . , `t, m ∈ N0 Furthermore, let α ∈ C and β, c1, . . . , ct ∈ C \ Z−0 .
Then

t+2Ft+1

[
α, 1− α + m, c1 + `1, . . . , ct + `t ;

β, c1, . . . , ct ;
1
2

]

=
2m−α Γ(α−m) Γ(β)

Γ(α) Γ(β− α)
t

∏
k=1

(ck)`k

×
`t

∑
jt=0
· · ·

`1

∑
j1=0

(−1)jt
t

∏
k=1
Ajk (ck + jt − jk, `k)

×
m+2jt

∑
r=0

(−1)r
(

m + 2jt
r

)
Γ( β−α+r

2 )

Γ
(

β+α+r
2 −m− jt

) ,

(76)

where jk is the same as in (61).

6. Formulas Involving Finite Sums of t+1Ft

We provide formulae for finite sums of t+1Ft by using two identities in Theorems 3, 6,
9, 12, 15 and 18, which are stated in the following six theorems. This section contains just
the proof of Theorem 21. The proofs of the other theorems are omitted since they would
run concurrently with the proof of Theorem 21.

Theorem 21. Let ` ∈ N, m ∈ N0 with ` ≤ m, and α, β ∈ C. Furthermore, let α− β− m ∈
C \Z− and c ∈ C \Z−0 . Further let <(β) < 2−m−`

2 . Then

`

∑
j=1

1
c + j− 1 4F3

[
α, β, c + `, c + j− 1 ;

1 + α− β−m, c, c + j ;
− 1

]
=

Γ(1 + α− β−m)

2 (c)` Γ(α)

×
`−1

∑
j=0

(−1)j(β)j Bj(c, `)
m−j

∑
r=0

(
m− j

r

) Γ
(

r+j+α
2

)
Γ
(

r+j+α
2 + 1− β−m

) .

(77)

Proof. Multiplying both sides of (56) by (c)`, we get

∞

∑
k=0

(α)k (β)k (c)`+k
k! (1 + α− β−m)k (c)k

(−1)k =
Γ(1 + α− β−m)

2 Γ(α)

×
`

∑
j=0

(−1)j(β)jAj(c, `)
m−j

∑
r=0

(
m− j

r

) Γ
(

r+j+α
2

)
Γ
(

r+j+α
2 + 1− β−m

) .

(78)

Differentiating (c)`+k/(c)k = Γ(c + k + `)/Γ(c + k) with respect to c, we obtain

d
dc

(c)`+k
(c)k

=
(c)`+k
(c)k

{ψ(c + k + `)− ψ(c + k)}.
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Using (22), we find

d
dc

(c)`+k
(c)k

=
(c)`+k
(c)k

`

∑
j=1

1
c + j− 1 + k

.

Employing the fundamental identity Γ(z + 1) = z Γ(z), in view of (1), we have

`

∑
j=1

1
c + j− 1 + k

=
`

∑
j=1

Γ(c + j− 1 + k)
Γ(c + j + k)

=
`

∑
j=1

1
c + j− 1

· (c + j− 1)k
(c + j)k

.

We thus obtain

d
dc

(c)`+k
(c)k

=
(c)`(c + `)k

(c)k

`

∑
j=1

1
c + j− 1

· (c + j− 1)k
(c + j)k

. (79)

Differentiating both sides of (78) with respect to c and using (79), with the aid of (30)
and (45), we can get the desired identity (77).

Theorem 22. Let ` ∈ N, m ∈ N0, and α, β ∈ C. Furthermore, let c, 1+α+β−m
2 ∈ C \Z−0 . Then

`

∑
j=1

1
c + j− 1 4F3

 α, β, c + `, c + j− 1 ;
1 + α + β−m

2
, c, c + j ;

1
2


=

2β−1 Γ
(

1+α+β−m
2

)
Γ(β) (c)`

`−1

∑
j=0

(α)j Bj(c, `)
m

∑
r=0

(
m
r

) Γ
(

β+j+r
2

)
Γ
(

1+α−m+j+r
2

) .

(80)

Theorem 23. Let ` ∈ N, m ∈ N0 with 2` ≤ m. Furthermore, let α ∈ C, and β, c ∈ C \ Z−0 .
Then

`

∑
j=1

1
c + j− 1 4F3

[
α, 1− α−m, c + `, c + j− 1 ;

β, c, c + j ;
1
2

]
=

2−α−mΓ(β)

(c)` Γ(β− α)

×
`−1

∑
j=0

(α)j (1− α−m)j Bj(c, `)
m−2j

∑
r=0

(
m− 2j

r

) Γ
(

β−α+r
2

)
Γ
(

β+α+r
2 + j

) .

