
fractal and fractional

Article

Parameter Identification in the Two-Dimensional
Riesz Space Fractional Diffusion Equation

Rafał Brociek *,† , Agata Chmielowska † and Damian Słota †

Department of Mathematics Applications and Methods for Artificial Intelligence, Silesian University
of Technology, Kaszubska 23, 44-100 Gliwice, Poland; agata.chmielowska@polsl.pl (A.C.);
damian.slota@polsl.pl (D.S.)
* Correspondence: rafal.brociek@polsl.pl
† These authors contributed equally to this work.

Received: 26 June 2020; Accepted: 3 August 2020; Published: 6 August 2020
����������
�������

Abstract: This paper presents the application of the swarm intelligence algorithm for solving the
inverse problem concerning the parameter identification. The paper examines the two-dimensional
Riesz space fractional diffusion equation. Based on the values of the function (for the fixed points
of the domain) which is the solution of the described differential equation, the order of the Riesz
derivative and the diffusion coefficient are identified. The paper includes numerical examples
illustrating the algorithm’s accuracy.

Keywords: fractional derivative; fractional differential equation; inverse problem; parameter
identification; two-dimensional differential equation

1. Introduction

Models with fractional derivatives have found applications in many fields of science and
engineering, such as control theory [1], mechanics [2], image processing [3] and heat conduction.
The use of the fractional derivatives in modeling the heat conduction phenomena has been presented
in the papers [4,5], wherein the models with the fractional derivative of Riemann–Liouville and
Caputo type was considered. In case of the heat conduction problems the equations with the fractional
derivatives are particularly useful for modeling the phenomena that take place in the porous materials
and composites due to the fact that the anomalous diffusion process occurs there. For such materials
the models with the fractional derivatives give better results than the models based on the classic
derivatives, as has been shown, for example, in papers [6,7]. In the articles [7,8] the heat conduction
process was considered in composites and porous aluminum. More about the applications of the
fractional derivatives can be found in [9–12].

In this paper the model described by the differential equation with the fractional derivative of the
Riesz type [13] is being considered. The definition of this derivative is based on the left and right-hand
sided Riemann–Liouville derivatives. The algorithm for solving the inverse problem for model with the
partial Riesz derivative with respect to the spacial variable is being presented. The inverse problems in
general are a class of problems related to the proper selection of the input parameters to obtain the
expected values as an output. To solve the inverse problem unambiguously, additional information
is required. In this article the problem of reconstructing the diffusion coefficient and the order of the
fractional derivative is being solved and the additional information is a set of values of a function
which is a solution of the considered differential equation for the chosen points of the domain.

Solving the inverse problem often requires solving the direct problem multiple times for the
chosen values of the reconstructed parameters; in our case these are the diffusion coefficient and the
order of the fractional derivative. For solving the direct problem, the alternating direction implicit

Fractal Fract. 2020, 4, 39; doi:10.3390/fractalfract4030039 www.mdpi.com/journal/fractalfract

http://www.mdpi.com/journal/fractalfract
http://www.mdpi.com
https://orcid.org/0000-0002-7255-6951
https://orcid.org/0000-0003-2268-5023
https://orcid.org/0000-0002-9265-5711
http://www.mdpi.com/2504-3110/4/3/39?type=check_update&version=1
http://dx.doi.org/10.3390/fractalfract4030039
http://www.mdpi.com/journal/fractalfract


Fractal Fract. 2020, 4, 39 2 of 10

method [13], which allows one to solve the multidimensional problem by iteratively solving a number
of one-dimensional problems, was used. The functional representing the error of the approximate
result was constructed using the obtained solution of the direct problem and then it was minimized
by application of the real ant colony optimization [14] algorithm. That is the probabilistic artificial
intelligence algorithm inspired by the behavior of the swarm of ants. In this paper, a numerical example
presenting the accuracy of the method for various numbers of measurement points and various input
data disturbance is also presented.

