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Abstract: In the present paper, the explicit solutions of some local fractional partial differential
equations are constructed through the integration of local fractional Sumudu transform and homotopy
perturbation such as local fractional dissipative and damped wave equations. The convergence aspect
of this technique is also discussed and presented. The obtained results prove that the employed
method is very simple and effective for treating analytically various kinds of problems comprising
local fractional derivatives.
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1. Introduction

In recent years, fractional calculus is considered to be a fascinating field of research, due to the wide
applications of fractional integrals and derivatives in mathematical modeling of systems and processes
in many fields of engineering and science [1–13]. Generally speaking, most of fractional differential
equations are not solvable toward exact solutions. Therefore, numerous analytical and numerical
methods were successfully utilized to treat this sort of problems. Among the aforementioned methods,
we can refer to fractional Homotopy Perturbation [14], fractional Adomian decomposition [15],
Yang-Laplace transform [16], Variational Iteration and function decomposition in local fractional
sense [15,17].

Homotopy Perturbation coupled with Sumudu transform technique is an integration between two
powerful methods: Sumudu transform, which was proposed by Watugala [18] in 1993, and Homotopy
perturbation, which was introduced by He [19,20]. This combined method was applied to solve
fractional nonlinear problems, arising in the field of nonlinear sciences such as engineering and
mathematical physics. Several researchers used this simple tool to obtain solutions of nonlinear
differential equations. For example, both Singh and Kumar [21] solved the nonlinear fractional gas
dynamics equation. On the other hand, Sharma and Singh [22] derived the solutions for the fractional
nonlinear partial differential equations. As far as Ait touchent and Belgacem [23] are concerned,
they presented the solutions for the system of nonlinear fractional PDEs. For Eltayeb A. Youssif [24],
he found the exact solution for nonlinear Schrodinger equation.
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In recent years, not only was the local fractional analysis theory given much more consideration
and concern, but also it was well employed for describing non-differentiable problems appearing in
different sciences. For example, local fractional Laplace equation [15], diffusion equations on Cantor
sets [25], Korteweg-ed Vries equation with local fraction operator [26] and fractal heat conduction
equation [27] as well as fractal wave equation [28].

The aim of this paper is to implement the combination of local fractional Sumudu transform
and homotopy perturbation in order to get analytical solutions of some local fractional problems in
mathematical physics, for example dissipative and damped wave equations. Furthermore, we prove
the convergence analysis and we show the advantages of this method for constructing solutions of
local-fractional PDEs.

This article is divided into seven sections: In Section 2, we introduce some preliminaries about
local fractional calculus. Section 3, is dedicated to present the local fractional Sumudu transform.
In Section 4, the main steps of homotopy perturbation coupled with local fractional Sumudu transform
are mentioned. Analysis on convergence with some examples are given in Sections 5 and 6, are followed
by the conclusion in Section 7.

2. Local Fractional Calculus Preliminaries

The following section sheds light on some necessary definitions of local fractional calculus
exploited in the present article.

Definition 1. (see [29]) We say that the function g is continuous in local fractional sense at x0, if

| g(x)− g(x0) |< εr, 0 < r ≤ 1, (1)

with | x− x0 |< δ, for ε > 0 and ε ∈ R.

Definition 2. (see [29]) The derivative of g in local fractional sense at x0 is presented as

Dr
xg(x0) =

drg(x0)

dxr = lim
x→x0

∆r(g(x)− g(x0))

(x− x0)r , (2)

where ∆r(g(x)− g(x0)) ∼= Γ(r + 1)∆(g(x)− g(x0)).

