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Abstract: In this paper, we provide solutions to the general fractional Caputo-type differential
equation models for the dynamics of a sphere immersed in an incompressible viscous fluid and
oscillatory process with fractional damping using Laplace transform method. We study the effects of
fixing one of the fractional indices while varying the other as particular examples. We conclude this
article by explaining the dynamics of the solutions of the models.

Keywords: Caputo derivative; fluid flow; Laplace transform; Mittag-Leffler function; wright function

1. Introduction

The field of fractional calculus has gained increased popularity among researchers lately due its
robust and precise modelling of problems that integer order calculus cannot handle. There are many
applications of fractional differential equations in diverse fields of studies in recent time, despite the
long aged contributions of Niels Henrik Abel in 1823 who was considered the “father of the complete
fractional-order calculus framework” [1]. Fractional differential equations have been applied for
modelling problems that are related to anomalous diffusion in the oil drilling sector [2], tilt control in
rail vehicles [3], romantic and interpersonal relationships [4], and in financial economics [5]. A few
months ago, a fractional epidemiological model was applied to improve the defensive strategies of
computers to viruses involving Caputo–Fabrizio derivative [6]. The fractional models elicit interesting
behaviour and appropriateness over the integer order derivative models. Further applications of
fractional calculus in stochastic modelling, physics, dynamics of earthquakes, networking, optics and
signal processing, food sciences and in applied mathematics can be found here [7–10].

Several methods have been proposed and applied to solving differential equations with
fractional order in the literature. Each method has its strengths and weaknesses depending on the
nature of the model concerned. These methods ranges from reduction to volterra equations [11],
compositional method [12], numerical methods [13], series method [14], Mellin, Fourier, Laplace and
a combination of these transforms [15–18]. The Laplace transform method has been widely used to
solve constant-coefficient initial value ordinary differential equations because of its robustness in
transforming differential equations to algebraic equations, which then translate to the solutions of the
original equations when the inverse Laplace transform is taken. Laplace transform method as a hybrid
with homotopy analysis technique and homotopy polynomials has been applied to Fitzhugh–Nagumo
equation emernating from nerve impulses and the Jeffery–Hamel flow equations in the respective
papers [19,20].
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In this work, we use the Laplace transform to solve the following general fractional Caputo-type
differential model:

c
0Dα

t y(t) + µc
0Dβ

t y(t) + λy(t) = f (t), (1)

for the dynamics of a sphere immersed in an incompressible viscous fluid (0 < β < α < 1) and
for the oscillatory process with fractional damping (1 < β < α < 2). The first fractional derivative
in Equation (1) represents a generalization of the ordinary integer order derivative in the classical
relaxation-oscillatory process while the second fractional derivative is a generalization of the damping
term with positive constant coefficient µ. This generalization was motivated by the property of history
dependence of the fractional derivatives which represents a true description of the relaxation-oscillatory
process. In the case of a sphere immersed in an incompressible viscous fluid (0 < β < α < 1), y(t) is
the velocity of the sphere and it is the displacement of the body in the case the oscillatory process
with fractional damping (1 < β < α < 2). λ is positive constant (which depends on the radius of the
sphere), and f (t) is an external force term. The dynamics of a sphere immersed in an incompressible
viscous fluid is a classical problem with numerous applications in engineering and a particular
example is the study of a sphere immersed in a viscous fluid under the effect of gravity as modelled
by Equation (1). The generalization of the classical relaxation-oscillatory process using fractional
derivative was introduced and investigated in [21]. Meanwhile, the problem was solved without
introducing neither damping force nor external force term. These two important quantities have been
incorporated in this article and solved using Laplace method with an easy to comprehend approach.
We also studied the effects of varying one the fractional indices while the other is fixed using the plot
function of Matlab R2014b (MathWorks, Natick, MA, USA).

The structure of this paper is as follows: In Section 2, we recall some basic definitions and
properties of the fractional calculus. In Section 3, we present the full problems and give their solutions
using Laplace transform method. In Section 4, we study the effects of fixing one of the fractional
indices while varying the other using some particular examples. The conclusion is given in Section 5.

2. Preliminaries

In this section, we give some preliminary definitions that will be used later on in this article.
There are various definitions of fractional integration and derivatives. The widely used definition of
a fractional integration is the Riemann–Liouville definition and that of a fractional derivative is the
Caputo definition. Perhaps due to some similarities with the integer order differential operators.