2. Formulation of the Problem

We consider a two-dimensional differential equation with the fractional derivative of a Riesz type
with respect to the spacial variable:

c$
∂u(x, y, t)

∂t
= λx

∂α1 u(x, y, t)
∂|x|α1

+ λy
∂α2 u(x, y, t)

∂|y|α2
+ d(u, x, y, t), (1)

defined on the domain D = {(x, y, t) : x ∈ [0, Lx], y ∈ [0, Ly], t ∈ [0, T], Lx, Ly, T ∈ R+}. Such an
equation is called a two-dimensional Riesz space fractional diffusion equation [13], so the λx and λy

coefficients are called diffusion coefficients from now on. In this equation the fractional derivatives of
order α1, α2 ∈ (1, 2) are the derivatives of a Riesz type defined as follows:

∂α1 u(x, y, t)
∂|x|α1

= −cα1

(
∂α1 u(x, y, t)

∂xα1
+

∂α1 u(x, y, t)
∂(−x)α1

)
,

∂α2 u(x, y, t)
∂|y|α2

= −cα2

(
∂α2 u(x, y, t)

∂yα2
+

∂α2 u(x, y, t)
∂(−y)α2

)
,

(2)

where cα = 1
2 cos( πα

2 )
and:

∂α1 u(x, y, t)
∂xα1

=
1

Γ(2− α1)

∂2

∂x2

x∫
0

u(s, y, t)
(x− s)α1−1 ds,

∂α1 u(x, y, t)
∂(−x)α1

=
(−1)2

Γ(2− α1)

∂2

∂x2

Lx∫
x

u(s, y, t)
(s− x)α1−1 ds,

∂α2 u(x, y, t)
∂yα2

=
1

Γ(2− α2)

∂2

∂y2

y∫
0

u(x, s, t)
(y− s)α2−1 ds,

∂α2 u(x, y, t)
∂(−y)α2

=
(−1)2

Γ(2− α2)

∂2

∂y2

Ly∫
y

u(x, s, t)
(s− y)α2−1 ds,

(3)

where Γ is the Gamma function. To the Equation (1) we add the initial condition:

u(x, y, 0) = f (x, y), x ∈ [0, Lx], y ∈ [0, Ly], (4)

and homogeneous Dirichlet boundary conditions:

u(0, y, t) = u(Lx, y, t) = 0,

u(x, 0, t) = u(x, Ly, t) = 0.
(5)

The differential equations of the fractional order have found applications in modeling various
kinds of phenomena, such as the diffusion or heat conduction in porous materials [4,7]. In the model
presented above we assume that α1 = α2 = α and λx = λy = λ. The considered inverse problem is to
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reconstruct a value of an order of the derivative α and the diffusion coefficient λ using the values of
the u function for the fixed points of the domain. We call these values the input data for the inverse
problem and denote them as:

Ûk
i,j = u(xi, yj, tk), i, j = 1, 2, . . . , N1, k = 1, 2, . . . , N2,

where N1 is the number of measurement points and N2 is the number of measurements taken for
each point. By solving the differential Equation (1) (numerically) for the fixed values of the α and λ

parameters we can get the values of the function Uk
i,j(α, λ) at the measurement points. By taking these

values, in each point of the mesh, and comparing them with the input data, we can build a function
that defines the error of the approximate solution:

J(α, λ) =
N1

∑
i,j=1

N2

∑
k=1

(
Uk

i,j(α, λ)− Ûk
i,j

)2
. (6)

By minimizing the above function, we get the approximate values of the α and λ parameters.

3. Methods of Solution

The algorithm for solving the considered inverse problem consists of two major parts: solving the
direct problem—determining the solution of the differential Equation (1) with the given conditions;
and finding the minimum of the objective function (6).

3.1. Solution of the Direct Problem

In order to solve the differential Equation (1) in the considered area we introduce a grid:

S = {(i∆x, j∆y, k∆t) : ∆x =
Lx

N
, ∆y =

Ly

M
, ∆t =

T
K

, i = 0, 1, . . . N, j = 0, 1, . . . , M, k = 0, 1, . . . , K}.

Let us take a following notation: Uk
i,j ≈ u(xi, yj, tk) = u(i∆x, j∆y, k∆t). The initial condition

may be denoted as U0
i,j = f (xi, yj) = fi,j, while for the source component d we use notation dk

i,j =

d(uk
i,j, xi, yj, tk). We approximate the first derivative with respect to time in the following way:

∂u(xi, yj, tk)

∂t
≈

Uk
i,j −Uk−1

i,j

∆t
.

