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Abstract

:

In this paper, we investigate a new class of boundary value problems involving fractional differential equations with mixed nonlinearities, and nonlocal multi-point and Riemann–Stieltjes integral-multi-strip boundary conditions. Based on the standard tools of the fixed point theory, we obtain some existence and uniqueness results for the problem at hand, which are well illustrated with the aid of examples. Our results are not only in the given configuration but also yield several new results as special cases. Some variants of the given problem are also discussed.
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1. Introduction


In this paper, we introduce and study a new boundary value problem of fractional differential equations involving mixed nonlinearities, and nonlocal multi-point and Riemann-Stieltjes integral-multi-strip boundary conditions. Precisely we consider the following problem:


cDp[cDqx(t)+f(t,x(t))]=g(t,x(t)),0<t<1,0<p,q≤1,



(1)






x(0)=∑j=1mβjx(σj),bx(1)=a∫01x(s)dH(s)+∑i=1nαi∫ξiηix(s)ds,



(2)




where cDr denotes the Caputo fractional derivative of order r(r=p,q), f and g are given continuous functions, 0<σj<ξi<ηi<1,a,b∈R,αi,βj∈R,i=1,2,…,n,j=1,2,…,m and H(.) is a function of bounded variation. One can note that the nonlinearities in (1) appear in the form:


g(t,x(t))−cDpf(t,x(t)),








provided that it is possible to write (1) as cDp+qx(t)+cDpf(t,x(t))=g(t,x(t)). Notice that (1) is the neutral fractional differential equation.



Remark 1.

Letting f(t,x(t))=λx(t), where λ is a constant, (1) becomes the Langevin equation with two fractional orders, which is a well known equation of mathematical physics and describes many interesting physical situations like fluctuating phenomena, anomalous diffusion, etc. [1]. In the limit p,q→1−, the Equation (1) takes the form: D2x(t)+Df(t,x(t))=g(t,x(t)),D=d/dt, which is an equation of motion with nonlinear damping. Thus, (1) can be regarded as the fractional analogue of equation of motion. In case we fix p=α,q=β,f(t,x(t))=(RZ/L)x(t), f(t,x(t))=(1/LC)[−x(t)+e(t)], (1) takes the form of a fractional-order differential equation of the voltage function x(t), see Equation (4) in [2]. The nonlocal conditions involved in the problem (1) appear in several applications of diffusion processes, computational fluid dynamics (CFD) studies of blood flow problems, bacterial self-regularization models, for instance, see [3,4,5].





The topic of fractional order boundary value problems has been of great interest in recent years and many researchers contributed to it by contributing a variety of results involving different kinds of boundary conditions. The literature on this subject is now quite enriched and varies from the existence theory to the methods of solution for these problems [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]. Fractional order differential and integral operators are found to be of great utility in enhancing the mathematical modeling of dynamical systems involving fractals and chaos. It has been mainly due to the nonlocal nature of these operators, which accounts for hereditary characteristics of many materials and processes in contrast to their integer-order counterparts. For application details of fractional differential equations, we refer the reader to the works [22,23,24,25,26,27,28], while the theoretical aspects of fractional calculus can be found in the texts [29,30,31].



In Section 2, we outline the basic concepts of fractional calculus and prove an auxiliary lemma. Section 3 contains the main results for the problem (1) and (2) and illustrative examples for the obtained results. In Section 4, we present some variants of the problem (1) and (2).




2. Preliminaries


Before presenting some auxiliary results, let us recall some preliminary concepts of fractional calculus [30].



Definition 1.

Let ζ be a locally integrable real-valued function on −∞≤a<t<b≤+∞. The Riemann–Liouville fractional integral Iaα of order α∈R (α>0) is defined as


Iaαζt=ζ∗Kα(t)=1Γα∫att−sα−1ζsds,








where Kα(t)=tα−1Γ(α),Γ denotes the Euler gamma function.





Definition 2.

Let ζ,ζ(m)∈L1[a,b] for −∞≤a<t<b≤+∞. The Riemann–Liouville fractional derivative Daα of order α>0 (m−1<α<m,m∈N) is defined as


Daαζt=dmdtmIa1−αζt=1Γm−αdmdtm∫att−sm−1−αζsds.













Definition 3.

Let ζ∈Cm[a,b]. Then the Caputo fractional derivative cDaα of order α∈R (m−1<α<m,m∈N) is defined as


cDaαζ(t)=Ia1−αζ(m)t=1Γm−α∫att−sm−1−αζ(m)sds.













Remark 2.

The Caputo fractional derivative cDaα of order α∈R (m−1<α<m,m∈N) can be expressed in the following equivalent form


cDaαζt=Daαζt−ζa−ζ′a(t−a)1!−…−ζ(m−1)a(t−a)m−1(m−1)!.













