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Abstract: This paper is devoted to the study of existence and uniqueness of solutions for fractional
functional differential equations, whose derivative operator depends on an arbitrary function.
The introduction of such function allows generalization of some known results, and others can
be also obtained.
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1. Introduction

Functional differential equations may be more realistic to model real phenomena, since they take
into consideration delays in the problem formulation [1–4]. Thus, they are a natural generalization of
the concept of differential equations with delayed arguments, where the change rate of the system
depends not only on the current state but is also part of its history. Presently, they are a powerful tool
to study a variety of subjects in different fields like Biology, Physics, Engineering, etc. [5–7].

Another possible extension of the previous theory occurs within the framework of fractional
calculus. By replacing ordinary derivatives with a fractional derivative, we extend that theory and,
in fact, we believe that is a more efficient way to deal with such problems. As is well known, fractional
derivatives are non-local operators and, thus, they contain the memory of the past in itself.

In this paper, we study the following fractional functional differential equation (FFDE)

CDα,ψ
a+ x(t) = f (t, xt), t ∈ [a, b],

subject to
x(t) = φ(t), t ∈ [a− ε, a],

where CDα,ψ
a+ represents the ψ-Caputo fractional derivative. By choosing this type of derivative,

we present some results valid for a wide class of FFDEs. We find in the literature a vast collection
of works dealing with these issues for different fractional derivatives. For example, for the
Riemann–Liouville [8–12], the Caputo [13–16], or the Hadamard [17,18] fractional derivatives.

The paper is organized in the following manner. In Section 2, we present some important
definitions for our work, and some needed results as well. Then, in Section 3, we study FFDEs and we
deal with the question of existence and uniqueness of solution for a FFDE.

2. Preliminaries

In this section, we introduce some notations, definitions, and preliminary facts that will be needed
in this work. We consider a general form of fractional derivative that involves a function ψ. With this
new function, we can obtain some well-known definitions of fractional derivatives as particular cases.
The fractional order of the derivative is denoted by α ∈ R+ and the kernel by ψ ∈ Cn([a, b],R).
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We assume the ψ′(t) > 0, for all t ∈ [a, b]. Given a function x : [a, b] → R, the ψ-Caputo fractional
integral of x, of order α, is given by

Iα,ψ
a+ x(t) :=

1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))α−1x(τ) dτ.

With respect to differentiation, two kind of operators can be defined: the ψ-Riemann–Liouville
fractional derivative,

Dα,ψ
a+ x(t) :=

(
1

ψ′(t)
d
dt

)n
In−α,ψ
a+ x(t), n = [α] + 1,

and the ψ-Caputo fractional derivative,

CDα,ψ
a+ x(t) := Dα,ψ

a+

x(t)−
n−1

∑
k=0

x[k]ψ (a)

k!
(ψ(t)− ψ(a))k

 .

For the last one, we assume that x ∈ Cn−1([a, b],R), n is given by n = [α] + 1 if α /∈ N, and n = α

when α ∈ N, and x[k]ψ represents

x[k]ψ (t) :=
(

1
ψ′(t)

d
dt

)k
x(t).

We can easily see that for suitable choices of ψ, we obtain some well-known fractional
operators, like the Riemann–Liouville, the Caputo, the Hadamard, or the Erdélyi–Kober fractional
derivatives [19–24].

When x ∈ Cn([a, b],R), the ψ-Caputo fractional derivative can be written as (see [19])

CDα,ψ
a+ x(t) = In−α,ψ

a+ x[n]ψ (t).

We remark that in such a case, when α = m ∈ N is an integer number,

CDα,ψ
a+ x(t) = x[m]

ψ (t),

but when α /∈ N,

CDα,ψ
a+ x(t) =

1
Γ(n− α)

∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))n−α−1x[n]ψ (τ) dτ.

Thus, in opposite to integer order derivatives, fractional derivatives are non-local operators and,
for this reason, they keep the memory of the processes. A relation between the fractional integral and
the fractional derivative is stated next.

Theorem 1. [25] Let x : [a, b]→ R be a continuous function. Then,

CDα,ψ
a+ Iα,ψ

a+ x(t) = x(t). (1)

Moreover, if x ∈ Cn−1([a, b],R), then

Iα,ψ
a+

CDα,ψ
a+ x(t) = x(t)−

n−1

∑
k=0

x[k]ψ (a)

k!
(ψ(t)− ψ(a))k. (2)
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3. Fractional Functional Differential Equations

In this section, we consider a general type of FFDEs, involving the arbitrary function ψ. Consider
the following FFDE

CDα,ψ
a+ x(t) = f (t, xt), t ∈ [a, b], (3)

subject to
x(t) = φ(t), t ∈ [a− ε, a], (4)

where

1. α ∈ (0, 1) and ε > 0 are two fixed real numbers,
2. f : [a, b]× C([−ε, 0],R)→ R and φ : [a− ε, a]→ R are two continuous functions,
3. x ∈ C([a− ε, b],R) such that CDα,ψ

a+ x exists and is continuous on [a, b],
4. ψ ∈ C1([a− ε, b],R) such that ψ′(t) > 0, for all t ∈ [a− ε, b],
5. xt : [−ε, 0]→ R is the translation xt(θ) := x(t + θ).