The fractional derivative (3) with respect to the x variable is approximated by the shifted
Grünwald-Letnikov formula [15,16]:

∂αu(xi, yj, tk)

∂xα
≈ 1

(∆x)α

i+1

∑
r=0

g(r)α Uk
i−r+1,j, (7)

∂αu(xi, yj, tk)

∂(−x)α
≈ 1

(∆x)α

N−i+1

∑
r=0

g(r)α Uk
i+r−1,j, (8)

where:

g(r)α = (−1)r Γ(α + 1)
Γ(α− r + 1)Γ(r + 1)

.
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We use similar method to approximate the derivative with respect to the y variable. By taking
into account all of the above dependencies, Equation (1) may be written in the form:

Uk
i,j −Uk−1

i,j

∆t
= − λcα

(∆x)α

[
i+1

∑
r=0

g(r)α Uk
i−r+1,j +

N−i+1

∑
r=0

g(r)α Uk
i+r−1,j

]

− λcα

(∆y)α

[
j+1

∑
r=0

g(r)α Uk
i,j−r+1 +

M−j+1

∑
r=0

g(r)α Uk
i,j+r−1

]
+ f k−1

i,j .

(9)

Next we introduce the operator δx defined as follows:

δxuk
i,j = −

λcα

(∆x)α

[
i+1

∑
r=0

g(r)α Uk
i−r+1,j +

N−i+1

∑
r=0

g(r)α Uk
i+r−1,j

]

We also define the operator δy similarly. By substituting into (9), we get the following equation:

(1− ∆tδx − ∆tδy)Uk
i,j = Uk−1

i,j + ∆t f k−1
i,j . (10)

To solve the direct problem we use the alternating direction implicit method (ADIM). This method
reduces the multidimensional problem to a several independent one-dimensional problems to solve.
We write the Equation (10) in a following form:

(1− ∆tδx)(1− ∆tδy)Uk
i,j = Uk−1

i,j + ∆t f k−1
i,j . (11)

ADIM is a iterative method and in the considered case we may define it in two steps:

1. First we solve the problem in the direction of the Ox axis (for the fixed yj):

(1− ∆tδx)U∗i,j = Uk−1
i,j + ∆t f k−1

i,j . (12)

This way we get the intermediate solution U∗i,j.
2. In the next step we solve the problem in the direction of Oy axis (for the fixed xi):

(1− ∆tδy)Uk
i,j = U∗i,j. (13)

In the considered problem the Dirichlet boundary conditions are zeros. Due to that, we may easily
determine the boundary values for the solution U∗ which are:

U∗0,j = (1− ∆tδy)Uk
0,j = 0, U∗N,j = (1− ∆tδy)Uk

N,j = 0.

We must write the differential schemes (12)–(13) in the matrix form, thereby obtaining the system
of equations, solutions of which are the values of the function u at the grid points. More about the
ADIM method, its stability and convergence may be found in the [13].

3.2. Minimalization of the Objective Function

The second necessary step to solving the considered inverse problem is the minimization of
the functional (6). For this we use the real ant colony optimization (RealACO) algorithm [14],
which is the swarm artificial intelligence algorithm. We describe it briefly below, and for that, use the
following notation:

J—minimalized function (objective function), n—size of the problem,

nT—number of threads, M = nT · p—number of ants in the population,
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I—number of iterations, L—number of pheromone spots, q, ξ—algorithm parameters.

The pheromone spots mean the potential solutions. The ants modify these solutions while looking
for better results. We now present the consecutive steps of the algorithm.

Start of the algorithm

1. Set the algorithm’s input parameters: L, M, I, nT, q, ξ.
2. Generate L initial solutions serving as pheromone spots. Assign them to the T0 set (which is the

initial archive).
3. Compute the values of the objective function for all of the pheromone spots (parallel computing)

and sort the archive T0 from the best solution to the worst.