In the present work, we denote the Riemann-Liouville fractional integral Iaα and the Caputo fractional derivative cDaα with a=0 by Iα and cDα respectively.



Definition 4.

A function x∈C2[0,1] satisfying the problem (1) and (2) is called its solution on [0,1].





Associated with the linear variant of problem (1) and (2), we consider the following lemma.



Lemma 1.

Let h,k∈C([0,1],R), the unique solution of the linear fractional differential equation


cDp+qx(t)+cDph(t))=k(t),0<p,q≤1,



(3)




supplemented with the boundary conditions (2) is given by


x(t)=−∫0t(t−s)q−1Γ(q)h(s)ds+∫0t(t−s)q+p−1Γ(q+p)k(s)ds−λ1(t)[b∫01(1−s)q−1Γ(q)h(s)−(1−s)q+p−1Γ(q+p)k(s)ds+a∫01∫0s(s−u)q+p−1Γ(q+p)k(u)−(s−u)q−1Γ(q)h(u)dudH(s)+∑i=1nαi∫ξiηi∫0s(s−u)q+p−1Γ(q+p)k(u)−(s−u)q−1Γ(q)h(u)duds]+λ2(t)∑j=1mβj∫0σj(σj−s)q−1Γ(q)h(s)ds−∫0σj(σj−s)q+p−1Γ(q+p)k(s)ds,



(4)




where


λ1(t)=1κρ1−ρ2tqΓ(q+1),λ2(t)=1κρ3−ρ4tqΓ(q+1),










ρ1=∑j=1mβjσjqΓ(q+1),ρ2=∑j=1mβj−1,ρ3=1Γ(q+1)b−a∫01sqdH(s)−∑i=1nαi(ηiq+1−ξiq+1)q+1,ρ4=b−a∫01dH(s)−∑i=1nαi(ηi−ξi),



(5)






κ=ρ2ρ3−ρ1ρ4≠0.



(6)









Proof. 

Applying the integral operator Ip on (3), and then Iq on the resulting equation together with Lemma 2.22 in [29], we get


x(t)=−Iqh(t)+Iq+pk(t)+c0tqΓ(q+1)+c1,



(7)




where c0,c1 are arbitrary constants. Using the boundary condition (2) in (7), we obtain


∑j=1mβjσjqΓ(q+1)c0+∑j=1mβj−1c1=∑j=1mβjIqh(σj)−∑j=1mβjIq+pk(σj),



(8)






1Γ(q+1)b−a∫01sqdHs−∑i=1nαi(ηiq+1−ξiq+1)q+1c0+b−a∫01dHs−∑i=1nαi(ηi−ξi)c1=bIqh(1)−bIq+pk(1)+a∫01−Iqh(s)+Iq+pk(s)dH(s)+∑i=1nαi∫ξiηiIq+pk(s)−Iqh(s)ds.



(9)







For the sake of convenience, we use the notations (5) in (8) and (9) to find the following system of equations


ρ1c0+ρ2c1=ρ5,ρ3c0+ρ4c1=ρ6,



(10)




where


ρ5=∑j=1mβjIqh(σj)−∑j=1mβjIq+pk(σj),ρ6=bIqh(1)−bIq+pk(1)+a∫01−Iqh(s)+Iq+pk(s)dH(s)+∑i=1nαi∫ξiηiIq+pk(s)−Iqh(s)ds.








Solving the system (10) for c0 and c1, we get


c0=(ρ2ρ6−ρ5ρ4)/κ,c1=(ρ3ρ5−ρ1ρ6)/κ,








where κ is given by (6). Substituting the values of c0, and c1 in (7) together with the notations (5), we get the solution (4). By direct computation, one can obtain the converse of the lemma. This completes the proof. □






3. Existence and Uniqueness Results


In view of Lemma 1, we transform the problem (1) and (2) into a fixed point problem as x=Gx, where the operator G:C([0,1],R)→C([0,1],R) is defined by


Gx(t)=−∫0t(t−s)q−1Γ(q)f(s,x(s))ds+∫0t(t−s)q+p−1Γ(q+p)g(s,x(s))ds−λ1(t)[b∫01(1−s)q−1Γ(q)f(s,x(s))−(1−s)q+p−1Γ(q+p)g(s,x(s))ds+a∫01∫0s(s−u)q+p−1Γ(q+p)g(u,x(u))−(s−u)q−1Γ(q)f(u,x(u))dudH(s)+∑i=1nαi∫ξiηi∫0s(s−u)q+p−1Γ(q+p)g(u,x(u))−(s−u)q−1Γ(q)f(u,x(u))duds]+λ2(t)∑j=1mβj∫0σj(σj−s)q−1Γ(q)f(s,x(s))ds−∫0σj(σj−s)q+p−1Γ(q+p)g(s,x(s))ds.



