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Abstract: We study the convergence of the parameter family of series: Vα,β(t) = ∑p p−α exp(2πipβt),
α, β ∈ R>0, t ∈ [0, 1) defined over prime numbers p and, subsequently, their differentiability
properties. The visible fractal nature of the graphs as a function of α, β is analyzed in terms of Hölder
continuity, self-similarity and fractal dimension, backed with numerical results. Although this series
is not a lacunary series, it has properties in common, such that we also discuss the link of this series
with random walks and, consequently, explore its random properties numerically.
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1. Introduction

The prime numbers are not randomly distributed but, there are random models that capture
important properties of the distribution of prime numbers well (e.g., [1]). The random behavior
of a deterministic mathematical object can be found elsewhere: there are classical function series
that can be approximated by random processes. Let us briefly describe these series: consider the
two functions fn(x) = sin(2πnx) and fn+1(x) = sin(2π(n + 1)x) for an arbitrary integer n ∈ N.
These behave as strongly dependent random variables if we consider x to be a random real variable
uniformly distributed on some interval. However, if one picks from the sequence of frequencies
(2πnx)n≥0 a sub-sequence (2πnk)k≥0, such that the integer sequence grows sufficiently fast, i.e.,
nk+1/nk ≥ 1 + ρ, ρ > 0, the quantities fnk (x) and fnk+1(x) behave like independent random variables
(see Figure 1 as an example and Section 3).

Now, one can construct a random walk out of these random variables: start at zero. At time k,
move fnk (x) up. At time N, we find ourselves at S(x, N) = ∑N

k=0 fnk (x). This sum is displayed for
N = 1000 in Figure 2 on the left.

This example is known as a lacunary Fourier series, that is its frequencies fulfill the growth
condition given above. Its random properties are a classical field of research. In the literature,
the sequence of prime numbers (2πpk)k≥0 is often cited as a counterexample for a sequence of
frequencies that does not give rise to a lacunary Fourier series: it neither fulfills the growth condition
nor alternative conditions on arithmetic patterns that exist in the literature. However, experiments
in this article suggest that ∑k sin(2πpkx) share many of the random properties of lacunary series
(see Figure 2 for a first impression or [2]): for instance, the central limit theorem seems to hold.
Unfortunately, this looks difficult to prove (see e.g. [3], p. 2).

Fractal Fract. 2018, 2, 2; doi:10.3390/fractalfract2010002 www.mdpi.com/journal/fractalfract

http://www.mdpi.com/journal/fractalfract
http://www.mdpi.com
https://orcid.org/0000-0003-1030-0309
http://dx.doi.org/10.3390/fractalfract2010002
http://www.mdpi.com/journal/fractalfract


Fractal Fract. 2018, 2, 2 2 of 14

0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n
4
=24

n
5
=25

(a)

0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n = 5
n+1 = 6

(b)

Figure 1. Graph of (a): sin(2πnkx) with nk = 24 and nk = 25, and (b): sin(2πnx) with n = 5 and n = 6
(displayed for x ∈ [0, 1) at 105 points).
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Figure 2. Graph of (a):∑10
n=1 sin(2nπx), (b): ∑1000

n=1 sin(2πnx), (c): ∑p≤1000 sin(2πpx) (displayed for
x ∈ [0, 1) at 104 points).
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On the other hand, we can look at other manifestations of randomness in lacunary series
(e.g., in the example in Figure 2) and try to see if they are also present in our prime series
Vα,β: by introducing appropriate coefficients ak, the walk ∑k ak sin(πnkx) can be approximated
by a Wiener process, which is an almost everywhere continuous random walk with independent
normally-distributed increments (see [4] and Section 3). This implies directly many interesting
properties for the series, e.g., the law of iterated logarithm holds. It would be interesting if a similar
approximation exists for our series Vα,β. Again, we were not able to prove this.

