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Abstract: In this paper, we focus on option pricing models based on space-time fractional diffusion.
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1. Introduction

The pricing of derivatives, and notably of options, is a central subject in mathematical finance.
It allows the market practitioner to estimate the value of its portfolio, and to construct appropriate
hedging strategies. The most popular option pricing model is the one introduced by Black and
Scholes [1], because of its simplicity (e.g., the option price can be expressed in terms of simple
mathematical functions), and because it can be used to imply the market parameters, such as volatility
surfaces, from the observation of traded market prices.

On the other hand, the simplicity of the Black–Scholes (BS) model is also its main limitation.
The dynamics of the underlying asset is described by a geometric Brownian motion, so the resulting
option price is given by the Gaussian distribution. This assumption does not describe well extreme
market events such as sudden jumps of asset prices, which happen far more frequently than expected
in the Gaussian world (see for instance the influential book by Taleb [2]). This makes the Black–Scholes
formula less reliable in abnormal conditions or in illiquid markets.

During the past years, several models have been introduced to describe the market dynamics more
realistically; one can mention regime switching multifractal models [3], stochastic volatility models [4]
or jump (Lévy-stable) processes [5]. Particularly interesting are the processes based on fractional
diffusion. This class is based on processes, whose prices are driven by a generalization of a diffusion
equation, whose derivatives have non-natural order [6]. This generalization provides us with a natural
framework, allowing us to introduce risk-redistribution in the spatial domain (presence of large
drops) as well as in the temporal domain (memory effects and anomalous diffusion during abnormal
periods). This is important not only in asset pricing models, but also for derivative pricing as well as
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for portfolio management. Such a model, based on space-time fractional diffusion, has been introduced
in [7,8], and can be regarded as a generalization of the Lévy-stable model; analytic resolution of this
model has been provided in [9] under the form of a series representation for its pricing formula.
Interestingly, for this class of models, the risk-neutral parameter remains finite and can be explicitly
computed in terms of model inputs; this means that the risk-neutral approach remains valid despite
the prediction of extreme market events, and that the market practitioner can still construct ad-hoc
hedging policies. In the present article, we briefly recall all these analytic results (and notably how
they recover previously known models) and test their efficiency in real market applications. We also
discuss the related topics such as at-the-money approximation or implied volatility.

The paper is organized as follows. In the following section, we introduce some fundamental
concepts in option pricing, and the main models that, under risk-neutral approach, can be reduced to
a space-time fractional diffusion problem. This includes the BS model (which reduces to the classical
heat equation), the Lévy-stable model (which reduces to the space-fractional diffusion equation) and
the generic space-time (or double) fractional model. In Section 3, we briefly recall the analytic solution
to the space-time fractional model. In Section 4 we present various applications of the theoretical
results: we calculate the call prices and compare it with the real data, we introduce at-the-money
volatility and discuss the construction of volatility smile. The last section is dedicated to conclusions.

2. Option Pricing

The price of an option of strike K and maturity T, is a function of market parameters such as
an underlying asset price S, a risk-free interest rate r and a market volatility σ. We will denote this
price by V(S, K, r, σ, t). In the case of an European option, it is characterized by its payoff, that its,
its value at the exercise time T; for an European call, this value is equal to

V(S, K, r, σ, T) = max{S− K, 0} := [S− K]+ (1)

For a put option, the corresponding payoff is [K− S]+. Now we recall the principles of option
pricing, that is, the way of determining V(S, K, r, σ, t).

2.1. The Risk-Neutral Approach

The risk-neutral, or risk-free approach is based on the idea that one can construct a portfolio
where the (market) risk can be totally eliminated [10]. Schematically, it consists in buying an option
and selling a certain quantity ∆ (to be determined) of the underlying price, so that the total value of
the portfolio reads Π = V − ∆S and therefore:

dΠ = dV − ∆dS (2)

On the other hand, the markets are assumed to offer no arbitrage opportunity, that is, any risk-less
portfolio will have the same yield as if it were capitalized at the risk-free interest rate:

dΠ = rΠdt (3)

Equalizing (2) and (3) and making an appropriate choice for ∆ transforms the option pricing
problem into the resolution of a partial differential equation with terminal condition.

From a more theoretical point of view, within risk-neutral approach, the price can be formulated
as the discounted expectations of the terminal payoff [11]:

V(S, K, r, µ, τ) = e−rτ EQ [[S− K]+
]

(4)

where we have introduced the time-to-maturity τ = T − t. The expectations are to be taken
under the risk-neutral measure Q, which is associated to the original probability measure P via
the Radon-Nikodym derivative:

dQt

dPt
= eSt−µt (5)
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The risk-neutral parameter µ can be expressed as

µ = − logEP
[
eSt=1

]
(6)

More details can be found in [7,12].