Iteration process

4. Assign the probabilities to the pheromone spots according to the formula:

pl =
ωl

L
∑

l=1
ωl

l = 1, 2, . . . , L,

where weights ωl are connected to the l-th solution and are expressed by the formula:

ωl =
1

qL
√

2π
· e
−(l−1)2

2q2 L2 .

5. The ant must randomly chose the l-te solution with the probability pl .
6. The ant must transform the j-th coordinate (j = 1, 2, . . . , n) of the l-th solution sl

j by sampling the
neighborhood using the probability density function (in this case the Gauss function):

g(x, µ, σ) =
1

σ
√

2π
· e
−(x−µ)2

2σ2 ,

where µ = sl
j, σ = ξ

L−1

L
∑

p=1
|sp

j − sl
j|.

7. The steps 5 and 6 must be repeated by every ant. This way, we get M new solutions
(pheromone spots).

8. Partition the new solutions into nT groups. Compute the value of the objective function for each
of the new solutions (parallel computing).

9. Add the new solutions to the archive Ti; sort them by the quality and reject the M worst solutions.
10. The steps 3–9 must be repeated I times.

Knowing the values of the parameters L, M and I, we can determine the number of the objective
function calls during the algorithm execution. This number is L + M · I. More about the method and
its application for the inverse problems (particularly in the field of heat conductivity) can be found
in [5,17–19].

4. Numerical Example

We now present the method described in the previous section by using it in a numerical example.
We consider the Equation (1) with the homogenous Dirichlet boundary conditions. We also take under
consideration the following data:

c = 900.0, $ = 2700.0, Lx = Ly = 1.0, T = 300.0, f (x, y) = 150,000(x− 1)4x2(y− 1)4y2,
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d(u, x, y, t) = −1,215,000,000(x− 1)4x2(y− 1)4y2

+ 191,492(t− 300)(x0.5 − 8x1.5 + 19.2x2.5 − 18.2857x3.5 + 6.09524x4.5)(y− 1)4y2

+ (t− 300)
(
65,297.4(1− x)4.5 − 587,677(1− x)3.5(0.0833333 + x)

+ 514,217(1− x)2.5(0.025 + 0.166667x + x2)
)
(y− 1)4y2 + 191,492(t− 300)(x− 1)4

x2(1.y0.5 − 8.y1.5 + 19.2y2.5 − 18.2857y3.5 + 6.09524y4.5) + 32,648.7(−300 + t)(x− 1)4x2(
2(1− y)4.5 − 18(1− y)3.5(0.0833333 + y) + 15.75(1− y)2.5(0.025 + 0.166667y + y2)

)
.

The exact solution of such a problem for α = 1.5 and λ = 240 is a function:

u(x, y, t) = 500(300− t)x2y2(x− 1)4(y− 1)4.

As was described in the Section 2 the reconstructed parameters of the considered model are
order of the derivative α and the diffusion coefficient λ. The aim of this numerical example is to
illustrate the method’s accuracy. Therefore, the input data for the inverse problem were generated
for the exact values α = 1.5, λ = 240.0 using the grid of size 150× 150× 600. For the algorithm for
solving the inverse problem, the grid of size 100× 100× 300 was used. Using a different grid size for
generating the input data for the inverse problem and a different size for solving the inverse problem
was necessary to avoid the occurrence of the so-called inverse crimes [20,21]. Additionally, in order to
examine the stability of the algorithm, the input data were disturbed by the pseudo-random normal
distribution errors of size 1% and 3%. Running time of the algorithm on a standard PC was about 14 h.

In this example we considered two cases of measurement point locations:

• Four points placed in the “corners” of the domain: A(0.2, 0.8), B(0.8, 0.8), C(0.2, 0.2), D(0.8, 0.2);
then we have N1 = 4.

• Two points placed in the opposite “corners” of the domain: B(0.8, 0.8), C(0.2, 0.2); then we have
N1 = 2.

The locations of the measurement points are presented in the Figure 1. For each configuration of
points, we simulated the measurements every 1 s, 2 s and 4 s (N2 = 300, N2 = 150, N2 = 75).

