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Abstract: In our present investigation, some coefficient functionals for a subclass relating to star-
like functions connected with three-leaf mappings were considered. Sharp coefficient estimates
for the first four initial coefficients of the functions of this class are addressed. Furthermore, we
obtain the Fekete–Szegö inequality, sharp upper bounds for second and third Hankel determinants,
bounds for logarithmic coefficients, and third-order Hankel determinants for two-fold and three-fold
symmetric functions.

Keywords: starlike functions; subordinations; three-leaf function; coefficient bounds; logarithmic
coefficients; Hankel determinant; two- and three-fold symmetric functions

1. Introduction and Preliminary Results

Let the family of all the functions f that are analytic in U = {z ∈ C : |z| < 1} be
represented by A and have the series form

f (z) = z +
∞

∑
n=2

an zn, z ∈ U. (1)

By convention, S represents a subfamily of classA containing all the functions that are
univalent in U and satisfy the normalization property f (0) = 0 = f ′(0)− 1. In geometric
function theory, a key problem of analytic functions is their connection with coefficient
estimates for these functions. In 1916, Bieberbach conjectured that |an| ≤ n, n = 2, 3, . . .
This famous coefficient problem, the “Bieberbach conjecture” played an important role in
research in this field for decades until, in 1984, Louis de Branges proved this result; see [1].
During 1916–1984, researchers used different techniques and established a lot of coefficient
results for various subclasses of S . The subclasses worth mentioning here are the class S∗,
of starlike functions; the class K , of convex functions; andR, known as the functions of
bounded turning. They are defined as below:
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S∗ =

{
f ∈ S : <

(
z f ′(z)

f (z)

)
> 0, z ∈ U

}
,

K =

{
f ∈ S : <

(
(z f ′(z))′

f ′(z)

)
> 0, z ∈ U

}
,

R =
{

f ∈ S : <
[

f ′(z)
]
> 0, z ∈ U

}
,

respectively. These classes can also be defined with the help of the subordination relation.
We say that, for analytic functions, f1(z) is to be subordinated to f2(z) in the region U and
denoted mathematically as f1(z) ≺ f2(z) if a function u(z), known as the Schwarz function,
satisfies the conditions |u(z)| ≤ 1 and u(0) = 1, such that f1(z) = f2(u(z)). Moreover, if
f2(z), belongs to S , then due to [2,3], the following equivalent conditions will be true

f1(U) ⊆ f2(U) and f1(0) = f2(0).

Thus, one can define S∗(ψ), K(ψ) andR(ψ) as:

S∗(ψ) =

{
f ∈ S :

z f ′(z)
f (z)

≺ ψ =
1 + z
1− z

, z ∈ U
}

, (2)

K(ψ) =

{
f ∈ S :

(z f ′(z))′

f ′(z)
≺ ψ =

1 + z
1− z

, z ∈ U
}

,

R(ψ) =

{
f ∈ S : f ′(z) ≺ ψ =

1 + z
1− z

, z ∈ U
}

.

In (2), if the right hand side is changed, the several well-known subfamilies are
originated. For example, if we put ψ = 1+Az

1+Bz , we obtain the Janowski-type class of starlike
functions; see [4] for details. Meanwhile, if we change the parameters A and B by 1− 2α
ans −1, respectively, then we obtain a family of starlike mappings of order α; these were

defined and discussed in [5]. Additionally, for the choice of ψ = 1 + 2
π2

(
log 1 +

√
z

1 −
√

z

)2
,

we obtained a corresponding class of starlike functions, introduced by Ronning; see [6].
Furthermore, if ψ =

√
1 + z, we obtain the class starlike function related to the lemniscate

of the Bernoulli domain, defined by Cho et al. [7,8]. Goel and Kumar, in [9], defined the
class S∗SG, the family of starlike mappings connected with a type of mapping known as
modified sigmoid functions. Moreover, if we use ψ = 1 + sin(z), we obtain a subclass of
starlike mappings in relation to the sine function; for details, see [10]. Mendiratta et al.
The authors of [11] obtained a subfamily of strongly starlike mappings connected with the
exponential function for the choice of ψ = ez. Sharma et al. [12] derived a subfamily of
starlike mappings associated with a cardoid domain.