However, we can show that our series Vα,β has in fact for specific α, β properties in common with
a Wiener process, e.g., its regularity and fractality (see Section 2). The above-mentioned example
∑k ak sin(2kπx) is in fact famous for these reasons: it belongs to the family of Weierstrass functions
Fa,b(x) = ∑∞

n=0 an sin(bnt), which have been extensively studied for its differentiability properties.
Under certain conditions on a, b, this function is nowhere differentiable, but Hölder continuous.

Another historical example that is non-differentiable, but multifractal, is the Riemann function
R2(x) = ∑inf

n=1 n−2 sin(n2x). Note, that it is not a lacunary series as (n + 1)2/n2 → 1. With our prime
series, we place ourselves in between these two historical examples with respect to the growth of
its frequencies.

While prime sums are extensively studied in the context of the famous prime conjectures
(e.g., for Vinogradov’s theorem and the like), we have not found a treatment of trigonometric series
over prime numbers. The reason for this is most probably that these series do not have the necessary
form to help to progress in the proofs of the prime conjectures where prime exponential sums play
a dominant role. As mentioned above, these series have not been studied in the context of lacunary
series as prime numbers neither grow fast enough nor have known arithmetic properties, which are
necessary for a straightforward analysis.

By using the results of prime number theory, we are nevertheless able to show conditions on
the differentiability and self-similarity of our prime series. Experimentally, we explore also its box
dimension in dependence of α, β.

Remark 1. For most of our questions, we can restrict ourselves, without loss of generality, to the real part
∑p p−α cos(2πpβt) of the series, which we denote by Vα,β(t), as well.

2. Convergence and Differentiability

There are basically two factors that influence the smoothness and convergence of a function series
∑k ak exp(2πinkt) as ours:

1. The faster the coefficients ak decrease for k → ∞, the smaller is the influence of the higher
frequencies. This implies that the series converges better and the resulting function is smoother.

2. The faster the frequencies nk increase or, equivalently, the greater the gaps, the smaller the period
of the oscillation becomes, so that one obtains more peaks and sinks in one interval, which
increases the fractal character.

2.1. Historical Remarks

The nature of these influences, easily deduced, are also backed by the long history of studies on
the following two families of functions (and derived families):

Let:

Fa,b(t) =
∞

∑
n=0

an cos(bnt)

be the family of Weierstrass functions, which have been extensively studied. One knows the following:

Theorem 1 ([5,6]). 1. If 0 < ab < 1, a < 1, b > 1, then Fa,b is differentiable.
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2. If 0 < a < 1 < ab, then Fa,b is nowhere differentiable. Further, the Hölder exponent is a constant
function s = − log a

log b , i.e., for all t, t0, it holds:∣∣Fa,b(t)− Fa,b(t0)
∣∣ ≤ C |t− t0|s .

On the other hand, one has the family of Riemann’s functions (whose authorship by Riemann is
apparently only confirmed by Weierstrass) defined by:

Rα(x) =
∞

∑
n=1

n−α cos(n2x)

which has the following proven properties:

Theorem 2 ([5,7–10]). 1. If 0 < α ≤ 1
2 , then the series is not a Fourier series of an L1-function. If 0 < α < 1

2 ,
then Rα converges at x if and only if x = a

q , where a, q are coprime and four divides q− 2.

2. If 1
2 < α < 1, then the series converges in p-norm to a Lp-function for p < 2

1−α .
3. If α = 1, then the series has bounded mean oscillation.
4. If α < 5

2 , then Rα is not differentiable at any irrational value of x, and its Hausdorff dimension for
3
2 ≤ α ≤ 5

2 is equal to:
dimH(Rα) =

9
4
− α

2
.

If α = 2, then R2 is differentiable at x if and only if x = a
q where a, q are coprime and four divides q− 2.

5. If α = 2, the Hölder exponent is discontinuous everywhere. In fact, R2 is a function with unbounded
variation and multifractal.

In the following, we aim to give a similar description for our function series. Let us start with
some preliminary definitions, which are necessary for what follows.

2.2. Preliminary Definitions

We call a function f : R → C locally Hölder continuous at x0 ∈ R, if there exist s ∈ (0, 1] and
C, ε > 0, such that:

| f (x)− f (y)| ≤ C |x− y|s , for all x, y ∈ Bε(x0).