In these sets, we consider the norms

‖x‖[a,b] = sup
t∈[a,b]

|x(t)| and ‖xt‖[−ε,0] = sup
θ∈[−ε,0]

|xt(θ)|.

We can rewrite our problem in the form of an integral equation.

Theorem 2. A function x ∈ C([a− ε, b],R) is a solution to problem (3) and (4) if and only if x satisfies the
following equation

x(t) =

{
φ(t), t ∈ [a− ε, a]
Iα,ψ
a+ f (t, xt) + φ(a), t ∈ [a, b].

(5)

Proof. First, suppose that x is a solution to (3) and (4). Applying Iα,ψ
a+ to both sides of (3), and taking

into consideration Equation (2), we obtain (5). For the converse, given t ∈ [a, b], applying CDα,ψ
a+ to (5)

and using Equation (1), we obtain (3).

We recall two fundamental results of the fixed-point theory:

Theorem 3. (Banach fixed point theorem) Let (X, d) be a complete metric space. If F : X → X is a contraction,
then F admits a unique fixed point.

Theorem 4. (Leray–Schauder alternative) Let E be a Banach space, C a closed convex subset of E, and U ⊆ C
an open subset with 0 ∈ U. If F : U → C is a continuous function and if F(U) is contained in a compact set,
then either

1. F has a fixed point in U, or
2. there exists u ∈ ∂U and λ ∈ (0, 1) with u = λF(u).

Theorem 5. Suppose that there exists a positive number L such that

| f (t, x)− f (t, y)| ≤ L‖x− y‖[−ε,0], ∀t ∈ [a, b] ∀x, y ∈ C([−ε, 0],R) (6)

with

L
(ψ(b)− ψ(a))α

Γ(α + 1)
< 1.

Then, there exists a unique solution to problem (3) and (4).
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Proof. Define the set

U :=
{

x ∈ C([a− ε, b],R) : CDα,ψ
a+ x is continuous in [a, b]

}
, (7)

and F : U → U the operator

F[x](t) :=

{
φ(t), if t ∈ [a− ε, a]
Iα,ψ
a+ f (t, xt) + φ(a), if t ∈ [a, b].

(8)

Let us see that F is well defined. Given x ∈ U, the map t 7→ F[x](t) is clearly continuous, for all
t ∈ [a− ε, b]. Also, for all t ∈ [a, b], CDα,ψ

a+ F[x](t) = f (t, xt) exists and is continuous. We prove now
that F is a contraction map. Let x, y ∈ U and t ∈ [a− ε, a]. Then, |F[x](t)− F[y](t)| = 0. On the other
hand, for t ∈ [a, b], using (6), we have that

|F[x](t)− F[y](t)| ≤ 1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))α−1| f (τ, xτ)− f (τ, yτ)| dτ

≤ L
Γ(α)

∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))α−1‖xτ − yτ‖[−ε,0] dτ

≤ L
(ψ(t)− ψ(a))α

Γ(α + 1)
‖x− y‖[a−ε,b].

Therefore, we proved that

‖F[x]− F[y]‖[a−ε,b] ≤ L
(ψ(b)− ψ(a))α

Γ(α + 1)
‖x− y‖[a−ε,b],

that is, F is a contraction map. By the Banach fixed point theorem, F admits a unique fixed point.

Theorem 6. Suppose that there exist

1. two continuous functions p ∈ C([a, b],R+) and q ∈ C(R+
0 ,R+

0 ) such that q is nondecreasing and the
following condition holds:

| f (t, x)| ≤ p(t)q
(
‖x‖[−ε,0]

)
, ∀t ∈ [a, b] ∀x ∈ C([−ε, 0],R),

2. a positive constant M ∈ R such that

‖p‖[a,b]q(M)(ψ(b)− ψ(a))α + |ψ(a)|Γ(α + 1)
MΓ(α + 1)

< 1 and M > sup
t∈[a−ε,a]

|φ(t)|. (9)

Then problem (3) and (4) possesses at least one solution in [a− ε, b].

Proof. Let F be the function defined in (8). The proof will be divided in several steps.

1. Function F is continuous.
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Let (xn) be a sequence in C([a− ε, b],R) whose limit is x ∈ C([a− ε, b],R). Then, for all t ∈ [a, b],
we have the following:

|F[xn](t)− F[x](t)| ≤ 1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))α−1| f (τ, xnτ)− f (τ, xτ)| dτ

≤ 1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))α−1 sup

t∈[a,b]
| f (t, xnt)− f (t, xt)| dτ

≤ sup
t∈[a,b]

| f (t, xnt)− f (t, xt)|
(ψ(b)− ψ(a))α

Γ(α + 1)
,

and the last term converges to zero as n goes to infinity, since f is a continuous function.
2. Function F is uniformly bounded.