In a similar way, one can find various important subclasses of these functions in [13–21]
for some specific value of ψ. Of these, some well-known ones are the mappings associated
with and related to Bell numbers, curves that are shell-like in association with Fibonacci
numbers, and mappings associated with the conic domains.
Lately, utilizing the techniques of Ma and Minda [22], Gandhi [23] defined a family of

starlike functions associated with a three-leaf function, i.e.,

S∗3L =

{
f ∈ A :

z f ′(z)
f (z)

≺ 1 +
4
5

z +
1
5

z4
}

, (z ∈ U), (3)

and characterized it with some important properties.
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For the function f that has the form (1), Pommerenke [24,25] defined the Hankel
determinant Hq,n( f ) with the parameter q, and n ∈ N = {1, 2, 3, · · · }, as follows:

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣. (4)

For some subclasses related to the class A, the bounds of Hq,n( f ), for any fixed integer
q and n, are evaluated. Almost all the subclasses related to the class S were investigated
for the sharp estimates of H2,2( f ) =

∣∣a2a4 − a2
3

∣∣ by Janteng et al. [8,26]. However, for the
family of close-to-convex functions, the sharp estimates are still not known (see [27]). On
the other hand, Krishna et al. [28] proved the better estimate of |H2,2( f )| for a subfamily
of Bazilevič functions. More detailed work on H2,2( f ) can be seen in [29–33] and also the
references cited therein.

The determinant

H3,1( f ) =

∣∣∣∣∣∣
1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ (5)

is known as the third-order Hankel determinant, and an estimate of this Hankel deter-
minant |H3,1( f )| is more difficult than the second Hankel determinant; that is why a lot
of researchers have focused on this field. In 1966–1967, Pommerenke defined the Hankel
determinant, but it was not evaluated till the year 2010. In 2010, Babalola [34] was the first
researcher who worked on H3,1( f ) and successfully obtained the upper bounds of |H3,1( f )|
related to the classes S∗, K andR. Following this result, a few researchers extended this
work for the various subcollections of univalent and holomorphic functions; see [35–47].
In the year 2017, Zaprawa [48] developed their work by proving

|H3,1( f )| ≤


1, for f ∈ S∗,
49

540 , for f ∈ K,
41
60 , for f ∈ R.

Additionally, he asserted that the inequality above is not sharp. For sharpness, he con-
sidered the subfamily of S∗, C and R functions to define them with m-fold symmetry,
acquiring a sharp bound. In 2018, Kowalczyk et al. [49] and Lecko et al. [50] obtained
sharp inequalities, which are

|H3,1( f )| ≤ 4/135, and |H3,1( f )| ≤ 1/9,

for the classes K and S∗(1/2), where the symbol S∗(1/2) represents the subcollection of
starlike functions of order 1/2. In [51], an improved bound |H3,1( f )| ≤ 8/9 for f ∈ S∗ was
given, which is not the best possible.

Our main purpose in this article is to first study four sharp coefficient estimates, the
Fekete–Szegö inequality and sharp second Hankel determinant, the third-order Hankel
determinant, the bounds for logarithmic coefficients, and the two- and three-fold symmetric
functions.

2. The Sets of Lemmas

Let P be the subclass of mappings p that are analytic in D with <p(z) > 0 and its
series form, as follows:

p(z) = 1 +
∞
∑

n=1
cn zn (z ∈ D). (6)
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Lemma 1. If p(z) ∈ P and it is of the form (6), then

|cn| ≤ 2 for n ≥ 1, (7)

|cn+k − δcnck| ≤ 2 for 0 ≤ δ ≤ 1, (8)

and for ξ ∈ C ∣∣∣c2 − ξc2
1

∣∣∣ ≤ 2 max{1; |2ξ − 1|}, (9)

and for real λ ∣∣∣c3 − λc2
2

∣∣∣ ≤

−4λ + 2, if λ ≤ 0,
2, if 0 ≤ λ ≤ 1,
4λ− 2, if λ ≥ 1.

(10)

For the results in (7) and (8), see [52]. Additionall, see [53] for (9) and [22] for (10).

Lemma 2 ([54]). Let p ∈ P have the representation of the form (6); then, for any real numbers
α, β and γ ∣∣∣αc3

1 − βc1c2 + γc3

∣∣∣ ≤ 2|α|+ 2|β− 2α|+ 2|α− β + γ| (11)

Lemma 3 ([55]). Let m, n, l and r satisfy the inequalities 0 < m < 1, 0 < r < 1 and

8r(1− r)
[
(mn− 2l)2 + (m(r + m)− n)2

]
+ m(1−m)(n− 2rm)2

≤ 4m2(1−m)2r(1− r).