The formula of local fractional derivative of high order is given by

g(kr)(x) =

k times︷ ︸︸ ︷
Dr

xDr
x...Dr

x g(x). (3)

The expression of local fractional partial differential operator of order r (0 < r < 1) has
the form:

∂r

∂tr g(x0, t) =
∆r(g(x0, t)− g(x0, t0))

(t− t0)r , (4)

where ∆r(g(x0, t)− g(x0, t0)) ∼= Γ(r + 1)∆(g(x0, t)− g(x0, t0)).
Moreover, the form of local fractional partial derivative of high order is presented below:

∂kr

∂xkr g(x, y) =

k times︷ ︸︸ ︷
∂r

∂xr
∂r

∂xr ...
∂r

∂xr g(x, y). (5)

The formula of local fractional derivative applied in this work, is in the following form [30]:

dr

dxr
xnr

Γ(1 + nr)
=

x(n−1)r

Γ(1 + (n− 1)r)
, n ∈ N. (6)
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Definition 3. In fractal space, the Mittag–Leffler function is defined as

Er(xr) =
∞

∑
m=0

xmr

Γ(1 + mr)
, 0 < r ≤ 1. (7)

3. Local Fractional Sumudu Transform

The integral transform method named Sumudu transform was proposed in 1993 by Watugula,
who applied it to obtain solutions for problems in mathematical physics. Some fundamental properties
of this transform were introduced and investigated by Belgacem [31]. Katatbeh and Belgacem [32]
put into practice this method to get solutions for fractional differential equations. Also Ait touchent
and Belgacem used the combination of Sumudu transform and homotopy perturbation for handling
nonlinear fractional PDEs [23]. In this part, we define the Sumudu transform in local fractional sense
and we give some of its important properties.

The definition of this transform of function g is given by Srivastava et al. [29] as follows:

LFSr[g(x)] = Gr(z)

=
1

Γ(1 + r)

∫ ∞

0
Er(−z−rxr)

g(x)
zr (dx)r, 0 < r ≤ 1, (8)

where the integral of g in local fractional sense is given by [29]

a Ir
bg(x) =

1
Γ(1 + r)

∫ b

a
g(x)(dx)r =

1
Γ(1 + r)

lim
∆x→0

M−1

∑
i=0

g(xi)(∆xi)
r, (9)

where the partitions of the interval [a, b] are (xi, xi+1), i = 0, ..., M− 1, ∆x = xi+1 − xi.
The inverse of local fractional Sumudu transform is provided by

LFS−1
r [Gr(z)] = g(x), 0 < r ≤ 1. (10)

The local fractional derivative is transformed by the local fractional Sumudu transform as is
shown below [29]:

LFSr

[
drg(x)

dxr

]
=

Gr(z)− g(0)
zr , (11)

where Gr(z) = LFSr[g(x)]. Also, we have the following results [29]:

LFSr

[
dnrg(x)

dxnr

]
=

1
znr

[
Gr(z)−

n−1

∑
k=0

zkrg(kr)(0)

]
. (12)

When n = 2, from expression (12) we get

LFSr

[
d2rg(x)

dx2r

]
=

1
z2r

[
Gr(z)− g(0)− zrg(r)(0)

]
, (13)

with Gr(z) = LFSr[g(x)].

4. Local Fractional Sumudu Transform Coupled with Homotopy Perturbation (LHPSTM)

The following section is dedicated to the introduction of the main steps of the exploited method
(LHPSTM) [33]. To illustrate this, we consider the next local fractional differential problem:

Lw(x, t) + Rw(x, t) = h(x, t), 0 < x < 1, 0 < t < 1, (14)
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where L and R represent respectively local fractional differential linear operator and nonlinear operator
and the function h is a source term.

Applying the technique of local fractional Sumudu transform on both sides of Equation (14)
we obtain

wr(x, z) = w(x, 0)− zrLFSr[Rw(x, t)] + zrLFSr[h(x, t)]. (15)

The inverse local fractional Sumudu transform method implies that

w(x, t) = w(x, 0)− LFS−1
r [zrLFSr [Rw(x, t)]] + LFS−1

r [zrLFSr [h(x, t)]] . (16)

By the homotopy perturbation for (16), we get:

H(w, p) = w(x, t)− w(x, 0) + p×
[

LFS−1
r [zrLFSr [Rw(x, t)]]

]
− LFS−1

r [zrLFSr [h(x, t)]] = 0, (17)

where p ∈ [0, 1] is a homotopy parameter, which gives

w(x, t) = w(x, 0)− p×
[

LFS−1
r [zrLFSr [Rw(x, t)]]

]
+ LFS−1

r [zrLFSr [h(x, t)]] , (18)

and

w(x, t) =
∞

∑
n=0

pnwn(x, t), (19)

and the nonlinear term is decomposed as:

Rw(x, t) =
∞

∑
n=0

pnHn(w), (20)

for some He’s polynomials Hn(w) that are given by:

Hn(w0, w1, ..., wn) =
1
n!

