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Abstract: Koch-type wire dipole antennas are considered herein. In the case of a first-order prefractal,
such antennas differ from a Koch-type dipole by the position of the central vertex of the dipole arm.
Earlier, we investigated the dependence of the base frequency for different antenna scales for an
arm in the form of a first-order prefractal. In this paper, dipoles for second-order prefractals are
considered. The dependence of the base frequency and the reflection coefficient on the dipole wire
length and scale is analyzed. It is shown that it is possible to distinguish a family of antennas operating
at a given (identical) base frequency. The same length of a Koch-type curve can be obtained with
different coordinates of the central vertex. This allows for obtaining numerous antennas with various
scales and geometries of the arm. An algorithm for obtaining small antennas for Wi-Fi applications
is proposed. Two antennas were obtained: an antenna with the smallest linear dimensions and a
minimum antenna for a given reflection coefficient.

Keywords: Koch-type antenna; fractal antenna; antenna miniaturization; Wi-Fi applications

1. Introduction

Wire antennas are widely used in modern telecommunication systems [1]. Despite the fact that
the simplest wire half-wave dipole antennas are well explored [2], antennas with complex geometry are
a separate subject for investigation [3]. The latter antennas are by far the most promising devices [4,5].
By complicating the geometry, it is possible both to minimize the dimensions of the antenna itself
and to improve its electrodynamic characteristics [6,7].

In practice, various forms of broken balanced dipoles are used [1,8,9]. However, the most common
way to minimize or improve the properties of the antennas is through their fractalization [10–16].
The most studied fractal antenna is a dipole constructed on the basis of the Koch fractal. A sufficient
number of works have been devoted to the study and analysis of the base characteristics of both the Koch
dipole and monopole [17,18], as well as its various modifications [19–21]. One of these modifications
is the Koch-type fractal [22]. In addition, some other fractal structures are also used, including
the Minkowski curve [23], Spidron fractal [24], crinkle curve [25], Peano fractal [26], and many other
curves. Hybrid structures representing combinations of the above are also popular [27]. For designing
antennas, in practice, both two-dimensional and three-dimensional structures are applied [28,29].

For the simplest half-wave dipole, especially in the case of the base frequency, the interconnections
between its various parameters are well known [30]. The relationship between the base frequency
and the reflector geometry was also investigated by the authors for Koch-type dipoles [22,31]. Such a
relationship can be used for the designing of antennas [32]. We previously used this approach to model
a Koch-type dipole of the first iteration for Wi-Fi applications [33].
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In this paper, a Koch-type miniature wire antenna is designed using regression analysis.
A second-order prefractal is chosen for the arm geometry. This choice is due to the fact that,
because of the small linear dimensions of the dipole, it is technically very difficult to construct antennas
with a complex geometry (higher-order prefractals). It appears to be possible only by means of
significant reduction in the diameter of the wire.

2. Koch-Type Prefractals

A Koch-type fractal is not a classical fractal; it received its name due to its similarity to the Koch
fractal [18]. The first iterations of these fractals differ only in the position of the central vertices
(see Figure 1). When constructing iterations of Koch-type fractals, a fractal interpolation algorithm is
used [34,35]. A description of this algorithm is given in detail below.
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Figure 1. First iteration. Black solid line for the Koch-type fractal, green dashed line for the classical
Koch fractal.

Let
K1 =

{
(ti, xi, yi) ∈ [0, 1] ×R×R

∣∣∣ 0 = t0 < t1 < . . . < tn = 1
}

(1)

be some interpolation points for i = 1..n. For the Koch-type fractal, the number n = 4 is chosen.
The values x0 = 0, x1 = 1/3, x3 = 2/3, x4 = 1 and y0 = y1 = y3 = y4 = 0 at arbitrary x2 and y2 > 0
form interpolation points for a family of Koch-type curves. Also, for antenna applications, the restriction
0 < x2 < x4 is imposed. Note that in the case x2 = 1/2, y2 = 1/

√
12, the first iteration of the classical

Koch curve is obtained.
For all i, the affine transformation is introduced according to the following rule:

Ai : R3
→ R3, Ai


ti
xi
yi

 :=


ai 0 0
ci1 Di1 Di2
ci2 Di3 Di4




ti
xi
yi

+


ei
di1
di2

 . (2)

Here, the matrices Di j have the form

Di1 = Di4 =

(
0.333 0

0 0.333

)
, Di2 =

(
0.167 −0.289
0.289 0.167

)
, Di3 =

(
0.167 0.289
−0.289 0.167

)
. (3)

Next, we require that all i satisfy the following conditions:

Ai


t0

x0

y0

 =


ti−1

xi−1

yi−1

, Ai


t4

x4

y4

 =


t4

x4

y4

 . (4)
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Then, the following is obtained:

ai = ti − ti−1, ei = ti−1, (5)(
ci1
ci2

)
=

(
xi − xi−1

yi − yi−1

)
−

(
Di1 Di2
Di3 Di4

)(
x4 − x0

y4 − y0

)
,

(
fi1
fi2

)
=

(
xi−1

yi−1

)
−

(
Di1 Di2
Di3 Di4

)(
x0

y0

)
. (6)

With this definition of the operators Ai, the straight line segment connecting the points x0 and x4

merges into a polyline, connecting the interpolation points in a consecutive manner.
Thus, a set of points for the second and third iterations is obtained as follows:

K2 =
n
∪

i=1
Ai(K1), K3 =

n
∪

i=1
Ai(K2).

The graph of the obtained Koch-type prefractals is presented in Figure 2.
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Figure 2. First (black solid line), second (green dashed), and third (red dotted) iterations of the Koch-type
fractal. Coordinates of the central vertex: x2 = 0.7, y2 = 0.33.

Note that the transformation (2) is an affine transformation, not a dilatation; therefore, the curves
shift from their original lines (Figure 2). In other words, the sets are self-affine sets, and the formulas
are valid for the dimension S of self-similar sets ([36], p. 130–132):

n∑
i=1

rS
i = 1, (7)

ri =

√
(yi − yi−1)

2 + (xi − xi−1)
2 is not valid in this case. The values of S obtained via Equation (7)

can serve only as an upper estimate of the fractal dimension of self-affine curves. Nevertheless,
the transformation (2) clearly preserves the geometry of the classical Koch fractal (self-similar set),
and, in addition, satisfies the Equation (7) for it.

3. Problem Statement

A wire balanced dipole antenna is considered herein, the arm geometry of which is a second-order
Koch-type prefractal. The antenna feed point is located at (0, 0). An example of such a dipole antenna
is shown in Figure 3.

The forming prefractal (first-order prefractal) is defined on the interval [0, 1]. The arms of
the antennas are considered, which are Koch prefractals scaled by a factor of v. That is, the actually
forming prefractal is defined on [0, v]. Obviously, the same length can be obtained at different scales of
v and at different initial positions of the central vertex. Since the base frequency depends on the length
of the conductor [31], many antennas of a given type can have the same operating frequency.
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Figure 3. Balanced dipole wire antenna with an arm formed by the Koch-type prefractal of
the second iteration.

The aim of this work is to design miniature Koch-type fractal antennas operating at a given
frequency (2.45 GHz). Moreover, two subtasks can be distinguished. The first subtask is to obtain
the smallest antenna of this type. The second subtask is to design a minimum size antenna with a given
matching. By antenna size, the minimum radius of a circle describing a dipole is implied (see Figure 3).

For regression analysis at a fixed scale, 440 antennas were calculated in the FEKO program, in which
the central vertex of the generator curve (prefractal of the first order) varies within the following limits:
The x coordinate changes from 0.25 to 0.75 with a step of 0.025, and the y coordinate changes from 0.25
to 0.8, also with a step of 0.025. The diameter of the antenna wire is 0.4 mm.

4. Base Frequency

The dependence of the base frequency on the length of the conductor was analyzed. To perform
the analysis, the resonances at various scales v were calculated. The results are presented in Figure 4.
The graphs show the dependence of f1 on L. Values of f1 for v = 0.012 m and v = 0.028 m are indicated in
black. For v = 0.016 m, the values are in blue; for v = 0.020 m, the values are in red; and for v = 0.024 m,
the values are in green.
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Figure 4. Dependence of the base frequency f1 on the length of the arm’s wire for various scales.
The wire diameter is 0.4 mm. The blue color indicates the calculation results of 440 antennas with
various central vertices for v = 0.016 m, etc. The black curves show the dependences at a continuous
change in scale for a specific Koch prefractal: the solid line corresponds to the antenna with a central
vertex at (0.725, 0.775); the dashed line is for (0.576, 0.538); and the dotted line is for (0.475, 0.25).
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Figure 4 shows the points for the scales of various antennas with step ∆v = 0.002 m. Apparently,
with a decrease in the step ∆v, the points for identical antennas will continuously change their
coordinates from a smaller scale to a larger scale. Examples of such a change for three antennas are
shown in Figure 4: the antenna dipole with a central vertex (0.576, 0.538) is shown by a dashed line.
It should be noted that the length of the Koch prefractal of the nth iteration is calculated as L = Sn,
where S = 4/3 (the value of S is determined from Equation (7)). For the Koch prefractals, there is no
explicit formula for calculating L; Equation (7) can be used only for estimating the values of S.