If p ∈ P and has power series (6), then∣∣∣∣lc4
1 + rc2

2 + 2mc1c3 −
3
2

nc2
1c2 − c4

∣∣∣∣ ≤ 2.

Lemma 4 ([53]). Let h ∈ P have the series expansion of the form (6) . Then, for x, z ∈ D̄ =
D∪ {1},

2c2 = c2
1 + x(4− c2

1), (12)

4c3 = c3
1 + 2(4− c2

1)c1x− c1(4− c2
1)x2 + 2(4− c2

1)(1− |x|2)z. (13)

3. Upper Bound H3,1( f ) for Set S∗3L
Theorem 1. Let f (z) ∈ S∗3L be of the form (1); then:

|a2| ≤
4
5

, (14)

|a3| ≤
2
5

, (15)

|a4| ≤
4

15
, (16)

|a5| ≤
1
5

. (17)
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All these bounds are sharp for the functions defined below, respectively.

f1(z) = z exp
(∫ z

0

(
4
5
+

1
5

t3
)

dt
)
= z +

4
5

z2 + · · · , (18)

f2(z) = z exp
(∫ z

0

(
4
5

t +
1
5

t7
)

dt
)
= z +

2
5

z3 + · · · , (19)

f3(z) = z exp
(∫ z

0

(
4
5

t2 +
1
5

t11
)

dt
)
= z +

4
15

z4 + · · · , (20)

f4(z) = z exp
(∫ z

0

(
4
5

t3 +
1
5

t15
)

dt
)
= z +

1
5

z5 + · · · . (21)

Proof. Since f ∈ S∗3L, there exists an analytic function w(z), |w(z)| ≤ 1 and w(0) = 0,
such that

z f ′(z)
f (z)

= 1 +
4
5

w(z) +
1
5
(w(z))4.

Denote
Ψ(w(z)) = 1 +

4
5

w(z) +
1
5
(w(z))4,

and

k(z) = 1 + c1z + c2z2 + · · · = 1 + w(z)
1− w(z)

.

Obviously, the function k(z) ∈ P and w(z) = k(z)−1
k(z)+1 . This gives

w(z) =
k(z)− 1
k(z) + 1

=
c1z + c2z2 + c3z3 + · · ·

2 + c1z + c2z2 + c3z3 + · · · ,

and
1 +

4
5

w(z) +
1
5
(w(z))4

= 1 +
2
5

c1z +
(

2
5

c2 −
1
5

c2
1

)
z2 +

(
1

10
c3

1 −
2
5

c2c1 +
2
5

c3

)
z3

+

(
− 3

80
c4

1 +
3

10
c2

1c2 −
2
5

c3c1 −
1
5

c2
2 +

2
5

c4

)
z4 + · · · . (22)

while

z f ′(z)
f (z)

= 1 + a2z +
(

2a3 − a2
2

)
z2 +

(
a3

2 − 3a2a3 + 3a4

)
z3

+
(
−a4

2 + 4a2
2a3 − 4a2a4 − 2a2

3 + 4a5

)
z4 + · · · . (23)

Upon equating the coefficients of (22) and (23), we obtain

a2 =
2
5

c1, (24)

a3 =
1
5

c2 −
1
50

c2
1, (25)

a4 =
1

250
c3

1 −
4

75
c2c1 +

2
15

c3, (26)

a5 =
81

40, 000
c4

1 +
643

37, 000
c2

1c2 −
7

150
c3c1 −

3
100

c2
2 +

1
10

c4. (27)
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Now, applying (7), to Equation (24), we obtain

|a2| ≤
4
5

.

Applying (8) with n = k = 1, to Equation (25), we obtain

|a3| ≤
2
5

.

From the application of Lemma 2 to Equation (26), we obtain

|a4| ≤
4

15
.

Now,

a5 =
−1
10

(
− 81

4000
c4

1 −
643

3700
c2

1c2 +
7
15

c3c1 +
3
10

c2
2 − c4

)
,

applying Lemma 3, with l = −81
4000 , r = 3

10 , m = 7
30 and n = 643

5550 ; all the conditions of
Lemma 3 are satisfied, so

|a5| =
1

10

∣∣∣∣− 81
4000

c4
1 −

643
3700

c2
1c2 +

7
15

c3c1 +
3
10

c2
2 − c4

∣∣∣∣
≤ 1

10
× 2 =

1
5

.

Hence, complete the proof.