(11)







Note that C([0,1],R) denotes the Banach space of all continuous functions x:[0,1]→R endowed with the norm defined by ∥x∥=sup{|x(t)|,t∈[0,1]}.



For the sake of computational convenience, we set


Λ=1Γ(q+1)+1Γ(q+p+1)+λ¯1[|b|Γ(q+1)+|b|Γ(q+p+1)+|a|∫01sqΓ(q+1)+sq+pΓ(q+p+1)dH(s)+∑i=1n−2|αi|(ηiq+1−ξiq+1)Γ(q+2)+(ηiq+p+1−ξiq+p+1)Γ(q+p+2)]+λ¯2∑j=1m|βj|σjqΓ(q+1)+σjq+pΓ(q+p+1),



(12)




and


Λ1=Λ−1Γ(q+1)−1Γ(q+p+1),



(13)




where


λ¯1=maxt∈[0,1]|λ1(t)|=1|κ||ρ2|Γ(q+1)+|ρ1|,λ¯2=maxt∈[0,1]|λ2(t)|=1|κ||ρ4|Γ(q+1)+|ρ3|.











Now we present the existence and uniqueness results in the subsequent subsections.



3.1. Existence Result Via Leray–Schauder Nonlineear Alternative


Lemma 2.

(Nonlinear alternative for single valued maps [32]) Let E be a Banach space, C a closed, convex subset of E, U an open subset of C and 0∈U. Suppose that F:U¯→C is a continuous, compact (that is, F(U¯) is a relatively compact subset of C) map. Then either



(i) F has a fixed point in U¯, or (ii) there is a u ∈ ∂U(the boundary of U in C) and ε ∈ (0, 1) with u = εF(u).





Theorem 1.

Let f,g:[0,1]×R→R be continuous functions. Assume that:




	(A1)

	
There exist functions p1,p2∈C([0,1],R+), with p=max{p1,p2} and nondecreasing functions ψ1,ψ2:R+→R+, ψ=max{ψ1,ψ2} such that |f(t,x)|≤p1ψ1(∥x∥) and |g(t,x)|≤p2ψ2(∥x∥), for all (t,x)∈[0,1]×R.




	(A2)

	
There exists a constant M>0 such that


M∥p∥ψ(M)Λ>1.

















Then the boundary value problem (1) and (2) has at least one solution on [0,1].





Proof. 

Let us first show that the operator G:C([0,1],R)→C([0,1],R) defined by (11) maps bounded sets into bounded sets in C([0,1],R). For a positive number r, let Br={x∈C([0,1],R):∥x∥≤r} be a bounded set in C([0,1],R). Then, in view of the assumption (A1), we have


|(Gx)(t)|≤∥p1∥ψ1(∥x∥)supt∈[0,1]{∫0t(t−s)q−1Γ(q)ds+|λ1(t)|[|b|∫01(1−s)q−1Γ(q)ds+|a|∫01∫0s(s−u)q−1Γ(q)dudH(s)+∑i=1n|αi|∫ξiηi∫0s(s−u)q−1Γ(q)duds]+|λ2(t)|∑j=1m|βj|∫0σj(σj−s)q−1Γ(q)ds}+∥p2∥ψ2(∥x∥)supt∈[0,1]{∫0t(t−s)q+p−1Γ(q+p)ds+|λ1(t)|[|b|∫01(1−s)q+p−1Γ(q+p)ds+|a|∫01∫0s(s−u)q+p−1Γ(q+p)dudH(s)+∑i=1n|αi|∫ξiηi(s−u)q+p−1Γ(q+p)du)ds]+|λ2(t)|∑j=1m|βj|∫0σj(σj−s)q+p−1Γ(q+p)ds}≤∥p1∥ψ1(∥x∥)supt∈[0,1]{tqΓ(q+1)+|λ1(t)|[|b|Γ(q+1)+|a|∫01sqΓ(q+1)dH(s)+∑i=1n|αi|ηiq+1−ξiq+1Γ(q+2)]+|λ2(t)|∑j=1m|βj|σjqΓ(q+1)}+∥p2∥ψ2(∥x∥)supt∈[0,1]{tq+pΓ(q+p+1)+|λ1(t)|[bΓ(q+p+1)+|a|∫01sq+pΓ(q+p+1)dH(s)+∑i=1n|αi|ηiq+p+1−ξiq+p+1Γ(q+p+2)]+|λ2(t)|∑j=1m|βj|σjq+pΓ(q+p+1)}≤∥p∥ψ(∥r∥){1Γ(q+1)+1Γ(q+p+1)+λ¯1[|b|1Γ(q+1)+1Γ(q+p+1)+|a|∫01sq+pΓ(q+p+1)+sqΓ(q+1)dH(s)+∑i=1n|αi|ηiq+1−ξiq+1Γ(q+2)+ηiq+p+1−ξiq+p+1Γ(q+p+2)]+λ¯2∑j=1m|βj|σjqΓ(q+1)+σjq+pΓ(q+p+1)}.