2.2. Black–Scholes Model

In the BS model, the underlying asset price S is assumed to be described by a geometric
Brownian motion:

dSt = r Sdt + σ S dWt (7)

It follows from Itô’s lemma [13] that the total differential of the option price is:

dV =
∂V
∂t

dt +
∂V
∂S

dS +
1
2

σ2S2 ∂2V
∂S2 dt (8)

Choosing ∆ = ∂V
∂S , using (7) and equalizing (2) and (3), we have shown that the call price

satisfies the famous Black–Scholes equation, which is a partial differential equation (PDE) with
terminal condition: 

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + rS

∂V
∂S
− rV = 0 t ∈ [0, T]

V(S, K, r, σ, t = T) = [S− K]+
(9)

It is known that, with the change of variables
x := log S + (r− σ2

2
) τ

τ := T − t

V(S, K, r, σ, t) := e−rτW(x, K, r, σ, τ)

(10)

then the Black–Scholes PDE (9) resumes to the diffusion (or heat) equation

∂W
∂τ
− σ2

2
∂2W
∂x2 = 0 (11)

which is a particular case of the double fractional diffusion (22) with time fractionality γ = 1 and space
fractionality α = 2. It is well known that the Green function for (11) is the heat kernel

g(x, K, r, σ, τ) =
1

σ
√

2πτ
e−

x2

2σ2τ (12)

and therefore, by the method of Green functions and turning back to the initial variables, we obtain
the solution for the Black–Scholes PDE (in the call case):

V(S, K, r, σ, τ) = e−rτ

+∞∫
−∞

[Se(r−
σ2
2 )τ+y − K]+ g(y, K, r, σ, τ)dy (13)

Basic manipulations on the integral (13) yield

V(S, K, r, σ, τ) = SN(d+)− Ke−rτ N(d−) d± =
1

σ
√

τ

(
log

S
K
+ rτ

)
± 1

2
σ
√

τ (14)
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where N(.) is the normal distribution function; formula (14) is the celebrated Black–Scholes formula
for the European call. The corresponding risk-neutral parameter is therefore

µBS = −σ2

2
(15)

2.3. Finite-Moment Lévy-Stable Model

An interesting generalization of the BS model is the so-called Finite Moment Lévy (or Log) Stable
(FMLS) model; it was introduced in [14] and assumes that the underlying asset price St is described by:

dSt = rStdt + σStdLα,β(t) (16)

where Lα,β(t) is the Lévy process [15]. α ∈ [0, 2] and β ∈ [−1, 1] are the so-called stability and
asymmetry parameters and determine the decay of the tails and the asymmetry of the probability
distributions gα,β(x, t). Under the (strong) hypothesis that β = −1 (maximal negative asymmetry
hypothesis) then the distribution gα,−1 := gα possesses one heavy-tail in the negative axis, and another
tail in the positive axis with exponential decay as soon as α > 1, and finite exponential moments
(see Property 1.3 in [14] and references therein):

EP
[
e−λSt

]
= e

−λα

(
σ√
2

)α

cos πα
2 Re(λ) ≥ 0 (17)

These particular Lévy distributions are sometimes called Lévy-Pareto distributions; their relevance
in financial modeling has been known since the works of Mandelbrot and Fama in the 1960s [16,17].
They are known to satisfy the space-fractional equation:

∂gα(x, t)
∂τ

+ µ Dαgα(x, t) = 0 (18)

where Dα := α−2Dα is a particular case of the Riesz-Feller operator (24) for θ = α− 2. The condition
θ = α − 2 turns out to be the fractional analogue to the probabilistic condition β = −1 (note that
Equation (18) degenerates into the the reduced BS Equation (11) when α = 2).

The corresponding call option price is then:

Vα(S, K, r, µ, τ) = e−rτ

+∞∫
−∞

[Se(r+µ)τ+y − K]+ gα(y, τ)dy (19)

where the risk-neutral parameter µ follows from (17):

µ =

(
σ√
2

)α

cos πα
2

(20)

and reduces to µ = − σ2

2 in the Gaussian case (α = 2). An analytic resolution of the FMLS model
has been provided in [18], under the form of a quickly convergent series representation for the call
price (19). The proof is based on the Mellin–Barnes representation for the solutions of the space
fractional Equation (18) (see [6]): if x > 0 then

gα(x, τ) =
1

αx

c1+i∞∫
c1−i∞

Γ(1− t1)

Γ(1− t1
α )

(
x

(−µτ)
1
α

)t1
dt1

2iπ
0 < c1 < 1 (21)
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2.4. Space-Time Option Pricing Model