We call the supremum of s for which these inequality holds at x0 the local Hölder exponent.
Let φ : R→ C be a smooth function with compact support supp(φ) ⊂ C. We write:

φ̂(u) =
∫
R

φ(t) exp(−iut)dt

for the Fourier transform of φ. Further, let φ : R → R be given such that the support of its Fourier
transform is contained in [−1, 1], then the Gabor wavelet transform of a function f : R → C is
defined by:

G(a, b, λ) =
1
a

∫
R

f (t) exp(−iλt)φ
(

t− b
a

)
dt.

With these notation, we have the following estimation, which is a special case of Proposition 5
in [6]:

Proposition 1 (Jaffard). Let f : R→ C be a bounded function. Let G(a, b, λ) be the Gabor wavelet transform
of f . If f is locally Hölder continuous at x0 ∈ R with Hölder coefficient s, then there exists C > 0 such that for
all a ∈ (0, 1] and for all b ∈ B1(x0) and for all λ ≥ a−1, we have:

|G(a, b, λ)| ≤ Cas
(

1 +
|x0 − b|

a

)s
.
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2.3. Differentiability of Vα,β

In the spirit of the results in Section 2.1, we aim to determine which conditions have to be fulfilled
by the coefficients and frequencies in our example in order to have a certain degree of differentiability.
Firstly, we consider:

Vβ(n, t) = ∑
p≤n

f (p) cos(2πpβt), β > 0,

where f is any function of prime numbers. We can state the trivial fact that:

Proposition 2. For any β ≥ 0, if
∫ ∞

2
| f (x)|
ln(x) dx < ∞, then the partial sums Vβ(n, t) converge uniformly and

absolutely to a continuous function denoted by Vβ.

Proof. We have
∣∣ f (p) cos(2πpβt)

∣∣ ≤ | f (p)| for all p. By the Weierstrass M-test, the partial sums
Vβ(n, t) converge uniformly and absolutely if ∑p | f (p)| < ∞. Using the Riemann–Stieltjes integral and
the prime number theorem, we get:

∑
p

f (p) =
∫ ∞

2
f (x)dπ(x) =

∫ ∞

2

f (x)
ln(x)

dx,

where π(x) denotes the number of primes ≤ x, finishing the proof.

We take now
Vα,β(n, t) = ∑

p≤n
p−α cos(2πpβt)

and denote with Vα,β(t) its limit whenever it exists. Then, one can show the following statement:

Theorem 3. Let α ∈ R and α > 1.

1. Then, the series Vα,β(n, t) converges uniformly and absolutely to a continuous function Vα,β(t).
2. For m ≥ 1, if further α−mβ > 1, then the function Vα,β(t) is Cm, i.e., m-times continuously differentiable.

Proof. For the first result, we use the properties of the prime zeta function P(α) = ∑p p−α: it converges
absolutely for α > 1, α ∈ R, and diverges for α = 1 (see, e.g., [11,12]). The coefficients p−α are an upper
bound for the terms p−α cos

(
2πpβt

)
. Consequently, the Weierstrass M-test implies that for α > 1 and

any t ∈ [0, 1), Vα,β(n, t) converges uniformly and absolutely to Vα,β(t). As any partial sum Vα,β(n, t) is
continuous, the limit is a continuous function, as well.

Secondly, for any n and t, we can differentiate the partial sums:

V′α,β(n, t) = −2π ∑
p≤n

p−α+β sin(2πpβt).

This sequence of derivatives converges uniformly with the same argument as above for
α − β > 1, so that one concludes that Vα,β(t) is continuously differentiable itself with derivative
V′α,β(t) = −2π ∑p p−α+β sin(2πpβt). By induction over m, one proves the m-time differentiability of
the function.

Remark 2. The result is in accordance with the intuitive smoothness of the series: for fixed α > 1, the series
becomes smoother, the smaller the frequency pβ, β→ 0, or equivalently, the larger the period. Therefore, the peaks
and sinks of the oscillation are more and more separated so that the series becomes smoother (see Figures 3–5).