Theorem 2. Let f (z) ∈ S∗3L be of the form (1). Then,∣∣∣a3 − ζa2
2

∣∣∣ ≤ 2
5

max
{

1,
4
5
|2ζ − 1|

}
for ζ ∈ C. (28)

The result is sharp for the function defined in Equation (19).

Proof. Since from (24) and (25), we have∣∣∣a3 − ζa2
2

∣∣∣ = 1
5

∣∣∣∣c2 −
8ζ + 1

10
c2

1

∣∣∣∣,
by applying (9) to the above equation, we obtain the desired result.

For ζ = 1, we obtain the corollary stated below:

Corollary 1. Let f (z) ∈ S∗3L be of the form (1). Then∣∣∣a3 − a2
2

∣∣∣ ≤ 2
5

. (29)

The bound is sharp for the function defined in Equation (19).

Theorem 3. Let f (z) ∈ S∗3L be of the form (1). Then,

∣∣∣a3 − λa2
2

∣∣∣ ≤


−16λ + 8
25 , if λ ≤ − 1

8 ,
2
5 , if − 1

8 ≤ λ ≤ 9
8 ,

−16λ + 8
25 , if λ ≥ 9

8 .
(30)
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Proof. Since from (24) and (25), we have∣∣∣a3 − λa2
2

∣∣∣ = 1
5

∣∣∣∣c2 −
8λ + 1

10
c2

1

∣∣∣∣,
by applying (10) to the above equation, we obtain the desired result.

Theorem 4. Let f (z) ∈ S∗3L be of the form (1). Then,

|a4 − a2a3| ≤
4
15

. (31)

The estimate is sharp for the function defined in Equation (20).

Proof. Since from (24)–(26), we have

|a4 − a2a3| =
∣∣∣∣ 3
250

c3
1 −

2
15

c1c2 +
2
15

c3

∣∣∣∣,
now, the implementation of Lemma 2 to above equation leads us to the desired result.

Theorem 5. Let f (z) ∈ S∗3L be of the form (1). Then,∣∣∣a2a4 − a2
3

∣∣∣ ≤ 4
25

. (32)

The result is sharp for the function defined in Equation (19).

Proof. Since from (24)–(26), we have∣∣∣a2a4 − a2
3

∣∣∣ = ∣∣∣∣ 3
2500

c4
1 −

1
75

c2
1c2 +

4
75

c3c1 −
1

25
c2

2

∣∣∣∣,
using (12) and (13) to put c2 and c3 in terms of c1 and directly state that c1 = c with
c ∈ [0, 2], we have∣∣∣a2a4 − a2

3

∣∣∣ = ∣∣∣∣− 1
100

(
4− c2

)2
x2 − 1

75

(
4− c2

)
x2c2 +

2
75

(
4− c2

)(
1− |x|2

)
cz− 4

1875
c4
∣∣∣∣.

Applying a triangular inequality along with |z| ≤ 1 and |x| = b with b ∈ [0, 1], we have∣∣∣a2a4 − a2
3

∣∣∣ ≤ 1
100

(
4− c2

)2
b2 +

1
75

(
4− c2

)
b2c2 +

2
75

(
4− c2

)(
1− b2

)
c +

4
1875

c4 = H(c, b).

Since H(c, b) is an increasing function with respect to b so H(c, b) ≤ H(c, 1), putting
b = 1 in the above, we obtain∣∣∣a2a4 − a2

3

∣∣∣ ≤ 1
100

(
4− c2

)2
+

1
75

(
4− c2

)
c2 +

4
1875

c4 = G(c).

Now,

G
′
(c) = − 3

625
c3 − 4

75
c,

G
′′
(c) = − 9

625
c2 − 4

75
.
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Clearly, G
′′
(c) < 0 for c = 0, so the maximum is attained at c = 0; hence,∣∣∣a2a4 − a2

3

∣∣∣ ≤ 4
25

.

Now, one comes to the third Hankel determinant:

Theorem 6. Let f (z) ∈ S∗3L be of the form (1). Then,

|H3,1( f )| ≤ 242
1125

' 0.215.

Proof. From (5), we have

|H3,1( f )| ≤ |a3|
∣∣∣a2a4 − a2

3

∣∣∣+ |a4||a4 − a2a3|+ |a3|
∣∣∣a3 − a2

2

∣∣∣,
and using (15)–(17), (29), (31) and (32), we obtain the required result.

For function f of class S , we denote the logarithmic coefficients with γn = γn( f ), and
they are defined by the following series expansion:

log
(

f (z)
z

)
= 2

∞

∑
n=1

γnzn.