∂n

∂pn

[
R

n

∑
i=0

piwi

]
p=0

, n = 0, 1, 2, ... (21)

Substituting Equations (19) and (20) in Equation (18), we obtain:

∑∞
n=0 pnwn(x, t) = w(x, 0)− p×

[
LFS−1

r [zrLFSr [∑∞
n=0 pn Hn(w)]]

]
+LFS−1

r [zrLFSr [h(x, t)]] ,
(22)

which is the combination of local fractional Sumudu transform and HPM with He’s polynomials.
Making a comparison of the terms having same power of p, we achieve:

p0 : w0(x, t) = w(x, 0) + LFS−1
r [zrLFSr[h(x, t)]],

p1 : w1(x, t) = −LFS−1
r [zrLFSr[H0(w)]],

p2 : w2(x, t) = −LFS−1
r [zrLFSr[H1(w)]],

.

.

.

(23)

Finally, the analytical solution of Equation (14) has this structure:

w(x, t) = lim
N→∞

N

∑
n=0

wn(x, t). (24)
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5. Analysis on Convergence

The goal of this section is to demonstrate the convergence theorem which is used further in
this work.

Lemma 1. Cr ([0, 1],R) is a Banach space of local fractional continuous functions on the interval [0, 1] with
the norm

‖ w ‖= max
t∈[0,1]

|w(x, t)|. (25)

Proof. Let ( fn)n∈N a Cauchy sequence in Cr ([0, 1],R). For t fixed in [0, 1].

∀p, q ∈ N, we have | fp(t)− fq(t)| ≤ ‖ fp − fq‖ < εr, (26)

which implies that fn(t) is a Cauchy sequence in R. While R is complete, then fn(t) is convergent.
Let f (t) its limit, where the function f : [0, 1]→ R verify:

f (t) = lim
n−→∞

fn(t) ∀t ∈ [0, 1]. (27)

Now, we prove that f is local fractional continuous. The sequence ( fn)n∈N is a sequence of local
fractional continuous functions. Therefore

| fn(t)− fn(t0)| < εr ∀t ∈ [0, 1], with |t− t0| < δ. (28)

Using limit we get
| f (t)− f (t0)| < εr t ∈ [0, 1]. (29)

Hence the function f ∈ Cr ([0, 1],R).
Let’s prove that ( fn)n∈N converges to f in Cr ([0, 1],R). There exist N such that:

∀p, q ≥ N ‖ fp − fq‖ < εr. (30)

Therefore, for fixed t in [0, t], we have:

∀p ≥ N, ∀q ≥ N | fp(t)− fq(t)| ≤ ‖ fp − fq‖ < εr. (31)

Now, we fixe p and we let q to infinity in the last expression, we get | fp(t)− f (t)| < εr which is
true for every t ∈ [0, 1], we have ‖ fp − f ‖ < εr for every p ≥ N, then fp converges to f .

Finally, every Cauchy sequence ( fn)n∈N converges in Cr ([0, 1],R), then Cr ([0, 1],R) is complete.
Therefore Cr ([0, 1],R) is a Banach space.

Theorem 1. Let (wn)n∈N in Banach space Cr ([0, 1],R). If ‖ wk+1 ‖≤ q ‖ wk ‖ for 0 < q < 1 then,
the series ∑∞

n=0 wn is convergent.

Theorem 2. If the series solution ∑∞
n=0 wn given in (24) is convergent then, it is an exact solution of the local

fractional problem (14).