Theorem 4. If 1 < α ≤ β + 1, then the function is Hölder continuous with Hölder coefficient s ≤ α
β .
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Figure 3. Graph of V1.5,2(105, t) at 5× 104 discrete points in each direction (interpolated).
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Figure 4. Graph of V1.5,1.5(105, t) at 5× 104 discrete points in each direction (interpolated).
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Figure 5. Graph of V1.5,1(105, t) at 5× 104 discrete points in each direction (interpolated).
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Proof. First of all, let f : R → C be an integrable function and N > 0, then by using the
Riemann–Stieltjes integral (see, e.g., [13]) and the prime number theorem as above, one knows:

∑
p≤N

p−α =
∫ N

2
x−αdπ(x) ∼

∫ N

2

1
xα ln(x)

dx.

From this formula and li(x) denoting the logarithmic integral function, one deduces (substituting
dx by d

(
x1−α

)
) for α < 1:

∑
p≤N

p−α = (1− α)−1 li
(

N1−α
)
+O

(
N1−α exp(−c

√
ln(N)

)
.

Approximating the logarithmic integral, this implies:

∑
p≤N

p−α ∼ N1−α

(1− α) ln(N)
. (1)

If α > 1, we have to use the explicit formula for the prime zeta function to get an estimate
for the speed of convergence (see, e.g., [14] for a derivation of the formula). We then have by
partial summation:

∑
p

p−α = ∑
p≤N

p−α +
∞

∑
n=1

µ(n)
n

ln (ζ(N, αn)) , with

ζ(N, α) = ζ(α)Πp≤N
(
1− p−α

)
,

where ζ(α) = ∑∞
n=1 n−α denotes the Riemann zeta function and µ the Moebius function. Therefore,

we get for the tail of the prime zeta function:

∑
p>N

p−α =
∞

∑
n=1

µ(n)
n

ln (ζ(N, αn)) , with (2)

ln (ζ(N, α)) = O
(

N−α
)

and
∞

∑
n=1

µ(n)
n

= 0.

Combining Equations (1) and (2) on the asymptotic of the prime zeta function, we can estimate
now the regularity of our function Vα,β(t).

For any t, t0 ∈ [0, 1), we choose N = |t− t0|−
1
α . Then, we have with the mean value theorem and

using the absolute convergence of the series:∣∣Vα,β(t)−Vα,β(t0)
∣∣ ≤ ∑

p≤N
p−α

∣∣∣cos(2πpβt)− cos(2πpβt0)
∣∣∣+ 2 ∑

p>N
p−α

≤ ∑
p≤N

p−α+β |t− t0|+ 2 ∑
p>N

p−α

≤ N−α+β+1

(β− α + 1) ln(N)
|t− t0|+ 2CN−α

≤ C |t− t0|2−
β+1

α .

The exponent 1− β < 2− β+1
α ≤ 1 is not necessarily optimal, but a lower bound. However,

it suffices to conclude that the function is Hölder continuous, so that we can derive an upper bound
for its Hölder exponent.
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For this step, we use a method developed by Jaffard in [6], which relies on a wavelet transform
and the idea of choosing the wavelet transform such that only one frequency of Vα,β(t) is picked up.

Let θm = min
{

pβ
m − pβ

m−1, pβ
m+1 − pβ

m

}
and ∆m = pm − pm−1.

We choose a function φ whose Fourier transform φ̂ has compact support supp(φ̂) ⊂ [0, 1] and
φ̂(0) = 1. We then look at the Gabor-wavelet transform:

Gm(θ
−1
m , t0, pβ

m) = θm ∑
k

p−α
k

∫
R

exp
(

i
(

pβ
k − pβ

m

)
t
)

φ (θm(t− t0)) dt

= ∑
k

p−α
k exp

(
i
(

pβ
k − pβ

m

)
t0

) ∫
R

exp

i

(
pβ

k − pβ
m

)
θm

 φ(u)du,

with u = θm(t− t0). Substituting φ̂(y) =
∫
R exp(iyu)φ(u)du for y =

(
pβ

k−pβ
m

)
u

θm
in the equation, we get:

Gm(θ
−1
m , t0, pβ

m) = ∑
k

p−α
k exp

(
i
(

pβ
k − pβ

m

)
t0

)
φ̂


(

pβ
k − pβ

m

)
u

θm

 .