Definition 1 (Riemann–Liouville Integral, [22]). Let f (t) ∈ L1(a, b) ∶= { f ∶ ∫
b

a ∣ f (t)∣dt < ∞}, the integrals

a Iα
t f (t) ∶=

1
Γ(α) ∫

t

a
(t − s)α−1 f (s)ds, t > a, α > 0. (2)

t Iα
b f (t) ∶=

1
Γ(α) ∫

b

t
(s − t)α−1 f (s)ds, t < b, α > 0. (3)

are called the left-sided and the right-sided Riemann–Liouville fractional integral of order α of the function
f respectively.

Definition 2 (Caputo Derivative, [22]). For α > 0, the expression

c
aDα

t f (t) ∶= {
a In−α

t aDn
t f (t), n − 1 < α < n,

aDn
t f (t), α = n.

(4)

c
aDα

t f (t) ∶= (−1)n
b In−α

t bDn
t f (t), n − 1 < α < n. (5)

are the left-sided and right-sided Caputo derivatives of order α respectively, provided f (t) is n−times continuously
differentiable function.
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Basic Properties of the Caputo Fractional Derivative

It is noteworthy to mention the following basic properties of the Caputo fractional derivative.

• c
aDα

t constant = 0.
• c

aDα
t (t − a)k = 0, k = 0, 1, 2, . . . , n − 1.

• c
aDα

t (t − a)β =
Γ(β+1)

Γ(β−α+1)(t − a)β−α, β > n − 1.

• L{c
0Dα

t f (t)} = sαF(s) −
n−1
∑
k=0

sα−k−1Dk f (0).

Definition 3 (Mittag-Lefler Function, [22]).

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, α ∈ C, Re(α) > 0, z ∈ C. (6)

Equation (6) is called a one-parameter Mittag-Leffler function, otherwise known as, the classical
Mittag-Leffler function.

A two-parameter Mittag-Leffler function is a generalization of Equation (6) as defined in [23] is
given by the following series expansion

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α, β ∈ C, Re(α) > 0, Re(β) > 0, z ∈ C. (7)

We are interested in the Laplace transform of Mittag-Leffler function in the form

L{tβ−1Eα,β(λtα
)} =

sα−β

sα − λ
, Res > 0, ∣λs−α

∣ < 1. (8)

We included a few lines on the Mittag-Lefler function and its Laplace tranform as it motivates the
definition of the Wright function and for more details on the Mittag-Lefler function and its calculus
one can see [24,25].

Another important function to be used later on is the Wright function, Wα,β(z). It is defined
as follows:

Definition 4 (Wright Function, [8]).

Wα,β(z) =
∞

∑
k=0

zk

k!Γ(αk + β)
, α > −1, β ∈ C. (9)

Equation (9) is usually called the simplest Wright function. This series is absolutely convergent for all
z ∈ C provided that α > −1. Further, for α = −1 it is absolutely convergent for ∣z∣ < 1. The more general Wright
function is defined as follows:

1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + 1, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

∶=
∞

∑
j=0

Γ(n + j + 1)
Γ(αn + β + αj)

zj

j!
. (10)

The Wright function was introduced and investigated by the eminent British mathematician
Wright in [26]. This infinite series is convergent in the whole z−plane and its asymptotic behaviours
have been studied extensively using the method of steepest decent in [27,28]. It has been widely used
in the asymptotic theory of partitions, in the Mikusinski operational calculus and in the theory of
integral transforms of the Hankel type. Recently, Wright function has appeared in the solution of partial
differential equations of fractional order, it was found that the corresponding Green functions can be
represented in terms of the Wright function [29,30]. Further extensive discussion on the properties and
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applications of Wright function can be found in [29]. Further, a generalization of Equation (8) is the
three parameter Mittag-Leffler function in [8] defined for complex z ∈ C as follows:

Eρ
α,β(z) ∶=

∞

∑
k=0

(ρ)k

Γ(αk + β)

zk

k!
=

1
Γ(ρ)

1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(ρ, 1) ∣ z

(β, α) ∣

⎤
⎥
⎥
⎥
⎥
⎦

, α, β ∈ C, Re(α) > 0, Re(β) > 0. (11)

The convergence of the three parameter Mittag-Leffler function was shown in [31,32] and its
asymptotic behaviours can be found in [33–35]. Further, it is of interest in this present article, the Laplace
transform of the Wright function, given by:

L
⎛

⎝
tαn

1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + 1, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
= n!

s(α−β)−(nβ+1)

(sα−β + µ)
n+1 .