Let us discuss option pricing models based on space-time (double)-fractional diffusion equation,
which can be expressed as (

∗
0D

γ
t + µ[θDα

x ]
)

g(x, t) = 0 (22)

where α ∈ (0, 2], γ ∈ (0, α]. Asymmetry parameter θ is defined in the so-called Feller-Takayasu
diamond |θ| ≤ min {α, 2− α}. ∗0D

γ
t denotes the Caputo fractional derivative, which is defined as

∗
t0
Dν

t f (t) =
1

Γ(dνe − ν)

∫ t

t0

f dνe(τ)
(t− τ)ν+1−dνedτ (23)

and θDα
x denotes the Riesz-Feller fractional derivative, which is usually defined via its Fourier image as

F [θDν
x f (x)](k) = −θψν(k)F[ f (x)](k) = −µ|k|νei(signk)θπ/2F [ f (x)](k) (24)

Details and properties of fractional derivatives operators and fractional differential equations can be
found for instance in the books [19,20]; we will, for ourselves, describe the financial applications that
are included in (22). The FMLS model, although far more generic than the BS one, can still be regarded
as too restrictive; this is because the maximal negative asymmetry hypothesis β = −1, or equivalently
θ = α− 2, does not describe well all capital markets (in particular illiquid ones, where financial assets
often exhibit an almost symmetric heavy-tail). Nevertheless, it is not a priori possible to relax the
maximal negative asymmetry hypothesis, because when β 6= −1 the expectations (6) are known
to diverge [14]. The fact that the risk-neutral parameter is infinite in this case traduces the fact that
the risk cannot completely be eliminated from this class of Lévy processes. Risk-minimal (instead of
risk-neutral) approach has been introduced (see [21]) in this case; an interesting possibility, to generalize
the the FMLS model and to remain within the risk-neutral framework, is to allow the time derivative
to be also fractional (in the Caputo sense) in Equation (18):

∗
0D

γ
t gα,γ(x, t) + µγ [2−α Dα]gα,γ(x, t) = 0 (25)

At this place, it is important to stress the interpretation of the asset dynamics, corresponding to
space-time fractional diffusion model. The presence of fractional derivatives enables us to introduce
distributions with heavy-tails. Consequently, large drops become much more probable than for
the Gaussian diffusion. Moreover, the time-fractional derivative opens a window for modelling
non-Markovian processes with memory, which can be particularly important in abnormal periods.
As a result, the orders of fractional derivatives, i.e., α and γ, can be interpreted as risk-redistribution
parameters in the spatial, resp. temporal domain. Naturally, this is not only possible way how to model
complex phenomena of financial markets; however we follow this approach because of its simplicity,
clear interpretation of the model parameters and, last but not least, because its connection to related
physical phenomena driven by space-time fractional diffusion.

The corresponding call option price now reads

Vα,γ(S, K, r, µγ, τ) = e−rτ

+∞∫
−∞

[Se(r+µγ)τ+y − K]+ gα,γ(y, τ)dy (26)

The Green functions are also known under the form of a Mellin–Barnes line integral [6]:

gα,γ(x, τ) =
1

αx

c1+i∞∫
c1−i∞

Γ(1− t1)

Γ(1− γ
α t1)

(
x

(−µγτ)
1
α

)t1
dt1

2iπ
0 < c1 < 1 (27)
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for any x > 0. The main difference with the Lévy-stable price (19) is that the risk-neutral parameter µγ

now depends on the time-fractionality γ, and is not known analytically like in the Lévy stable case (20).
In [9], an efficient and simple series expansion is derived for the risk neutral parameter, as well as
a fast converging series expansion for the call price (26). In the next section, we discuss these results in
detail, and test them in the real market conditions.

3. Series Representation of the Pricing Formulas under the Space-Time Fractional Diffusion

Now, let us provide an analytic pricing formulas for the call options driven by the fractional
diffusion (25) (details of the proofs can be found in [9]). We assume that 1 < α ≤ 2 and 0 < γ ≤ α.