Consequently, using the notation (12), we have


∥Gx∥≤∥p∥ψ(∥r∥)Λ.











Next we show that G maps bounded sets into equicontinuous sets of C([0,1],R). Let τ1,τ2∈[0,1] with τ1<τ2 and x∈Br, where Br is a bounded set of C([0,1],R). Then we obtain


|Gx(τ2)−Gx(τ1)|≤|∫0τ1(τ1−s)q−1−(τ2−s)q−1Γ(q)|f(s,x(s))|ds|+|∫τ1τ2(τ2−s)q−1Γ(q)|f(s,x(s))|ds|+|∫τ1τ2(τ2−s)q+p−1Γ(q+p)|g(s,x(s))|ds|+|∫0τ1(τ2−s)q+p−1−(τ1−s)q+p−1Γ(q+p)|g(s,x(s))|ds|+|λ1(τ2)−λ1(τ1)|[|b|∫01(1−s)q−1Γ(q)|f(s,x(s))|+(1−s)q+p−1Γ(q+p)|g(s,x(s))|ds+|a|∫01∫0s(s−u)q+p−1Γ(q+p)|g(u,x(u))|+(s−u)q−1Γ(q)|f(u,x(u))|dudH(s)+∑i=1n|αi|∫ξiηi∫0s(s−u)q−1Γ(q)|f(u,x(u))|+(s−u)q+p−1Γ(q+p)|g(u,x(u))|duds]+|λ2(τ2)−λ2(τ1)|∑j=1m|βj|∫0σj(σj−s)q−1Γ(q)|f(s,x(s))|+(σj−s)q+p−1Γ(q+p)|g(s,x(s))|)ds≤∥p∥ψ(∥x∥){|τ1q−τ2q|+2(τ2−τ1)qΓ(q+1)+|τ1q+p−τ2q+p|+2(τ2−τ1)q+pΓ(q+p+1)+|ρ2(τ2q−τ1q)κΓ(q+1)|[|b|1Γ(q+1)+1Γ(q+p+1)+|a|∫01sq+pΓ(q+p+1)+sqΓ(q+1)dH(s)+∑i=1n|αi|ηiq+1−ξiq+1Γ(q+2)+ηiq+p+1−ξiq+p+1Γ(q+p+2)]+|ρ4(τ2q−τ1q)κΓ(q+1)|∑j=1m|βj|σjqΓ(q)+σjq+pΓ(q+p+1)}.











Obviously the right hand side of the above inequality tends to zero independently of x∈Br as τ2−τ1→0. As G satisfies the above assumptions, therefore it follows by the Arzelá–Ascoli theorem that G:C([0,1],R)→C([0,1],R) is completely continuous.



The conclusion of the Leray–Schauder nonlinear alternative (Lemma 2) will apply once we establish the boundedness of the set of all solutions to equations x=εGx, for ε∈(0,1). Let x be a solution of (1) and (2). Then, following the computation used in proving the boundedness of G, we get


|x(t)|≤∥p∥ψ(∥x∥){1Γ(q+1)+1Γ(q+p+1)+λ¯1[|b|1Γ(q+1)+1Γ(q+p+1)+|a|∫01sq+pΓ(q+p+1)+sqΓ(q+1)dH(s)+∑i=1n|αi|ηiq+1−ξiq+1Γ(q+2)+ηiq+p+1−ξiq+p+1Γ(q+p+2)]+λ¯2∑j=1m|βj|σjqΓ(q+1)+σjq+pΓ(q+p+1)},








which, on taking the norm for t∈[0,1] and using (12), takes the form


∥x∥∥p∥ψ(∥x∥)Λ≤1.











By the condition (A2), we can find a positive number M such that ∥x∥≠M. Let us define a set Y={x∈C([0,1],R):∥x∥<M} and note that the operator G:Y¯→C([0,1],R) is continuous and completely continuous. From the choice of Y, there is no x∈∂Y such that x=εG(x) for some ε∈(0,1). In consequence, we deduce by the nonlinear alternative of Leray–Schauder type (Lemma 2) that the operator G has a fixed point x∈Y¯ which is a solution of the problem (1) and (2). The proof is completed. □






3.2. Existence Result via Krasnoselskii’s Fixed Point Theorem


Lemma 3.

(Krasnoselskii’s fixed point theorem [33]). Let X be a bounded, closed, convex, and nonempty subset of a Banach space Y. Let φ1,φ2 be the operators mapping X into Y, such that (i)φ1x1+φ2x2∈X whenever x1,x2∈X; (ii)φ1 is compact and continuous; (iii)φ2 is a contraction mapping. Then there exists x3∈X such that x3=φ1x3+φ2x3.