3. Main Results

In this section, we present the main results of this article. We provide the full models including
some initial data and prove the general solutions.

3.1. Dynamics of a Sphere Immersed in an Incompressible Viscous Fluid

Consider the first model problem

c
0Dα

t y(t) + µc
0Dβ

t y(t) + λy = f (t), µ > 0, 0 < β < α < 1. (12)

subject to the following initial condition:
y(0) = d. (13)

for the dynamics of a sphere immersed in an incompressible viscous fluid. Equation (13) represents
the initial velocity at the time t = 0.

Theorem 1. The solution of Equation (12) with the condition (13) is given by:

y(t) = d
∞

∑
n=0

(−λ)
n tαn

n! 1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + 1, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

+µd
∞

∑
n=0

(−λ)n

n!
tαn+α−β

1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + α + 1− β, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

+
⎛

⎝

∞

∑
n=0

(−λ)
n t(n+1)α−1

n! 1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

((n + 1)α, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
×F(t).

Proof. By taking the Laplace transform of Equation (12), we have

Y(s) = d
sα−1

sα + µsβ + λ
+ µd

sβ−1

sα + µsβ + λ
+

F(s)
sα + µsβ + λ

(14)

Observe that
1

sα + µsβ + λ
=

s−β

sα−β + µ

1

[1− ( −λs−β

sα−β
+µ

)]

,

∣
λs−β

sα−β + µ
∣ < 1
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Recall that

(1− z)−n
=
∞

∑
r=0

(
n + r − 1

r
)zr

⇒
1

sα + µsβ + λ
=

∞

∑
n=0

(−λ)
n s−β−nβ

(sα−β + µ)
n+1

=
∞

∑
n=0

(−λ)
n s−β−nβ−(n+1)(α−β)

(1+ µsβ−α)
n+1

=
∞

∑
n=0

(−λ)
ns−(n+1)α

∞

∑
r=0

(
n + r

r
)(−µsβ−α

)
r

=
∞

∑
n=0

(−λ)
n
∞

∑
r=0

(n + r)!
n!r!

(−µ)
rs−(n+1)α+(β−α)r

Hence from Equation (14), we have

Y(s) = d
∞

∑
n=0

(−λ)
n
∞

∑
r=0

(n + r)!
n!r!

(−µ)
rs−nα+(β−α)r−1

+µd
∞

∑
n=0

(−λ)
n
∞

∑
r=0

(n + r)!
n!r!

(−µ)
rs−(n+1)α+(β−α)r+β−1

+F(s)
∞

∑
n=0

(−λ)
n
∞

∑
r=0

(n + r)!
n!r!

(−µ)
rs−(n+1)α+(β−α)r

On taking the inverse Laplace transform we have

y(t) = d
∞

∑
n=0

(−λ)n

n!
tnα

∞

∑
r=0

(n + r)!
r!

(−µ)
r t(α−β)r

Γ[nα + 1+ (α − β)r]

+µd
∞

∑
n=0

(−λ)n

n!
tnα

∞

∑
r=0

(n + r)!
r!

(−µ)
r t(1+r)(α−β)

Γ[(n + 1)α + (α − β)r − β + 1]

+(
∞

∑
n=0

(−λ)n

n!
tnα

∞

∑
r=0

(n + r)!
r!

(−µ)
r t(α−1)+(α−β)r

Γ[(n + 1)α + (α − β)r]
) × F(t)

∴y(t) = d
∞

∑
n=0

(−λ)
n tαn

n! 1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + 1, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

+µd
∞

∑
n=0

(−λ)n

n!
tαn+α−β

1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + α + 1− β, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

+
⎛

⎝

∞

∑
n=0

(−λ)
n t(n+1)α−1

n! 1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

((n + 1)α, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
× F(t).

Using the fact that

1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(a, ν) ∣ z
(β, α) ∣

⎤
⎥
⎥
⎥
⎥
⎦

=
∞

∑
n=0

Γ(nν + a)
Γ(αn + β)n!

.
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Remark 1. It crucial to observe that with the help of Equation (11) the solution in Theorem 1 can written as

y(t) = d
∞

∑
n=0

(−λ)
ntαnEn+1

α−β,αn+1(−µtα−β
) + µd

∞

∑
n=0

(−λ)
ntαn+α−βEn+1

α−β,αn+α+1−β(−µtα−β
)+

(
∞

∑
n=0

(−λ)
nt(n+1)α−1En+1

α−β,(n+1)α(−µtα−β
)) × F(t).