Proof. We determine the sequence

An = w1 + w2 + ... + wn, (32)
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by using the iterative scheme

A0 = 0, (33)

An+1 = w(x, 0)− LFS−1 [zrLFS [Rn(An + w0)]] + LFS−1 [zrLFS [h]] , (34)

where

Rn

(
n

∑
i=0

wi

)
=

n

∑
i=0

Hi, n = 0, 1, 2, ... (35)

Suppose that the series solution (24) converges, and ψ = ∑∞
n=0 wn, then we have,

lim
n→∞

An+1 = w(x, 0)− LFS−1
[
zrLFS

[
lim

n→∞
Rn(An + w0)

]]
+ LFS−1 [zrLFS [h]] , (36)

then we obtain

ψ =w(x, 0)− LFS−1

[
zrLFS

[
lim

n→∞
Rn

n

∑
i=0

wi

]]
+ LFS−1 [zrLFS [h]] ,

=w(x, 0)− LFS−1

[
zrLFS

[
lim

n→∞

n

∑
i=0

Hi

]]
+ LFS−1 [zrLFS [h]] ,

=w(x, 0)− LFS−1

[
zrLFS

[
∞

∑
i=0

Hi

]]
+ LFS−1 [zrLFS [h]] ,

using (20), for p = 1, we get

ψ = w(x, 0)− LFS−1

[
zrLFS

[
R

∞

∑
i=0

wi

]]
+ LFS−1 [zrLFS [h]] , (37)

then
ψ = w(x, 0)− LFS−1 [zrLFS [Rψ]] + LFS−1 [zrLFS [h]] , (38)

applying the LFHST on both sides of Equation (37) then, we obtain,

LFS [ψ]− w(x, 0)
zr = LFS [Rψ] + LFS [h] , (39)

LFS [Lψ(x, t)] = LFS [Rψ(x, t)] + LFS [h(x, t)] , (40)

Now, by applying the inverse of LFHST we obtain,

Lψ(x, t) + Rψ(x, t) = h(x, t), (41)

therefore, ψ = ∑∞
n=0 wn is an exact solution of Equation (14).

6. Application

6.1. Exemple 1

Considering the following diffusion equation involving local fractional derivative

Dr
t w(x, t) =

1
2

x2wxx(x, t), 0 < x < 1, 0 < r ≤ 1, (42)
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with the next conditions:

w(x, 0) = x2,

w(0, t) = 0, (43)

w(1, t) = Er(tr),

where the expression of exact solution is w(x, t) = x2Er(tr).
Employing the expression of local fractional Sumudu transform for Equation (42) we have

LFSr[Dr
t w(x, t)] = LFSr

[
1
2

x2wxx(x, t)
]

, (44)

then, we obtain

wr(x, z) = w(x, 0) + zrLFSr

[
1
2

x2wxx(x, t)
]

, (45)

which gives

wr(x, z) = x2 + zrLFSr

[
1
2

x2wxx(x, t)
]

. (46)

The inverse of local fractional Sumudu transform method implies that

w(x, t) = x2 + LFS−1
r

[
zrLFSr

[
1
2

x2wxx(x, t)
]]

. (47)

The homotopy perturbation gives

∞

∑
n=0

pnwn(x, t) = x2 + p× LFS−1
r

[
zrLFSr

(
1
2

x2
∞

∑
n=0

pn(wn)xx(x, t)

)]
. (48)

By comparison of the terms owning similar power of p, we get:

p0 : w0(x, t) = x2,

p1 : w1(x, t) = LFS−1
r

[
zrLFSr(

1
2 x2(w0)xx

]
= x2tr

Γ(r+1) ,

p2 : w2(x, t) = LFS−1
r

[
zrLFSr(

1
2 x2(w1)xx

]
= x2t2r

Γ(2r+1) ,

.

.

.

pn : wn(x, t) = LFS−1
r

[
zrLFSr(

1
2 x2(wn−1)xx

]
= x2tnr

Γ(nr+1) .

(49)

Therefore, the solution is formed as shown below:

w(x, t) = x2
[

1 +
tr

Γ(r + 1)
+

t2r

Γ(2r + 1)
+

t3r

Γ(3r + 1)
+ ... +

tnr

Γ(nr + 1)
+ ...