Theorem 2.

Let f,g:[0,1]×R→R be continuous functions satisfying the conditions:




	(A3)

	
|f(t,x)−f(t,y)|≤L1|x−y|, and |g(t,x)−g(t,y)|≤L2|x−y| for all t∈[0,1], L>0,x,y∈R, with L<1/Λ1, where Λ1 is given by (13), and L=max{L1,L2}.




	(A4)

	
|f(t,x)|≤μ1(t), |g(t,x)|≤μ2(t), for all (t,x)∈[0,1]×R, μ1,μ2∈C([0,1],R+) and μ=max{μ1,μ2}.









Then the boundary value problem (1) and (2) has at least one solution on [0,1].





Proof. 

By the assumption (A4) and (12), we fix r¯≥Λ∥μ∥ and consider the closed ball Br¯={x∈C:∥x∥≤r¯}. Next we define operators G1 and G2 on Br¯ as follows


(G1x)(t)=−∫0t(t−s)q−1Γ(q)f(s,x(s))ds+∫0t(t−s)q+p−1Γ(q+p)g(s,x(s))ds,t∈[0,1],










(G2x)(t)=−λ1(t)[b∫01(1−s)q−1Γ(q)f(s,x(s))−(1−s)q+p−1Γ(q+p)g(s,x(s))ds+a∫01∫0s(s−u)q+p−1Γ(q+p)g(u,x(u))−(s−u)q−1Γ(q)f(u,x(u))dudH(s)+∑i=1nαi∫ξiηi∫0s(s−u)q+p−1Γ(q+p)g(u,x(u))−(s−u)q−1Γ(q)f(u,x(u))duds]+λ2(t)∑j=1mβj(∫0σj(σj−s)q−1Γ(q)f(s,x(s))ds−∫0σj(σj−s)q+p−1Γ(q+p)g(s,x(s))ds),t∈[0,1].











For x,y∈Br¯, we find that


∥G1x+G2y∥=supt∈[0,1]|G1x+G2y|≤∥μ∥{1Γ(q+1)+1Γ(q+p+1)+λ¯1[|b|Γ(q+1)+|b|Γ(q+p+1)+|a|∫01sqΓ(q+1)+sq+pΓ(q+p+1)dH(s)+∑i=1n−2|αi|(ηiq+1−ξiq+1)Γ(q+2)+(ηiq+p+1−ξiq+p+1)Γ(q+p+2)]+λ¯2∑j=1m|βj|σjqΓ(q+1)+σjq+pΓ(q+p+1)}=∥μ∥Λ≤r¯.











This shows that G1x+G2y∈Br¯. Next we establish that G2 is a contraction mapping. For x,y∈C([0,1],R) and for each t∈[0,1], we obtain


∥G2x−G2y∥≤supt∈[0,1]{|λ1(t)|[|b|∫01(1−s)q−1Γ(q)|f(s,x(s))−f(s,y(s))|ds+|b|∫01(1−s)q+p−1Γ(q+p)|g(s,x(s))−g(s,y(s))|ds+|a|∫01∫0s(s−u)q+p−1Γ(q+p)|g(u,x(u))−g(u,y(u))|dudH(s)+|a|∫01∫0s(s−u)q−1Γ(q)|f(u,x(u))−f(u,y(u))|dudH(s)+∑i=1n|αi|∫ξiηi(∫0s((s−u)q+p−1Γ(q+p)|g(u,x(u))−g(u,y(u))|+(s−u)q−1Γ(q)|f(u,x(u))−f(u,y(u))|)du)ds]+|λ2(t)|∑j=1m|βj|(∫0σj(σj−s)q−1Γ(q)|f(s,x(s))−f(s,y(s))|ds+∫0σj(σj−s)q+p−1Γ(q+p)|g(s,x(s))−g(s,y(s))|)ds}≤L{λ¯1[|b|Γ(q+1)+|b|Γ(q+p+1)+|a|∫01sq+pΓ(q+p+1)+sqΓ(q+1)dH(s)+∑i=1n|αi|ηiq+p+1−ξiq+p+1Γ(q+p+2)+ηiq+1−ξiq+1Γ(q+2)]+λ¯2∑j=1m|βj|σjqΓ(q+1)+σjq+pΓ(q+p+1)}∥x−y∥≤LΛ1∥x−y∥,








which is a contraction mapping by assumption LΛ1<1 (Λ1 is given by (13)).



Continuity of f,g implies that the operator G1 is continuous. Also, G1 is uniformly bounded on Br¯ as


∥G1x∥≤supt∈[0,1]∫0t(t−s)q−1Γ(q)|f(s,x(s))|ds+∫0t(t−s)q+p−1Γ(q+p)|g(s,x(s))|ds≤∥μ∥1Γ(q+1)+1Γ(q+p+1).