(81)

Theorem 24. Let ` ∈ N, m ∈ N0, and α, β ∈ C. Furthermore, let α− β + m ∈ C \ Z− and
c ∈ C \Z−0 . Further let <(β) < 2+m−`

2 . Then

`

∑
j=1

1
c + j− 1 4F3

[
α, β, c + `, c + j− 1 ;

1 + α− β + m, c, c + j ;
− 1

]

=
Γ(1 + α− β + m)

2 (c)` Γ(α) (1− β)m

×
`−1

∑
j=0
Bj(c, `)

m+j

∑
r=0

(
m + j

r

) (−1)r Γ
(

r+α+j
2

)
Γ
(

r+α−j
2 + 1− β

) .

(82)
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Theorem 25. Let ` ∈ N, m ∈ N0, and α, β ∈ C. Furthermore, let c, 1+α+β+m
2 ∈ C \Z−0 . Then

`

∑
j=1

1
c + j− 1 4F3

 α, β, c + `, c + j− 1 ;
1 + α + β + m

2
, c, c + j ;

1
2


=

2α−1

Γ(α) (c)`

Γ( 1+α+β+m
2 )Γ( 1−α+β−m

2 )

Γ( 1−α+β+m
2 )

×
`−1

∑
j=0

(β)j Bj(c, `)
m

∑
r=0

(
m
r

) (−1)r Γ
(

α+j+r
2

)
Γ( 1+β+j+r−m

2 )
.

(83)

Theorem 26. Let ` ∈ N, m ∈ N0. Furthermore, let α ∈ C, and β, c ∈ C \Z−0 . Then

`

∑
j=1

1
c + j− 1 4F3

[
α, 1− α + m, c + `, c + j− 1 ;

β, c, c + j ;
1
2

]

=
2m−α Γ(α−m) Γ(β)

Γ(α) Γ(β− α) (c)`

`−1

∑
j=0

(−1)j Bj(c, `)

×
m+2j

∑
r=0

(−1)r
(

m + 2j
r

)
Γ( β−α+r

2 )

Γ
(

β+α+r
2 −m− j

) .

(84)

7. Particular Cases

We address the straightforward special instances of Theorems 3, 6, 9, 12, 15 and
18 when ` = 1, which are specified in the following corollaries. The following are the
identities from Section 2: A0(c, 1) = c and A1(c, 1) = 1.

Corollary 1. Let m ∈ N0, and α, β ∈ C. Furthermore, let α− β−m ∈ C \Z− and c ∈ C \Z−0 .
Further let <(β) < 1−m

2 . Then

3F2

[
α, β, c + 1 ;

1 + α− β−m, c ;
− 1

]

=
Γ(1 + α− β−m)

2 Γ(α)

{ m

∑
r=0

(
m
r

)
Γ
( r+α

2
)

Γ
( r+α

2 + 1− β−m
)

− β

c

m−1

∑
r=0

(
m− 1

r

) Γ
(

r+α+1
2

)
Γ
(

r+α+1
2 + 1− β−m

)}.

(85)

Corollary 2. Let m ∈ N0, and α, β ∈ C. Furthermore, let c, 1+α+β−m
2 ∈ C \Z−0 . Then

3F2

 α, β, c + 1 ;
1 + α + β−m

2
, c ;

1
2

 =
2β−1 Γ

(
1+α+β−m

2

)
Γ(β)

×
m

∑
r=0

(
m
r

){ Γ
(

β+r
2

)
Γ
(

1+α−m+r
2

) +
α Γ
(

β+1+r
2

)
c Γ
( 2+α−m+r

2
)}.

(86)
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Corollary 3. Let `, m ∈ N0. Furthermore, let α ∈ C, and β, c ∈ C \Z−0 . Then

3F2

[
α, 1− α−m, c + 1 ;

β, c ;
1
2

]

=
2−α−mΓ(β)

Γ(β− α)

{
m

∑
r=0

(
m
r

)Γ
(

β−α+r
2

)
Γ
(

β+α+r
2

)
+

α (1− α−m)

c

m−2

∑
r=0

(
m− 2

r

) Γ
(

β−α+r
2

)
Γ
(

β+α+r
2 + 1

)}.