As the support of φ̂ is a subset of the unit interval, it vanishes for any k 6= m, so the expression is
reduced to:

Gm(θ
−1
m , t0, pβ

m) = p−α
m (3)

Recall that we have just proven that Vα,β is locally Hölder continuous at t0 ∈ R. Further, for all

m, it is pβ
m ≥ θm and θ−1

m ∈ (0, 1]. Hence, applying Proposition 1, there exists C > 0 such that for all
s ∈ (0, 1):

Gm(θ
−1
m , t0, pβ

m) = p−α
m ≤ Cθ−s

m .

The gap θm is bounded by pβ
m from above, so that the Hölder coefficient s is bounded by α

β from
above, finishing the proof.

Remark 3. Let α > 1 be fixed. The bigger the gaps of the frequency, β→ ∞, the stronger the irregularity of Vα,β(t).

2.4. Self-Similarity and Fractal Dimension

The graph of the function Vα,β seems to be self-similar for certain α, β. There seems to be an
approximate scalar invariance at points q−1, where q is prime. Let us make this intuition more precise:
look for example at the partial sums V1,1(n, t) = ∑p≤n p−1 exp(2πipt) in Figure 6.

Figure 6. Graph of V1,1(105, t) at 5× 104 discrete points.
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Denote by pk the k-th prime number. We restrict ourselves again to the real part of V1,1(n, t).
The point 1

2 is a global minimum as V′1,1

(
n, 1

2

)
= 0 and V1,1

(
n, 1

2

)
= 1

2 − ∑n
k=1 p−1

k as the primes

greater than two are odd. Now, consider the point 1
3 : we have V1,1

(
n, 1

3

)
= 1

3 −
1
2 ∑n

k=1,k 6=2 p−1
k .

More generally, one has:

V1,1

(
n,

1
q

)
=

1
q
+

q−1

∑
l=1

(
cos

(
2πl

q

) n

∑
pk=l mod q

p−1
k

)
, q prime

=
q−1

∑
l=0

cos
(

2πl
q

)
Rl,q

That is, we can decompose the partial sum into residue classes of the prime numbers and the
roots of unity of cosine. One knows that the number of primes p ≤ n that are congruent to l mod q
are approximately the same for all l, that is n

Φ(q) log(n) , where Φ(q) denotes the Euler totient function

and is equal to q− 1 for q prime. Therefore, for any 1
q , q prime, one can use this distribution and the

Riemann–Stieltjes integral to show that the difference between the sums ∑pk=l mod q, pk≤n p−1
k for each

l = 1, . . . , q− 1 converges to zero for n→ ∞, that is:

Rl,q = ∑
pk=l mod q, pk≤n

p−1
k ∼

1
q− 1

∫ n

2

1
x ln(x)

dx

=
1

q− 1
(ln ln(n) + C) .

The factors cos
(

2πl
q

)
are exactly the prime roots of unity, and the sum ∑

q−1
l=0 cos

(
2πl

q

)
= 0.

Consequently, one computes:

V1,1

(
n,

1
q

)
∼ 1

q
− 1

q− 1
(ln ln(n) + C) .

As we have V1,1(n, 1) = ∑p≤n p−1 ∼ ln ln(n) + M, one could argue that:

V1,1(n,
t
q
) ≈ 1

1− q
V1,1(n, t) +

1
q

, q ≥ 3, prime.