This shows clearly that the infinite series solution y(t) is convergent from the convergence of the
Mittag-Leffler function and its asymptotic behaviour is similar to that of Mittag-leffler function.

3.2. Oscillatory Process with Fractional Damping

Consider the model problem again

c
0Dα

t y(t) + µc
0Dβ

t y(t) + λy = f (t), µ > 0, 1 < β < α ≤ 2. (15)

but this time subject to the following initial conditions:

y(0) = d0, y′(0) = d1. (16)

for the oscillatory process with fractional damping. Equation (16) represents the displacement and the
velocity respectively of the system at time t = 0.

Theorem 2. The solution for Equation (15) with the conditions (16) is given by

y(t) =
1
∑
j=0

dj
⎛

⎝

∞

∑
n=0

(−λ)
n tαn+j

n! 1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + j + 1, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
+

µ
1
∑
j=0

dj
⎛

⎝

∞

∑
n=0

(−λ)n

n!
tαn+j+α−β

1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + j + 1+ α − β, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
+

∫

t

0
(t − τ)α−1Gα,β,λ,µ(t − τ) f (τ)dτ.

where, Gα,β,λ,µ(t) =
∞

∑
n=0

(−λ)n

n! tαn
1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + α, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

.

Proof. By taking the Laplace transform of Equation (15) and after some simplifications, we have

Y(s) =
1
∑
j=0

dj
sα−j−1

sα + µsβ + λ
+ µ

1
∑
j=0

dj
sβ−j−1

sα + µsβ + λ
+

F(s)
sα + µsβ + λ

or,

Y(s) =
1
∑
j=0

dj I1 + µ
1
∑
j=0

dj I2 + I3

where,

I1 =
sα−j−1

sα + µsβ + λ
(17)

and

I2 =
sβ−j−1

sα + µsβ + λ
(18)
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and
I3 =

F(s)
sα + µsβ + λ

(19)

I1 =
sα−j−1

sα + µsβ + λ
=

sα−j−1−β

sα−β + µ

1

[1− ( −λs−β

sα−β
+µ

)]

,

∣
−λs−β

sα−β + µ
∣ < 1

⇒ I1 =
∞

∑
n=0

(−λ)
n s(α−β)−(nβ+j+1)

(sα−β + µ)n+1

Now, observe that

s(α−β)−(nβ+j+1)

(sα−β + µ)n+1
=

1
n!
L
⎛

⎝
tαn+j

1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + j + 1, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

∴I1 =
∞

∑
n=0

(−λ)n

n!
L
⎛

⎝
tαn+j

1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + j + 1, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
.

Similarly,

I2 =
∞

∑
n=0

(−λ)n

n!
L
⎛

⎝
tαn+j+α−β

1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + j + 1+ α − β, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

and

I3 =
⎛

⎝

∞

∑
n=0

(−λ)n

n!
L
⎛

⎝
tαn+α−1

1Ψ1

⎡
⎢
⎢
⎢
⎢
⎣

(n + 1, 1) ∣ −µtα−β

(αn + α, α − β) ∣

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

⎞

⎠
F(s).

By taking the inverse Laplace transform of the last equation, Theorem 2 is evident.

Remark 2. It crucial to observe that with the help of Equation (11) the solution in Theorem 2 can written as

y(t) =
1
∑
j=0

dj (
∞

∑
n=0

(−λ)
ntαn+jEn+1

α−β,αn+j+1(−µtα−β
))+

µ
1
∑
j=0

dj (
∞

∑
n=0

(−λ)n

n!
tαn+j+α−βEn+1

α−β,αn+j+1+α−β(−µtα−β
)) + ∫

t

0
(t − τ)α−1Gα,β,λ,µ(t − τ) f (τ)dτ.

This shows clearly that the infinite series solution y(t) is convergent from the convergence of the
Mittag-Leffler function and its asymptotic behaviour is similar to that of Mittag-leffler function.

4. Numerical Examples

In this section, we study the effects of fixing one of the fractional indices while varying the other
using some particular examples.

Corollary 1. Suppose y(0) = d = 0 in Theorem 1 and

f (t) =
⎧⎪⎪
⎨
⎪⎪⎩

8, 0 ≤ t ≤ 1,

0, t > 1.