]
. (50)

Hence

w(x, t) = x2
∞

∑
m=0

(tr)m

Γ(mr + 1)
. (51)

Finally, we come up with the following:

w(x, t) = x2Er(tr), (52)

which is the exact solution of Equation (42).
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6.2. Example 2: Local Fractional Dissipative Wave Equation

Considering the next dissipative wave equation including local fractional derivative [34]:

D2r
tt w(x, t)− Dr

t w(x, t)− D2r
xxw(x, t)− Dr

xw(x, t)− tr

Γ(r + 1)
= 0 0 ≤ x ≤ l, t > 0, (53)

with the initial conditions

w(x, 0) =
xr

Γ(1 + r)
Dr

t w(x, 0) = 0. (54)

Using the Sumudu transform in local fractional sense for Equation (53) we obtain

LFSr

[
D2r

tt w(x, t)
]
= LFSr

[
Dr

t w(x, t) + D2r
xxw(x, t) + Dr

xw(x, t) +
tr

Γ(r + 1)

]
. (55)

Then, we get

wr(x, z) = w(x, 0) + z2rLFSr

[
Dr

t w(x, t) + D2r
xxw(x, t) + Dr

xw(x, t) +
tr

Γ(r + 1)

]
, (56)

which implies

wr(x, z) =
xr

Γ(1 + r)
+ z2rLFSr

[
Dr

t w(x, t) + D2r
xxw(x, t) + Dr

xw(x, t) +
tr

Γ(r + 1)

]
. (57)

By the inverse local fractional Sumudu transform, it yields

w(x, t) = xr

Γ(1+r) + LFS−1
r
[
z2rLFSr

[
Dr

t w(x, t) + D2r
xxw(x, t)

+ Dr
xw(x, t) + tr

Γ(r+1)

]]
.

(58)

Now, the use of homotopy perturbation gives

∑∞
n=0 pnwn(x, t) = xr

Γ(1+r) + p× LFS−1
r
[
z2rLFSr [Dr

t ∑∞
n=0 pnwn(x, t)

+ D2r
xx ∑∞

n=0 pnwn(x, t) Dr
x ∑∞

n=0 pnwn(x, t) + tr

Γ(r+1)

]]
.

(59)

Taking the terms of alike power of p, we obtain

p0 : w0(x, t) = xr

Γ(1+r)

p1 : w1(x, t) = LFS−1
r

[
z2rLFSr

[
Dr

t w0(x, t) + D2r
xxw0(x, t) + Dr

xw0(x, t) + tr

Γ(r+1)

]]
.
.
.

pn : wn(x, t) = LFS−1
r
[
z2rLFSr

[
Dr

t wn−1(x, t) + D2r
xxwn−1(x, t) + Dr

xwn−1(x, t)
]]

.

(60)
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We find
w0(x, t) = xr

Γ(1+r)

w1(x, t) = t2r

Γ(1+2r) +
t3r

Γ(1+3r)

.

.

.

wn(x, t) = t(n+1)r

Γ(1+(n+1)r) +
t(n+2)r

Γ(1+(n+2)r) .

(61)

Therefore, the solution is given as

w(x, t) =
xr

Γ(1 + r)
−

1

∑
j=0

tjr

Γ(1 + jr)
−

2

∑
j=0

tjr

Γ(1 + jr)
+ 2Er(tr). (62)

For the convergence of the above series, we have to prove that

lim
n→∞

‖wn‖
‖wn−1‖

< 1. (63)

Proof. For 0 < t < 1, 0 < r < 1, we have

wn
wn−1

=
(

t(n+1)r

Γ(1+(n+1)r) +
t(n+2)r

Γ(1+(n+2)r)

) (
tnr

Γ(nr+1) +
t(n+1)r

Γ(1+(n+1)r)

)−1

= t(n+1)r

tnr

(
1

Γ(1+(n+1)r) +
tr

Γ(1+(n+2)r)

) (
1

Γ(nr+1) +
tr

Γ(1+(n+1)r)

)−1
(64)

= tr
(

1
Γ(1+(n+1)r) +

tr

Γ(1+(n+2)r)

) (
1

Γ(nr+1) +
tr

Γ(1+(n+1)r)

)−1
.