Now we prove the compactness of the operator G1. In view of (A3), we define


sup(t,x)∈[0,1]×Br¯|f(t,x)|=f¯,sup(t,x)∈[0,1]×Br¯|g(t,x)|=g¯.











Consequently, for 0≤t2<t1≤1, we have


|G1x(t1)−G1x(t2)|≤f¯Γ(q+1)[|t2q−t1q|+2(t1−t2)q]+g¯Γ(q+p+1)[|t2q+p−t1q+p|+2(t1−t2)q+p]→0,








as t1−t2→0, independent of x. Thus, G1 is relatively compact on Br¯. Hence, by the Arzelá–Ascoli theorem, G1 is compact on Br¯. Thus the hypotheses of Lemma 3 are satisfied. Hence we deduce by the conclusion of Lemma 3 that the problem (1) and (2) has at least one solution on [0,1]. □






3.3. Existence and Uniqueness Result


Theorem 3.

Assume that f,g:[0,1]×R→R are continuous functions satisfying the assumption (A3). Then the problem (1) and (2) has a unique solution on [0,1] if LΛ<1, where Λ is given by (12).





Proof. 

Define M=max{M1,M2}, where M1 and M2 are positive numbers such that supt∈[0,1]|f(t,0)|=M1 and supt∈[0,1]|g(t,0)|=M2. Fixing r≥MΛ1−LΛ, we consider Br=x∈C:∥x∥≤r. Then, in view of the assumption (A3), we have


|f(t,x)|=|f(t,x)−f(t,0)+f(t,0)|≤|f(t,x)−f(t,0)|+|f(t,0)|≤L1∥x∥+M1≤L1r+M1.











Similarly one can obtain that |g(t,x)|≤L2r+M2. In the first step, we show that GBr⊂Br. For any x∈Br, we have


∥Gx∥=supt∈[0,1]|Gx(t)|≤(Lr+M){1Γ(q+1)+1Γ(q+p+1)+λ¯1[|b|Γ(q+1)+|b|Γ(q+p+1)+|a|∫01sqΓ(q+1)+sq+pΓ(q+p+1)dH(s)+∑i=1n|αi|(ηiq+1−ξiq+1)Γ(q+2)+(ηiq+p+1−ξiq+p+1)Γ(q+p+2)]+λ¯2∑j=1m|βj|σjqΓ(q+1)+σjq+pΓ(q+p+1)}=(Lr+M)Λ≤r,








which implies that GBr⊂Br. Next, for x,y∈C([0,1],R) and for each t∈[0,1], we obtain


∥Gx−Gy∥≤supt∈[0,1]{∫0t(t−s)q−1Γ(q)|f(s,x(s))−f(s,y(s))|ds+∫0t(t−s)q+p−1Γ(q+p)|g(s,x(s))−g(s,y(s))|ds+|λ1(t)|[|b|∫01((1−s)q−1Γ(q)|f(s,x(s))−f(s,y(s))|+(1−s)q+p−1Γ(q+p)|g(s,x(s))−g(s,y(s))|)ds+|a|∫01(∫0s(s−u)q+p−1Γ(q+p)|g(u,x(u))−g(u,y(u))|+(s−u)q−1Γ(q)|f(u,x(u))−f(u,y(u))|du)dH(s)+∑i=1n|αi|∫ξiηi(∫0s((s−u)q+p−1Γ(q+p)|g(u,x(u))−g(u,y(u))|+(s−u)q−1Γ(q)|f(u,x(u))−f(u,y(u))|)du)ds]+|λ2(t)|∑j=1m|βj|(∫0σj(σj−s)q+p−1Γ(q+p)|g(s,x(s))−g(s,y(s))|+(σj−s)q−1Γ(q)|f(s,x(s))−f(s,y(s))|ds)}≤LΛ∥x−y∥.











From the above inequality together with the given condition LΛ<1 (Λ is given by (12)), it follows that the operator G is a contraction by means of the contraction mapping principle (Banach fixed point theorem). Therefore, there exists a unique solution for the problem (1) and (2) on [0,1]. □





Remark 3.

In Theorem 2, we proved the existence of solutions for the problem (1) and (2) under the assumption that LΛ1<1 ((A3)) by applying Krasnoselskii’s fixed point theorem, which is a hybrid fixed point theorem combining two well known theorems (algebraic (Banach) and one topological (Schauder)). It gives a fixed point for the sum of two operators; one of them is a contraction while the other one is completely continuous. It is well known that the application of Krasnoselskii fixed point theorem only provides an existence result as only a part of the associated operator is shown to be a contraction. In other words, the entire operator is not a contraction. Indeed, Theorem 3 is an existence–uniqueness result obtained by applying Banach contraction mapping principle under the condition LΛ<1. Moreover, LΛ<1 implies that LΛ1<1, where Λ=Λ1+1Γ(q+1)+1Γ(q+p+1). This means that an increase of 1Γ(q+1)+1Γ(q+p+1) to the value of Λ1 will lead to the condition LΛ<1, ensuring the uniqueness of solutions. This provides the relationship between the contractive conditions imposed in Theorems 2 and 3. On the other hand, interchanging the roles of the operators G1 and G2 in the proof of Theorem 2, the difference of the values of Λ and Λ1 is


Λ−Λ1=1Γ(q+1)+1Γ(q+p+1).