Note that the upper threshold for computing the base frequency is 4 GHz. With a scale of
v = 0.012 m, some of the antennas have base frequencies above 4 GHz, so these antennas were not
included in our consideration. Thus, a total of 2041 antennas were considered: 281 antennas were
obtained for v = 0.012 m, whereas for each of the remaining four scales, 440 antennas were obtained.

Following [33], a regression analysis of the set of points in Figure 4 was conducted separately at
each scale according to the formula

f̂1 = k1 e−k2 L (8)

where k1, k2 are the desired parameters of the model, which are sought by the least squares method.
Here, f1 is measured in MHz, and L is measured in meters. The obtained values for the coefficients of
the model are given in Table 1.

Table 1. Coefficients of regression model (1) for the base frequency.

Scale, m k1 k2

0.012 7329.63 −21.5032
0.016 5824.25 −17.8957
0.020 4633.42 −14.6327
0.024 3863.48 −12.3748
0.028 3306.20 −10.7503

In the next step, a regression model was built by adding a scale to its parameters. In this case,
the approach proposed in [33] was used. The following formula was obtained:

f̂1 =
1

0.000007451 + 0.01048v
·Exp

[
−

1
0.00993 + 2.95v

L
]

(9)

The relative error for model (2) was calculated by the following formula:

δ =
1
n

n∑
i=1

∣∣∣∣∣∣Yi − Ŷ(Xi)

Yi

∣∣∣∣∣∣100 %, (10)

which is equal to δ ≈ 1.22 %.

5. Dipole Antenna Reflection Coefficient

In this section, the behavior of the reflection coefficient Ŝ11 with change in the conductor length is
studied. This study was also carried out for various scales. The results are shown in Figure 5. It can be
noted that for a fixed scale, long antennas have a matching which is worse than that of short antennas.

Regression analysis of a set of points was conducted separately for each scale using the following formula:

Ŝ11 =
k3

k4 − L
, (11)

where k3, k4 are unknown parameters of the model. The parameters were also found by the least
squares method. The obtained values for the coefficients of the model are given in Table 2.
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with relative error obtained by formula (13), equal to δ ≈ 12.59 %. 
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Figure 5. The dependence of the reflection coefficient S11 on the length of the arm’s wire for various
scales. The wire diameter is 0.4 mm. The blue color indicates the calculation results of 440 antennas with
various central vertices for v = 0.016 m, etc. The black curves show the dependences at a continuous
change in scale for a specific Koch prefractal: the solid line corresponds to the antenna with a central
vertex at (0.725, 0.775); the dashed line is for (0.576, 0.538); and the dotted line is for (0.475, 0.25).

Table 2. Coefficients of regression model (4) for Ŝ11 at the base resonance.

Scale, m k3 k4

0.012 0.162 0.017
0.016 0.227 0.020
0.020 0.271 0.024
0.024 0.327 0.028
0.028 0.372 0.032

Analysis of Figure 5 indicates that as L increases, antenna matching worsens. In other words,
the more the wire fills the space (the closer the adjacent antenna elements are located to each other),
the worse the dipole matching. In Figure 5, the solid black line corresponds to an antenna with a
long length, the dashed line corresponds to an antenna with an average length, and the dotted line
corresponds to an antenna with a minimum arm length. Thus, the following can be concluded:

S11(L1) < S11(L2), for L1 < L2. (12)

Comprehension of condition (12) leads to the logical conclusion that minimizing the antenna
leads to a deterioration in its matching.

The solid black curve corresponds to a normalized (at v = 1) length of 1.64; S11 varies from −7.38
to −6.07 with an increase in scale from 0.012 to 0.028 (with an increase in length from 4.5 to 10.5 cm).

At a continuous change in scale, antenna matching changes continuously.
Just as in the previous paragraph, a regression model for any scale was constructed. The following

regression model was obtained:

Ŝ11 =
0.012 + 12.986v

0.00495 + 0.973v− L
, (13)

with relative error obtained by formula (13), equal to δ ≈ 12.59 %.
Note that the resulting formula is less accurate than a similar formula for the base frequency.

This is also evident from comparison of the graphs in Figures 2 and 3.
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6. Results

Two examples are considered here. The first example is related to obtaining the smallest antenna.
The second example is related to designing a minimum size antenna with a given matching.

6.1. Maximum Antenna Miniaturization

Modeling the antenna of minimum radius is considered next. The isoline f̂1 = 2450 MHz
was constructed (in Figure 4, it is shown by the curved line). Around the contour, a region
f1 ∈ (2.4 GHz, 2.5 GHz) is highlighted. The range of allowable values for L is shown in yellow.
Thus, the allowable length of the arm length varies from L = v to the maximum possible wire length at
a given scale (L = 3.64 v). The maximum value of L is determined from the condition that the antenna is
located inside a circle of radius v.