(a)

Lx = 1

L
y
=
1

0.2

0
.2

A(0.2, 0.8) B(0.8, 0.8)

C(0.2, 0.2) D(0.8, 0.2)

(b)

Lx = 1

L
y
=
1

0.2

0
.2

B(0.8, 0.8)

C(0.2, 0.2)

Figure 1. Locations of the measurement points in cases of (a) four measurement points; (b) two
measurement points.
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Tables 1 and 2 present the obtained results of the α and λ parameter reconstructions for various
sizes of disturbance of the input data and different numbers of measurements taken. The presented
algorithm is probabilistic, and therefore for each case it was executed five times. The tables include the
values of standard deviation calculated for these executions.

Table 1. Results of calculations in the case of four measurement points (αi—reconstructed value of
order derivative, λi—reconstructed value of diffusion coefficient, δ—the relative error of reconstruction,
σ—standard deviation, J—the value of functional).

Measurements Intervals Noise α δα[%] σα λ δλ[%] σλ J

1 s
0% 1.4944 0.38 0.0677 241.66 0.69 33.19 0.0135
1% 1.5114 0.76 0.0502 233.87 2.55 21.77 1.7948
3% 1.5083 0.56 0.0967 235.54 1.86 46.92 16.2992

2 s
0% 1.5181 1.21 0.0474 231.30 3.62 21.56 0.0243
1% 1.5129 0.86 0.0588 232.90 2.95 27.43 0.8427
3% 1.5094 0.63 0.0246 234.68 2.21 11.53 7.9230

4 s
0% 1.4937 0.41 0.0444 241.84 0.76 21.25 0.0021
1% 1.4959 0.27 0.0626 240.91 0.38 29.82 0.4088
3% 1.5480 3.21 0.0511 219.71 8.45 21.82 3.5613

Table 2. Results of calculations in the case of two measurement points (αi—reconstructed value of
order derivative, λi—reconstructed value of diffusion coefficient, δ—the relative error of reconstruction,
σ—standard deviation, J—the value of functional).

Measurements Intervals Noise α δα[%] σα λ δλ[%] σλ J

1 s
0% 1.5115 0.77 0.1666 233.47 2.71 72.28 0.0974
1% 1.4901 0.65 0.0793 243.52 1.46 38.56 1.7712
3% 1.5084 0.56 0.1738 235.38 1.92 50.94 16.1719

2 s
0% 1.4492 3.38 0.1637 261.82 9.09 21.76 0.0191
1% 1.4922 0.51 0.0502 242.45 1.02 21.35 0.8085
3% 1.5066 0.44 0.0813 235.71 1.78 35.82 7.8638

4 s
0% 1.4773 1.51 0.0666 249.11 3.79 32.52 0.0007
1% 1.4664 2.23 0.1769 254.01 5.83 43.95 0.4032
3% 1.5796 5.31 0.0821 207.71 13.45 35.06 3.4968

In the case of four measurement points, the best solutions (the smallest errors) were received
for measurements taken every 1 s. The errors of the order of the derivative α were no more than 1%
and the biggest value of the error of reconstruction of the λ coefficient was gotten for the input data
disturbed by 1% error. In each case the lower the value of the functional, the lower the disturbance of
the input data. In the case of four measurement points, the worst solution we got was for the input
data disturbed by the 3% error and measurements taken every 4 s. That was the consequence of, first of
all, the biggest error of the input data, and second of all, the smallest number of measurements taken
(N2 = 75). The values of the standard deviation of the obtained results are more or less at a similar level.
The value of the standard deviation was affected by the RealACO algorithm parameters and number
of the algorithm calls. During some of the executions (when the measurements were taken every 4 s
and the disturbance was 3%) the solution ended falling into a local minimum, which significantly
affected the value of the standard deviation. The proper selection of the RealACO parameters and
increasing the number of algorithm calls caused a decrease of the value of the standard deviation.
In case of the two measurement points, we can observe that in most cases (but not in all of them) the
obtained errors of the solutions are bigger than in the case of the four measurement points. The values
of the functional are, however, at a similar level in both cases. By comparing the two tables, we can also
observe that the values of the standard deviations are bigger in most cases for the four measurement
points. In this case, increasing the number of measurement points should positively affect the obtained