Thus, Theorem 2 provides a precise estimate to extend the contractive condition required for the existence of solutions to the one needed to ensure the uniqueness of solutions in Theorem 3 for the problem at hand.





Example 1.

Consider the following boundary value problem:


cD1/2(cD1/2x(t)+f(t,x(t)))=g(t,x(t)),t∈[0,1],x(0)=∑j=13βjx(σj),x(1)=∫01x(s)dH(s)+∑i=13αi∫ξiηix(s)ds,



(14)




where p=q=1/2,a=1,b=1,H(s)=s,σ1=1/32,σ2=1/26,σ3=1/16,ξ1=1/7,ξ2=3/7,ξ3=5/7,η1=2/7,η2=4/7,η3=6/7,α1=1/12,α2=1/6,α3=1/4,β1=1/15,β2=1/10,β3=1/5, and f(t,x) and g(t,x) will be a fixed later. Using the give values, we find that Λ≈16.905854 and Λ1≈14.777475 (Λ and Λ1 are respectively given by (12) and (13)).



In order to illustrate Theorem 1, we take


f(t,x)=2e−t36πtan−1x+1t2+36,g(t,x)=e−2t289+t2|x|2(1+|x|)+sinx+12.



(15)




Clearly |f(t,x)|≤[e−t/36+1/(t2+36)], |g(t,x)|≤e−2t(1+∥x∥)/289+t2 with p1(t)=e−t/36+1/(t2+36) (∥p1∥=1/18), ψ1(∥x∥)=1, p2(t)=e−2t/289+t2 (∥p2∥=1/17), ψ2(∥x∥)=1+∥x∥, p=max{1/18,1/17}=1/17 and ψ=max{1,1+∥x∥}=1+∥x∥. From the assumption (A2), we find that M>179.570603. As all the conditions of Theorem 1 are satisfied, there exists at least one solution on [0,1] for the problem (14) with f(t,x) and g(t,x) given by (15).



Next we explain Theorem 2 by choosing the following functions in the problem (14):


f(t,x)=120sinx+e−tcost,g(t,x)=119|x|1+|x|+6t.



(16)




Notice that L1=1/20,L2=1/19 as


|f(t,x)−f(t,y)|≤120|x−y|,|g(t,x)−g(t,y)|≤119|x−y|.








Moreover


|f(t,x)|≤120|sinx|+e−t|cost|≤120+e−tcost=μ1(t),|g(t,x)|≤119+6t=μ2(t).











Obviously ∥μ1∥=21/20,∥μ2∥=115/19, L=max{1/20,1/19}=1/19, μ=max{21/20,115/19}=115/19, LΛ1≈0.777762<1 and LΛ≈0.889782<1. Clearly all the assumptions of Theorem 2 are satisfied. Hence, by the conclusions of Theorem 2, we deduce that there exists at least one solution for the problem (14) on [0,1] with f(t,x(t)) and g(t,x(t)) given by (16).



Finally one can notice that the problem (14) with f(t,x(t)) and g(t,x(t)) given by (16) has a unique solution on [0,1] as the hypothesis of Theorem 3 holds true.





Remark 4.

Several new results for the fractional differential equation with mixed nonlinearities (1) subject to different boundary conditions follow as special cases by fixing the parameters in (2). For example, our results correspond to (i) Dirichlet boundary conditions if we take βj=0,∀j=1,…,m,a=0,b≠0,αi=0,∀i=1,…,n; (ii) multi-point Riemann-Stieltjes integral boundary conditions if we take αi=0,∀i=1,…,n; (iii) multi-point and multi-strip conditions if we take a=0; etc.







4. Analogue Problems


In this section, we discuss variants of the problem (1) and (2). As a first problem we consider


cDp+qx(t)+cDpf(t,x(t)))=g(t,x(t)),0<t<1,0<p,q≤1,x(0)=∑j=1mβjx(σj),a∫01x(s)ds−∑i=1nαi∫ξiηix(s)ds=δ,



(17)




0<σj<ξi<ηi<1,i=1,2,…,n,a,δ∈R.