Let
BR :=

{
x ∈ U : ‖x‖[a−ε,b] ≤ R

}
,

where R > 0 is a real number. Given a function x ∈ BR and t ∈ [a, b] (the case when t ∈ [a− ε, a]
is clear):

|F[x](t)| ≤ 1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))α−1| f (τ, xτ)| dτ

≤ 1
Γ(α)

‖p‖[a,b]q(‖x‖[a−ε,b])
∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))α−1 dτ

≤ (ψ(b)− ψ(a))α

Γ(α + 1)
‖p‖[a,b]q(‖x‖[a−ε,b])

≤ (ψ(b)− ψ(a))α

Γ(α + 1)
‖p‖[a,b]q(R),

which does not depend on x. Thus, F maps bounded sets into bounded sets of C([a− ε, b],R).
3. Function F maps bounded sets into equicontinuous sets.

Let us prove that F(BR) is equicontinuous. For that purpose, consider t1, t2 ∈ [a, b], with t1 > t2,
and x ∈ BR. Then,

|F[x](t1)− F[x](t2)| =
∣∣∣ 1
Γ(α)

∫ t1

a
ψ′(τ)(ψ(t1)− ψ(τ))α−1 f (τ, xτ) dτ

− 1
Γ(α)

∫ t2

a
ψ′(τ)(ψ(t2)− ψ(τ))α−1 f (τ, xτ) dτ

∣∣∣
≤ 1

Γ(α)

∣∣∣ ∫ t2

a
ψ′(τ)[(ψ(t1)− ψ(τ))α−1 − (ψ(t2)− ψ(τ))α−1] f (τ, xτ) dτ

∣∣∣
+

1
Γ(α)

∣∣∣ ∫ t1

t2

ψ′(τ)(ψ(t1)− ψ(τ))α−1 f (τ, xτ) dτ
∣∣∣

≤
‖p‖[a,b]q(R)

Γ(α + 1)
[|(|ψ(t1)− ψ(a))α − (ψ(t2)− ψ(a))α − (ψ(t1)− ψ(t2))

α|

+ (ψ(t1)− ψ(t2))
α]

which converges to zero as t2 → t1. Let us observe that for t1, t2 ∈ [a− ε, a],

|F[x](t1)− F[x](t2)| = |φ(t1)− φ(t2)| → 0, when t2 → t1,
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and for t1 ∈ [a, b] and t2 ∈ [a− ε, a],

|F[x](t1)− F[x](t2)| =
∣∣∣ 1
Γ(α)

∫ t1

a
ψ′(τ)(ψ(t1)− ψ(τ))α−1 f (τ, xτ) dτ + φ(a)− φ(t2)

∣∣∣
also converges to zero as t2 → t1(→ a). By the Ascoli–Arzela Theorem, F(BR) is contained in a
compact set.

4. Let
BM :=

{
x ∈ U : ‖x‖[a−ε,b] < M

}
.

Let us see that the function F : BM → BM is well defined. Let x ∈ BM. For t ∈ [a− ε, a],

|F[x](t)| = |φ(t)| < M,

and for t ∈ [a, b],

|F[x](t)| ≤
‖p‖[a,b]q(M)

Γ(α + 1)
(ψ(b)− ψ(a))α + |φ(a)| < M

under assumption (9).

To end the proof, we will see that condition 2 in Theorem 4 cannot be satisfied. Given x ∈ BM
and t ∈ [a− ε, b], we have that |F[x](t)| < M. If there were a function x ∈ ∂BM and a real number
λ ∈ (0, 1) such that x = λF[x], then we would have

M = ‖x‖[a−ε,b] = λ‖F[x]‖[a−ε,b] < M

obtaining, therefore, a contradiction.

4. Example

Consider the following FFDE

CDα,ψ
a+ x(t) =

2
Γ(3− α)

√
‖xt‖[−ε,0](ψ(t)− ψ(a))1−α, t ∈ [a, b], (10)

subject to
x(t) = 0, t ∈ [a− ε, a]. (11)

The solution to (10) and (11) is the function

x(t) =

{
(ψ(t)− ψ(a))2, t ∈ [a, b]
0, t ∈ [a− ε, a].

5. Conclusions

In this paper, we present some results on existence and uniqueness of solutions for fractional
functional differential equations with dependence on a general form of derivative that depends on
an arbitrary kernel. For suitable choices of ψ, some well-known results for fractional operators,
like the Riemann–Liouville, the Caputo, the Hadamard, or the Erdélyi–Kober fractional derivatives,
are obtained. In addition, a correct kernel choice is essential when modeling real phenomena, to fit
theoretical models to real data, as was shown in [26].
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For future work, applications and fundamental results of FFDE (3) and (4) should be studied.
Also, it would be interesting to develop numerical methods for this type of problem, similar to the one
presented in [27] for fractional differential equations.
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