The logarithmic coefficients of function f given in (1) are as follows:

γ1 =
1
2

a2, (33)

γ2 =
1
2

(
a3 −

1
2

a2
2

)
, (34)

γ3 =
1
2

(
a4 − a2a3 +

1
3

a3
2

)
. (35)

Theorem 7. Let f (z) ∈ S∗3L be of the form (1); then,

|γ1| ≤
2
5

,

|γ2| ≤
1
5

, (36)

|γ3| ≤
6

25
. (37)

The first two bounds are sharp.

Proof. From Equations (33) to (35), we obtain

|γ1| =
1
5

c1,

|γ2| =
1

10

(
c2 −

1
2

c2
1

)
,

|γ3| =
1
2

[(
3

250
c3

1 −
2

15
c1c2 +

2
15

c3

)
+

4
75

c2
1

]
.

The bounds of |γ1|, |γ2| follow from Lemma 1, and |γ3| follows from Lemmas 1 and 2.
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4. Bounds of H3,1( f ) for Two-Fold and Three-Fold Symmetric Functions

Let m ∈ N = {1, 2, 3, · · · }; if a rotation of domain D about the origin through an angle
2π
m carries itself on the domain, D is called m-fold symmetric. It is very clear to see that an

analytic function f is m-fold symmetric in D, if

f
(

e
2π
m z
)
= e

2π
m f (z), z ∈ D.

By S (m), we mean the set of m-fold symmetric univalent functions having the follow-
ing series form:

f (z) = z +
∞

∑
k=1

amk+1zmk+1, z ∈ D. (38)

The subclass S∗(m)
3L is a set of m-fold symmetric starlike functions associated with a

modified sigmoid function. More precisely, an analytic function f of the form (38) belongs
to class S∗(m)

3L if and only if

z f
′
(z)

f (z)
= 1 +

4
5

(
p(z)− 1
p(z) + 1

)
+

1
5

(
p(z)− 1
p(z) + 1

)4
, p ∈ P (m), (39)

where the set P (m) is defined by

P (m) =

{
p ∈ P : p(z) = 1 +

∞

∑
k=1

cmkzmk, z ∈ D
}

. (40)

Theorem 8. If f ∈ S∗(2)3L is of the form (38), then

|H3,1( f )| ≤ 2
25

. (41)

Proof. Since f ∈ S∗(2)3L , there exists a function p ∈ P (2) such that

z f
′
(z)

f (z)
= 1 +

4
5

(
p(z)− 1
p(z) + 1

)
+

1
5

(
p(z)− 1
p(z) + 1

)4
.

Using the series form (38) and (40), when m = 2 in the above relation, we have

a3 =
1
5

c2, (42)

a5 =
1
10

c4 −
3

100
c2

2. (43)

Now, using (42) and (43), we obtain

|H3,1( f )| = |a3|
∣∣∣a5 − a2

3

∣∣∣
=

1
50
|c2|
∣∣∣∣c4 −

7
10

c2
2

∣∣∣∣
Now, using (7) and (8) with the above, we obtain the required result.

Theorem 9. If f ∈ S∗(3)3L is of the form (38), then

|H3,1( f )| ≤ 16
225

.

The result is sharp for the function defined in (20).
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Proof. Since f ∈ S∗(3)3L , there exists a function p ∈ P (3) such that

z f
′
(z)

f (z)
= 1 +

4
5

(
p(z)− 1
p(z) + 1

)
+

1
5

(
p(z)− 1
p(z) + 1

)4
.

Using the series form (38) and (40), when m = 3 in above relation, we have

a4 =
2

15
c3,

Now,
H3,1( f ) = −a2

4.

Therefore,

|H3,1( f )| =

∣∣∣∣− 4
225

c2
3

∣∣∣∣
=

4
225
|c3|2

Using (7), we obtain the desired result.

5. Conclusions

In the present article, we find four initial sharp coefficient bounds, the sharp Fekete–
Szegö inequality, the sharp second Hankel determinant, the third Hankel determinant,
and the bounds for logarithmic coefficients, and at last, we find out the bounds of H3,1( f )
for two-fold and three-fold symmetric functions for the class S∗3L. Obtaining a sharp
estimate for the third Hankel determinant is still an open problem for a considered class.
Additionally, there is an opportunity for researchers to investigate the generalized Zalcman
conjecture, Krushkal inequality and fourth-order Hankel determinant for this class.
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