See Figure 7. However, keep in mind that these are only asymptotic equivalences, while our
partial sum V1,1(n, t) does not converge for all t ∈ [0, 1) for n→ ∞, so the self-similarity of the graph
is certainly not strict.
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Figure 7. The graph of the real part of − 1
2 V1,1(106, t) (in black) and V1,1(106, t/3) + 1

3 (in green).
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Fractal Dimension of Vα,β

Further, we compute numerically the box dimension of the graph of Vα,β defined in the following
way: let A := [a, b]× [c, d] be the rectangle such that the graph Vα,β(n, t) ⊂ A is contained. We compute
then for i, j = 0, . . . N − 1 the intersections Vα,β(n, t) ∩ [a + i(b− a)/N, a + (i + 1)(b− a)/N]× [c +
j(d− c)/N, c+(j+ 1)(d− c)/N]. We denote the number of non-empty intersections by M(N). The box
dimension is then given by:

dimB
(
Vα,β(n, t)

)
= lim

N→∞

ln(M(N))

ln(N)
.

In accordance with our results on the regularity of Vα,β, we obtain the following Figure 8 for the
(numerically computed) box dimension dimB over the fraction α

β . For α > 1 fixed and β→ ∞, that is
α
β → 0, we expect that the fractal dimension converges to two. On the other hand, for β→ 0, the fractal

dimension should converge to one as the graph gets continuously differentiable if α−1
β > 1 + 1

β .

Remark 4. In recent literature (see, e.g., [15]), the concept of the fractal dimension of prime distribution is
studied: it is defined with the help of an indicator function S : N→ {0, 1} on the natural numbers, which is
one if n ∈ N is prime, otherwise zero. The fractal dimension is then computed as the average number of ones
in randomly-chosen minors n× n of the N × N-matrix S({n ≤ N})× S({n ≤ N}). In a recent publication
([16]), the self-similarity of these images (created by displaying the ones in the matrix in black, zeros in white)
is also treated. These concepts are not related to the self-similarity or the fractal dimension of our series: the
fractality of Vα,β depends on its Hölder exponent, which relies on the exponents α, β and on the gaps of frequencies
(pβ). In this sense, it certainly depends on the prime distribution, but we do not see a direct application of the
concepts cited above. More probable is that in order to analytically compute the fractal dimension, one would
have to use the large sieve inequality where on the right side would appear values of ∑p

1
p2α .

There is clearly no reverse correlation from the fractal dimension of the graph to the prime distribution as
there are other, even multifractal curves as the cited Riemann function whose frequencies are not prime sequences.
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Figure 8. (a): Box dimension for the graph of Vα,β (computed at 105 points) in dependence of the
fraction of the powers α

β with α ∈ [1, 1.5] and β ∈ [0.5, 3]. Remark that Vα,β is not convergent for α = 1.
(b): example for α = 1.5, β = 2 to show how the box dimension was numerically approximated.
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3. Random Properties for Vα,β

The quite similar behavior of lacunary and random Fourier series allow us to think that it might
be possible to capture the random character of the series Vα,β, which is the subject of this section. Let us
briefly review what is known in the context of lacunary sequences and random variables.

3.1. Lacunary Sequences Behaving as Independent Random Variables: Short Overview

The terms (sin(2πkx)k and (cos(2πkx)k behave like random variables, but strongly dependently.
However, if one restricts the sequence of frequencies (2πk)k≥0 to (2πnk)k≥0 where the sequence
(nk)k≥0 has sufficiently fast-growing gaps, i.e.,

nk+1
nk
≥ 1 + ρ, ρ > 0 (Hadamard gap condition), (4)

then the sequences (sin(2πnkx) behave like independent random variables. For example, one has:

1√
N

N

∑
k=1

sin(2πnkx)→ N (0, 1),

where N (0, 1) is the normal distribution. This was the main observation that has led to study
the connections between lacunary and random Fourier series, most importantly the question of
which are the optimal growth conditions on the sequence (nk)k such that the sequence ( f (nk))k≥0 for
general periodic measurable functions f with vanishing integral exhibits random properties (see the
historical overview in [17]). By introducing weights ak that obey certain growth conditions themselves,
one can recover several limit theorems in complete analogy with random variables. In particular,
the Central Limit Theorem (CLT) and the Law of Iterated Logarithm (LIL) are true (see the results
by Salem-Zygmund in [18,19], Erdös-Gál in [20] and Weiss in [21]). Further, it can be shown that the
process can be approximated by a standard Brownian motion:

Theorem 5 (Philipp-Stout [4]). Assume the Hadamard gap condition. Assume further that AN :=√
1
2 ∑N

k=1 a2
k → ∞ and there exists δ > 0 such that limN→∞

aN
A1−δ

N
= 0. Then, without changing the

distribution of the process:
S(t, x) = ∑

k≤t
ak cos(2πnkx), t ≥ 0,

it can be redefined on a suitable probability space together with a Wiener process
{

W(t)
∣∣ t ≥ 0

}
such that:

S(t, x) = W (At) +O
(

A
1
2−ρ
t

)
, almost surely for some ρ > 0.

While the Hadamard growth condition (4) for CLT can be weakened for general sequences (nk)k
(see [22]) for coefficients ak = 1 to the optimal growth condition nk+1

nk
≥ 1 + ck√

k
with ck → ∞, one

has observed that sequences with much slower growth can nevertheless satisfy the CLT if they fulfill
certain arithmetic conditions, more precisely bounds on the number of solutions for the diophantine
equation. Results in this direction started with Gaposhkin [23] and were recently sharpened by Berkes,
Philipp and Tichy [24]. The difficulties with the prime sequence (pk)k≥0 are on both sides: Firstly,
while it is sure that the prime sequence is not a Hadamard sequence, neither precise lower, nor upper
bounds for the prime gap pk+1 − pk are known. The best results for a lower bound that would be of
interest for us do not hold for all k ≥ 0, but only infinitely many. For the upper bound, it is proven
by Goldston, Pintz and Yildirim ([25]) that lim infk→∞

∆k
log pk

= 0. Secondly, there is no building law
for prime numbers known, and the infinite recurrence of certain patterns like twin primes is only
conjectured, but not completely proven. On the other hand, the random character of prime numbers
is often invoked without being analytically established anywhere although the random model by
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Cramér [1] is widely used and reproduces some results very efficiently (but fails in other aspects,
e.g., in forecasting the size of the prime gap). For the question on the convergence of functions f (nk),
random models were also introduced (see, e.g., [26]). Obviously, this is a broad and intensively-studied
mathematical subject where we do not dare to make contributions. Therefore, we stay more closely to
our studied series.

3.2. The Central Limit Theorem

Because of the reason mentioned above, we have not been able to show the central limit
theorem for the random variables sin(pkx) or cos(pkx), the base of our series Vα,β. Nevertheless,
numerical computations strongly suggest that the central limit theorem holds; see Figure 9: we
took 104 uniformly-distributed points x of the interval [−π, π] and computed the sample average
1
N ∑N

k=1 sin(pkx) for N = 78,498, that is, the number of primes ≤ 106. We computed the histogram for
the values of the sample average, which experimentally tends to a normal distribution as the size of

the sample tends to infinity. To confirm this observation, we did the same computation for sin(p
3
2
k x),

see Figure 10.

Figure 9. Normal distribution of 1
N ∑N

k=1 sin(pkx) for x uniformly distributed in [−π, π].

Figure 10. Normal distribution of 1
N ∑N

k=1 sin(πp
3
2
k x) for x uniformly distributed in [−π, π].
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4. Concluding Remarks

The properties of the series Vα,β that we have discussed in this article are intimately related
to the distribution of prime numbers, and this was mostly due to the unanswered questions on
prime numbers for which the analytical access to our series is limited. Therefore, knowledge about
the distribution and bounds for the gaps of prime numbers would imply more or less directly the
properties where we were restricted to a numerical approach.

Although the series might be reminiscent of the Riemann zeta function or other number-theoretical
functions, we did not construct Vα,β in this way and do not see a possibility to deduce it from any
of them, besides from the trivial fact, that Vα,β(0) is equal to the prime zeta function P(α) = ∑p p−α.
Furthermore, recall that we only consider α ∈ R, usually α > 1, so that no zeros of the Riemann zeta
function come into the play for the scope of this article.
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