Fractal Fract. 2020, 4, 39 8 of 10

results. For the obtained approximate values of the α and λ parameters, the absolute errors of the
function u reconstruction were calculated for the measurement points and are presented in the Tables 3
and 4. In each case the errors were very small. The average values of the relative error in case of
four measurement points for the 3% disturbance and measurements intervals 1 s, 2 s and 4 s were
0.31%, 0.51% and 6.03% accordingly. In case of two measurement points the errors were 0.34%, 1.77%
and 10.14%, accordingly, for those measurements intervals. The higher values of the error were the
consequence of the fact that the solution on the boundary of the considered area was equal to zero.
The absolute errors in those cases were small and for the four measurement points did not exceed the
values of 0.0141 on average and 0.0485 at maximum. For the two measurement points, in turn, these
values do not exceed the 0.0245 average and 0.0759 maximum.

Table 3. The errors of the function u reconstruction for the measurement points in the case of four
measurement points (∆avg—average absolute error, ∆max—maximum average error).

Noise
0% 1% 3% 0% 1% 3% 0% 1% 3%

co 1 s co 2 s co 4 s

∆avg 0.0021 0.0024 0.0026 0.0042 0.0038 0.0022 0.0021 0.0018 0.0141

∆max 0.0091 0.0269 0.0148 0.0223 0.0367 0.0258 0.0065 0.0074 0.0485

Table 4. The errors of the function u reconstruction for the measurement points in the case of two
measurement points (∆avg—average absolute value, ∆max—maximum absolute value).

Noise
0% 1% 3% 0% 1% 3% 0% 1% 3%

co 1 s co 2 s co 4 s

∆avg 0.0071 0.0027 0.0037 0.0064 0.0018 0.0053 0.0019 0.0035 0.0245

∆max 0.0365 0.0073 0.0176 0.0163 0.0071 0.0299 0.0041 0.0087 0.0759

Figure 2 presents the absolute errors of the solution u reconstruction at the measurement points B
and C in cases of two measurement points, the smallest number of measurements taken and various
sizes of the input data disturbance. In case of the accurate input data and 1% disturbance, the errors of
the solution reconstruction for the measurement points were minimal. The errors were slightly higher
with 3% disturbance.
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(b)

0%

1%

3%

Figure 2. The absolute errors of the solution u reconstruction for the measurement points B (a) and
C (b) in the case of the measurements taken every 4 s.

5. Conclusions

The aim of the paper was to reconstruct the order of the derivative and the diffusion coefficient
while the values of the solution in the selected points of the domain were known. The obtained
results show that for the proper number of the measurement points and a reasonable size of the
input data disturbance, the presented algorithm allows one to reconstruct the parameters of interest
well. Moreover, the absolute values of the considered solution reconstruction are small. Consecutive
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executions of the algorithm gave similar results, which was proven by the values of the standard
deviation obtained.

In the future we plan to try to improve the algorithm by combining the heuristic algorithm used
with the deterministic algorithm in order to speed up the procedure. The second research area will be
the addition of the regulatory element, the purpose of which will be the improvement of the algorithm’s
operation in cases of larger input data disturbances and smaller numbers of measurements taken.
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investigation, R.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tenreiro Machado, J.A.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F.
Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 2010, 639801. [CrossRef]

2. Carpinteri, A.; Mainardi, F. Fractal and Fractional Calculus in Continuum Mechanics; Springer: New York, NY,
USA, 1997.

3. Mathieu, B.; Melchior, B.; Oustaloup, A.; Ceyral, C. Fractional differentiation for edge detection.
Signal Process. 2003, 83, 2421–2432. [CrossRef]

4. Voller, V.R. Anomalous heat transfer: Examples, fundamentals, and fractional calculus models.
Adv. Heat Transf. 2018, 50, 338–380.

5. Brociek, R.; Słota, D. Application of Real Ant Colony Optimization algorithm to solve space and time
fractional heat conduction inverse problem. In International Conference on Information and Software Technologies;
Springer: Cham, Switzerland, 2017; Volume 46, pp. 171–182.
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