While the function Gamma is increasing, we find

1
Γ(1+(n+1)r) +

tr

Γ(1+(n+2)r) <
1

Γ(nr+1) +
tr

Γ(1+(n+1)r) . (65)

Then, we get (
1

Γ(1+(n+1)r) +
tr

Γ(1+(n+2)r)

) (
1

Γ(nr+1) +
tr

Γ(1+(n+1)r)

)−1
< 1. (66)

Hence, we have this inequality

tr
(

1
Γ(1+(n+1)r) +

tr

Γ(1+(n+2)r)

) (
1

Γ(nr+1) +
tr

Γ(1+(n+1)r)

)−1
< tr < 1. (67)

Then,
‖wn‖
‖wn−1‖

< tr < 1. (68)

Therefore,

∀n ∈ N ‖wn‖
‖wn−1‖

< tr < 1. (69)

Finally,

lim
n→∞

‖wn‖
‖wn−1‖

≤ tr < 1. (70)
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Consequently, Theorem 1 ensures the convergence of the corresponding series for all values of t
satisfying 0 < t < 1.

6.3. Example 3: Local Fractional Damped Wave Equation

Consider the damped wave equation with local fractional derivative as follows [34]

D2r
tt w(x, t)− Dr

t w(x, t)− D2r
xxw(x, t)− xr

Γ(r + 1)
= 0 0 ≤ x ≤ l, t > 0, (71)

subject to the following conditions

w(x, 0) = 0,
Dr

t w(x, 0) = − xr

Γ(1+r) . (72)

Using the expression of local fractional Sumudu transform for Equation (71) we find

LFSr

[
D2r

tt w(x, t)
]
= LFSr

[
Dr

t w(x, t) + D2r
xxw(x, t) +

xr

Γ(r + 1)

]
, (73)

then, we get

wr(x, z) = zrwr(x, 0) + z2rLFSr

[
Dr

t w(x, t) + D2r
xxw(x, t) +

xr

Γ(r + 1)

]
, (74)

it yields

wr(x, z) = −zr xr

Γ(1 + r)
+ z2rLFSr

[
Dr

t w(x, t) + D2r
xxw(x, t) +

xr

Γ(r + 1)

]
. (75)

By applying the inverse local fractional Sumudu transform, we find

w(x, t) = − tr

Γ(1+r)
xr

Γ(1+r) + LFS−1
r
[
z2rLFSr [Dr

t w(x, t)

+ D2r
xxw(x, t) + xr

Γ(r+1)

]]
.

(76)

Using the homotopy perturbation, we obtain

∑∞
n=0 pnwn(x, t) = − tr

Γ(1+r)
xr

Γ(1+r) + p× LFS−1
r
[
z2rLFSr [Dr

t ∑∞
n=0 pnwn(x, t)

+ D2r
xx ∑∞

n=0 pnwn(x, t) + xr

Γ(r+1)

]]
.

(77)

Collecting the terms of similar powers of p, we get:

p0 : w0(x, t) = − tr

Γ(1+r)
xr

Γ(1+r) ,

p1 : w1(x, t) = LFS−1
r

[
z2rLFSr

[
Dr

t w0(x, t) + D2r
xxw0(x, t) + xr

Γ(r+1)

]]
,

.

.

.
pn : wn(x, t) = LFS−1

r
[
z2rLFSr

[
Dr

t wn−1(x, t) + D2r
xxwn−1(x, t)

]]
.

(78)
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we get
w0(x, t) = − tr

Γ(1+r)
xr

Γ(1+r) ,

w1(x, t) = 0,
.
.
.

wn(x, t) = 0.

(79)

Hence the solution is
w(x, t) = − tr

Γ(1 + r)
xr

Γ(1 + r)
, (80)

which is an exact solution of Equation (71).

7. Conclusions

In this work, the technique that combines homotopy perturbation and Sumudu transform in local
fractional sense was applied, to obtain solutions of local fractional PDEs. Further, we presented the
sufficient condition for the convergence of this method. The obtained solutions show that this technique
is a powerful tool to solve different types of local fractional PDEs arising in mathematical physics.
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