From analysis of Figure 6, it follows that the curve f1 = 2450 MHz crosses the straight line L = 3.64v
at v = 0.0138 m. This scale will correspond to the minimum antenna at which the base frequency
f̂ = 2450 MHz is reached. The point of intersection for L is around 0.05 m.
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The antenna at the found scale is now considered, with length equal to L = 0.0497 m. Such an antenna
can be obtained with a forming prefractal having a central vertex at (0.675 × 0.0138 m, 0.75 × 0.0138 m).
This antenna reaches resonance at the frequency of f̂ = 2.47 GHz with reflection coefficient Ŝ11 = −7.2 dB.

It can be noted that the resulting antenna matching is not the most optimal. One possible further
improvement may be rotation of a dipole arm [37,38]. However, simulating an antenna with lower
reflectance with no rotation of the arm was attempted. To do this, the dependence of Ŝ11 on the length
L is considered.

6.2. Designing a Minimum Antenna with a Specified Reflection Coefficient

Now the antenna is modelled, taking into account formula (5). The values of f1 = 2450 MHz
and Ŝ11 = −15 dB were set. The system of Equations (2) and (5) was solved with respect to the base
frequency and the scale. The scale was rounded to v = 0.02 m to obtain L = 0.043 m. In this case,
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the coordinates of the central vertex of the forming prefractal are (0.625 × 0.02 m, 0.375 × 0.02 m).
Based on the simulated parameters, an antenna was fabricated and is shown in Figure 7.
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Figure 7. The fabricated antenna with central vertex (0.625, 0.375) for v = 0.02 m.

The electrical characteristics of the resulting antenna were calculated. The resulting antenna has
reflection coefficient Ŝ11 = −16 dB at the base frequency f1 = 2430 MHz. The results of the calculation
of the reflection coefficient of this antenna and of the antenna obtained earlier are shown in Figure 8.
An improvement in antenna matching with increasing scale can be observed. By increasing the scale from
v = 0.0138 m to v = 0.02 m, the antenna matching can be improved.

In addition, in Figure 8, the red dotted line shows the reflection coefficient for the prototype of
the second “optimal” antenna for v = 0.02 m.

Images of the arms of the obtained antennas are presented in Figure 9. Also, to compare the sizes
of the antennas, their radii are depicted. The black color indicates the antenna with scale v = 0.02 m,
and the blue color indicates an antenna with v = 0.0138 m.

The parameters of a wire dipole based on the Koch curve (a special case of a Koch-type dipole)
are presented; like the antennas obtained above, it has a wire diameter of 0.4 mm. The required
frequency of 2.44 GHz for this dipole is achieved at a radius of 2.25 cm. This value is greater by
8.7 mm than the radius of the first antenna and greater by 2.5 mm than the radius of the second
antenna. The matching of the Koch dipole is better (S11 = −21 dB) in comparison with the matching of
the obtained optimal antennas. It can also be noted that the matching of the obtained “minimized”
antennas can be somewhat improved by applying iterative methods [39].
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Figure 8. The dependence of the reflection coefficient S11 on the frequency of the two antennas. The blue
graph corresponds to the smallest antenna, the green graph corresponds to the simulated second
antenna, and the red graph corresponds to the fabricated second antenna.
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Figure 9. The arms and envelopes of the designed antennas. The blue color corresponds to the smallest
antenna with S11 = −7 dB (radius is 14.1 mm), while the black color corresponds to the miniature
antenna with S11 = −15 dB (radius is 20 mm).

It can be noted that the antennas obtained at different scales of v have linear polarization
and practically the same radiation pattern and power gain. Figure 10 shows the gain for the obtained
optimal antennas at frequency equal to 2430 MHz.
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7. Conclusions

Wire dipole antennas with arm having a Koch-type geometry of the second iteration were
considered herein. Two-parameter regression models were constructed for the base frequency
and the reflection coefficient at the base frequency for the dipole. A single-band antenna of minimum
size (radius of 14.1 mm) was designed. The reflection coefficient of this antenna was equal to −7.2 dB.

In addition, a second antenna with a radius of 2 cm and a reflection coefficient of −16 dB was
designed. Both of the proposed antennas were modeled using algorithms based on regression models.
The first algorithm allows for designing the minimum size antenna from a given family. The second
algorithm gives the minimum size antenna with a given level of matching.

It can be noted that if the goal is to simulate a broadband antenna, then in the present study it is
necessary to add a model for the bandwidth [40]. It is also possible to use all models for designing
antennas with specified characteristics.
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