As argued for the problem (1) and (2), we can transform the problem (17) into a fixed point problem with associated operator W:C([0,1],R)→C([0,1],R) defined by


(Wx)(t)=−∫0t(t−s)q−1Γ(q)f(s,x(s))ds+∫0t(t−s)q+p−1Γ(q+p)g(s,x(s))ds−ω1(t)[a∫01∫0s(s−u)q−1Γ(q)f(u,x(u))duds−a∫01∫0s(s−u)q+p−1Γ(q+p)g(u,x(u))duds−∑i=1nαi∫ξiηi∫0s(s−u)q−1Γ(q)f(u,x(u))−(s−u)q+p−1Γ(q+p)g(u,x(u))duds+δ]+ω2(t)∑j=1mβj∫0σj(σj−s)q−1Γ(q)f(s,x(s))ds−∫0σj(σj−s)q+p−1Γ(q+p)g(s,x(s))ds,








where


ω1(t)=1κ^Γ(q+1)∑j=1mβjσjq−∑j=1m(βj−1)tq,ω2(t)=1κ^Γ(q+2)a−∑i=1nαi(ηiq+1−ξiq+1)−(q+1)(a−∑i=1nαi(ηi−ξi))tq,








and


κ^=1Γ(q+2)[∑j=1mβj−1a−∑i=1nαi(ηiq+1−ξiq+1)−(q+1)∑j=1mβjσjqa−∑i=1nαi(ηi−ξi)]≠0.











In relation to the problem (17), we define


Λ^=1Γ(q+1)+1Γ(q+p+1)+ω^1[|a|Γ(q+2)+|a|Γ(q+p+2)+∑i=1n−2|αi|(ηiq+1−ξiq+1)Γ(q+2)+(ηiq+p+1−ξiq+p+1)Γ(q+p+2)+|δ|]+ω^2∑j=1m|βj|σjqΓ(q+1)+σjq+pΓ(q+p+1),










Λ^1=Λ^−1Γ(q+1)−1Γ(q+p+1),








where


ω^1=maxt∈[0,1]|ω1(t)|=1|κ^||∑j=1mβj−1|+|∑j=1mβjσjqΓ(q+1)|,ω^2=maxt∈[0,1]|ω2(t)|=1|κ^||a−∑i=1nαi(ηi−ξi)|+|1Γ(q+2)a−∑i=1nαi(ηiq+1−ξiq+1)|.











The existence and uniqueness results for the problem (17), analogue to the ones for the problem (1) and (2) obtained in Section 3, can be obtained in a similar manner.



As a second variant of the problem (1) and (2), we consider


cDp+qx(t)+cDpf(t,x(t)))=g(t,x(t)),0<t<1,0<p,q≤1,x(0)=∑j=1pβjx(σj),x(1)=∑i=1n−2αi∫ξiηix(s)ds,0<σj<ξi<ηi<1.



(18)







In relation to the problem (18), the fixed point operator V:C([0,1],R)→C([0,1],R) is defined by


(Vx)(t)=−∫0t(t−s)q−1Γ(q)f(s,x(s))ds+∫0t(t−s)q+p−1Γ(q+p)g(s,x(s))ds−ν1(t)[∫01(1−s)q−1Γ(q)f(s,x(s))ds−∫01(1−s)q+p−1Γ(q+p)g(s,x(s))ds−∑i=1nαi∫ξiηi∫0s(s−u)q−1Γ(q)f(u,x(u))−(s−u)q+p−1Γ(q+p)g(u,x(u))duds]+ν2(t)∑j=1mβj∫0σj(σj−s)q−1Γ(q)f(s,x(s))ds−∫0σj(σj−s)q+p−1Γ(q+p)g(s,x(s))ds,



(19)




where


ν1(t)=1ΩΓ(q+1)∑j=1mβjσjq−∑j=1m(βj−1)tq,ν2(t)=1ΩΓ(q+2)q+1−∑i=1nαi(ηiq+1−ξiq+1)−(q+1)(1−∑i=1nαi(ηi−ξi))tq,Ω=1Γ(q+2)[∑j=1mβj−1q+1−∑i=1nαi(ηiq+1−ξiq+1)−(q+1)∑j=1mβjσjq1−∑i=1nαi(ηi−ξi)]≠0.











Moreover, we set


ϱ=1Γ(q+1)+1Γ(q+p+1)+ν¯1(1Γ(q+1)+1Γ(q+p+1)+∑i=1n−2|αi|(ηiq+1−ξiq+1)Γ(q+2)+(ηiq+p+1−ξiq+p+1)Γ(q+p+2))+ν¯2∑j=1m|βj|σjqΓ(q+1)+σjq+pΓ(q+p+1),ν¯i=maxt∈[0,1]|νi(t)|,i=1,2,ϱ¯=ϱ−1Γ(q+1)−1Γ(q+p+1).











As in Section 3, we can obtain the existence and uniqueness results for the problem (18) with the aid of the operator V and the parameters-dependent quantities ϱ and ϱ¯ (defined above).
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