Fractal Fract. 2018, 2, 18 8 of 12

That is, the initial velocity was zero and an external force of 8 units was applied on the sphere for 1-time
unit and then stopped. Then the solution reduces to

y(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

8
∞

∑
n=0

∞

∑
j=0

(−λ)n(−µ)j Γ(n+j+1)
Γ[(n+1)α+(α−β)j+1]n!j! t

(n+1)α+(α−β)j 0 ≤ t ≤ 1,

0, t > 1.
(20)

In Figure 1, we plot the solutions of Equation (20) for α = 0.6, 0.8, 1.0, that correspond to β = 0.5,
µ = λ = 1. The double sum was truncated with n = 50 and j = 100 using the time stepping condition of
h = e−3 in Matlab R2014b.

Figure 1. Dynamics of a sphere in an incompressible viscous fluid (Fixed β).

Figure 1 elicits the dynamics of a sphere immersed in an incompressible viscous fluid when β is
fixed and varying α. It is observed that the three models are increasing and coincide at two points t = 0
and t = 0.8. For 0 ≤ t ≤ 0.8 the rate of increasing is inversely proportional to the magnitude of α but
when t > 0.8 this behaviour is reversed with α = 1 having the highest rate.

In Figure 2, we plot the solutions of Equation (20) for β = 0.5, 0.7, 0.9, that correspond to α = 1.0,
µ = λ = 1. The double sum was truncated with n = 50 and j = 100 using the time stepping condition of
h = e−3 in Matlab R2014b.

Figure 2. Dynamics of a sphere in an incompressible viscous fluid (Fixed α).
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Figure 2 elicits the dynamics of a sphere immersed in an incompressible viscous fluid when α is
fixed and varying β. It is observed that the three models are increasing with the rate of increasing
being inversely proportional to the magnitude of β. In order words, as β approaches 1 the solution
becomes slower in the time frame 0 ≤ t ≤ 1.

Corollary 2. If y(0) = 0, y′(0) = 0 in Theorem 2 and

f (t) =
⎧⎪⎪
⎨
⎪⎪⎩

2, 0 ≤ t ≤ 1,

0, t > 1.

That is, the initial displacement and velocity was zero and an external force of 2 units was applied on the
body for 1-time unit and then stopped. Then the solution reduces to

y(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2
∞

∑
n=0

∞

∑
j=0

(−λ)n(−µ)j Γ(n+j+1)
Γ[(n+1)α+(α−β)j+1]n!j! t

(n+1)α+(α−β)j, 0 ≤ t ≤ 1,

0, t > 1.
(21)

In Figure 3, we plot the solutions of Equation (21) for α = 1.6, 1.8, 2.0 that corresponds to β = 1.5,
µ = λ = 0.5. The double sum was truncated with n = 50 and j = 100 using the time stepping condition
of h = 0.01 in Matlab R2014b.

Figure 3. Dynamics of an oscillatory pendulum with fractional damping (Fixed β).

Figure 3 elicits the dynamics of an oscillatory pendulum process with fractional damping when
β is fixed and varying α. It is observed that the three models are increasing with the rate of increasing
being inversely proportional to the magnitude of α. In order words, as α approaches 2 the solution
becomes slower within the time frame 0 ≤ t ≤ 1.

In Figure 4, we plot the solutions of Equation (21) for β = 1.5, 1.7, 1.9, that correspond to α = 2.0,
µ = λ = 1. Here again, the double sum was truncated with n = 50 and j = 100 using the time stepping
condition of h = 0.01 in Matlab R2014b.

Figure 4 elicits the dynamics of an oscillatory pendulum process with fractional damping when
α is fixed and varying β. It is observed that the three models are increasing with the rate of increasing
being inversely proportional to the magnitude of α. In order words, as β approaches 2 the solution
becomes slower within the time frame 0 ≤ t ≤ 1.
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Figure 4. Dynamics of an oscillatory pendulum with fractional damping (Fixed α).

5. Conclusions

In this article, we give analytic approach to solutions of the general fractional Caputo derivative
differential equation models for the dynamics of a sphere immersed in an incompressible viscous fluid
and oscillatory process with fractional damping using Laplace transform method. We studied the
effects of fixing one of the fractional indices while varying the other as particular examples. It was
observed that for 0 ≤ t ≤ 0.8 the rate of increasing of the solutions was inversely proportional to the
magnitude of α but when t > 0.8 this behaviour was reversed with α = 1 having the highest rate for
a fixed β. Similar, behaviour was also observed for when α was fixed.
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