(87)

Corollary 4. Let `, m ∈ N0, and α, β ∈ C. Furthermore, let α − β + m ∈ C \ Z− and
c ∈ C \Z−0 . Further let <(β) < 2+m−`

2 . Then

3F2

[
α, β, c + 1 ;

1 + α− β + m, c ;
− 1

]

=
Γ(1 + α− β + m)

2 Γ(α) (1− β)m

{
m

∑
r=0

(
m
r

)
(−1)r Γ

( r+α
2
)

Γ
( r+α

2 + 1− β
)

+
1
c

m+1

∑
r=0

(
m + 1

r

) (−1)r Γ
(

r+α+1
2

)
Γ
(

r+α+1
2 − β

) }
.

(88)

Corollary 5. Let m ∈ N0, and α, β ∈ C. Furthermore, let c, 1+α+β+m
2 ∈ C \Z−0 . Then

3F2

 α, β, c + 1 ;
1 + α + β + m

2
, c ;

1
2

 =
2α−1

Γ(α)
Γ( 1+α+β+m

2 )Γ( 1−α+β−m
2 )

Γ( 1−α+β+m
2 )

×
m

∑
r=0

(
m
r

)
(−1)r

{
Γ
(

α+r
2
)

Γ( 1+β+r−m
2 )

+
β Γ
(

1+α+r
2

)
c Γ( 2+β+r−m

2 )

}
.

(89)

Corollary 6. Let m ∈ N0. Furthermore, let α ∈ C, and β, c ∈ C \Z−0 . Then

3F2

[
α, 1− α + m, c + 1 ;

β, c ;
1
2

]
=

2m−α Γ(β) Γ(α−m)

Γ(α) Γ(β− α)

×
{

m

∑
r=0

(−1)r
(

m
r

)
Γ( β−α+r

2 )

Γ
(

β+α+r
2 −m

)
− 1

c

m+2

∑
r=0

(−1)r
(

m + 2
r

)
Γ( β−α+r

2 )

Γ
(

β+α+r
2 −m− 1

)}.

(90)

Additionally, the following corollary demonstrates the special case of Theorem 4
where ` = 1 = ρ.
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Corollary 7. Let m ∈ N0, and α, β ∈ C. Furthermore, let α − β − m ∈ C \ Z− and c, d ∈
C \Z−0 . Further let <(β) < −m

2 . Then

4F3

[
α, β, c + 1, d + 1 ;

1 + α− β−m, c, d ;
− 1

]
=

Γ(1 + α− β−m)

2 c d Γ(α)

×
{

cd
m

∑
r=0

(
m
r

)
Γ
( r+α

2
)

Γ
( r+α

2 + 1− β−m
)

− β d
m−1

∑
r=0

(
m− 1

r

) Γ
(

r+1+α
2

)
Γ
(

r+1+α
2 + 1− β−m

)
− β (c + 1)

m−1

∑
r=0

(
m− 1

r

) Γ
(

r+1+α
2

)
Γ
(

r+1+α
2 + 1− β−m

)
+ β(β + 1)

m−2

∑
r=0

(
m− 2

r

)
Γ
( r+2+α

2
)

Γ
( r+2+α

2 + 1− β−m
)}.

(91)

8. Concluding Remarks and Posing Problems

Beginning with Gauss’s celebrated summation formula for 2F1(1) (5), an astoundingly
huge number of summation formulae for pFq (p, q ∈ N0), with a variety of arguments, have
been given (see, e.g., [9]). Following this trend, we established families of generalized sum-
mation formulas for t+2Ft+1 (t ∈ N) with its arguments−1 and 1/2 in Sections 4 and 5. We
did so by introducing two sequences of new numbers in Definition 1 and their derivatives
in Definition 2, as well as by selecting the six generalized summation formulas (15)–(20)
above. Furthermore, in Section 6, we demonstrated two identities related to finite sums of
4F3 by differentiating both sides of two formulae given here with respect to a particular
parameter, among many others. Further, in Section 7, we provided simple specific identities
for a few selected formulae in Sections 4 and 5.

In this study, the sequences of new numbers{
Aj(α, `)

}`
j=0 and

{
Bj(α, `)

}`
j=0

in Section 2 were helpful in establishing certain generalized summation formulas for pFq
with specific arguments. Further, it is expected that the newly introduced numbers would
be used substantially in other fields of study.

We conclude this paper by posing some problems:

(i) Give more detailed accounts of omitted proofs of Theorems in Sections 4 and 5.
(ii) Try to give more general formulas than those in Theorems 5, 8 and 11 as in the shape

of the left-handed member of (10).
(iii) Try to establish generalized summation formulas for pFq based on certain known ones

in the literature, by using the similar technique in this paper, with a particular aid of
the sequences of newly introduced numbers in Section 2.

(iv) Try to directly prove Equation (33) and Equation (35) from Definitions 1 and 2.
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