3.1. Risk-Neutral Parameter

The expectations in definition (6) over the probability measure P can be expressed in terms of its
probability densities gα,γ(y, τ), that is:

µγ = − log
∞∫
−∞

eygα,γ(y, τ = 1)dy (28)

It is possible to bring the calculation back to the non time-fractional case, by writing (see details
in [22]):

gα,γ(x, τ) =

∞∫
0

gγ(τ, l)gα(l, x)dl (29)

where gγ and gθ
α are solutions of single-fractional diffusion equations

∂gγ(t, l)
∂l

= ∗
0D

γ
t gγ(t, l) (30)

∂gα(l, x)
∂l

= Dα
x gα(l, x) (31)

3.1.1. Mellin–Barnes Representation of the Risk-Neutral Parameter

The solution to the Caputo Equation (30) is known to be [23]:

gγ(τ, l) =
1

τγ
Mγ

(
l

τγ

)
(32)

where Mν(z) is a function of Wright type, admitting the following Mellin–Barnes representation [24]:

Mν(z) =

c+i∞∫
c−i∞

Γ(s)
Γ(νs + 1− ν)

z−s ds
2iπ

c > 0 (33)

Inserting (29) and (33) in (28), interverting the integrals and using (17) we obtain a Mellin–Barnes
representation for the risk-neutral parameter:

µγ = − log

 1
α

c+i∞∫
c−i∞

Γ(s)Γ( 1−s
α )

Γ(γs + 1− γ)
µ

s−1
α

1
ds

2iπ

 0 < c < 1 (34)

where µ1 =
(

σ√
2

)α
sec πα

2 is the risk-neutral parameter in the Lévy-stable case (γ = 1), cf. Equation (20).
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3.1.2. Series Representation of the Risk-Neutral Parameter

It is possible to express the integral over a vertical line (34) as a sum of residues of its analytic
continuation, on the condition that the integrand decreases sufficiently fast at infinity. For Gamma
function, this condition is determined by the well-known Stirling-like approximation [25]

|Γ(x + iy)|
√

2π |y|x− 1
2 e−π

|y|
2

−→
|x|→∞
|y|→∞

1 x, y ∈ R (35)

It follows from (35) that, for a Gamma function of linear arguments of the type Γ(as + b), a, b ∈ R,
its behavior at infinity depends on the sign of a, namely:

a > 0 |Γ(as + b)| |s|→∞−→ 0 arg s ∈
(

3π

2
,−π

2

)
a < 0 |Γ(as + b)| |s|→∞−→ 0 arg s ∈

(
−π

2
,

π

2

) (36)

Equation (36) easily generalizes to a ratio of products of Gamma functions of linear arguments.
Let us assume that a function f admits a Mellin transform f ∗ of the form:

f ∗(s) =
Γ(a1s + b1) . . . Γ(ans + bn)

Γ(c1s + d1) . . . Γ(cms + dm)
aj, bj, ck, dk ∈ R (37)

and that this Mellin transform converges on some non-empty strip {Re(s) ∈ (c1, c2)}, so that the
Mellin inversion formula holds:

f (x) =

c+i∞∫
c−i∞

f ∗(s) x−s ds
2iπ

c ∈ (c1, c2) (38)

Introduce the characteristic quantity ∆:

∆ =
n

∑
j=0

aj −
m

∑
k=0

ck (39)

It follows from (36) that ∆ governs the asymptotic behavior of f ∗(s):
∆ > 0 | f ∗(s)| |s|→∞−→ 0 arg s ∈

(
3π

2
,−π

2

)
∆ < 0 | f ∗(s)| |s|→∞−→ 0 arg s ∈

(
−π

2
,

π

2

) (40)

Therefore, applying the residue theorem to the inversion formula (38) yields:
∆ > 0 f (x) = ∑

Re(s)<c
Res

[
f ∗(s)x−s]

∆ < 0 f (x) = − ∑
Re(s)>c

Res
[

f ∗(s)x−s] (41)

where the choice {Re(s) > c} or {Re(s) < c} is determined by the fact that |x|−s goes to 0 at infinity in
the chosen half-plane. In the case of the Mellin–Barnes representation (34), the characteristic quantity is

∆ = 1− 1
α
− γ (42)
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and is negative as soon as:

γ > 1− 1
α

(43)

It follows from rule (41) that one can express (34) as the sum of the residues in the right half-plane

(we choose it because µ
s−1

α
1 goes to 0 at infinity in this half plane as soon as |µ1| < 1, which is the case in

all financial applications). These poles are induced by the singularities of the Γ( 1−s
α ) term, which arise

at every negative integer value −n of its argument, that is at every point of the type s = 1 + αn, n ∈ N;
it is well-known the residue of the Gamma function at a negative integer−n is (−1)n

n! [25], and therefore
we obtain:

µγ = − log
∞

∑
n=0

(−1)nΓ(1 + αn)
n!Γ(1 + γαn)

µn
1 (44)

as soon as the condition (43) is fulfilled. An interesting approximation of (44) can be easily derived
from the Taylor approximation log(1 + u) = u + O(u2):

µγ = − log
[

1 − Γ(1 + α)

Γ(1 + γα)
µ1 + . . .

]
=

Γ(1 + α)

Γ(1 + γα)
µ1 + O(µ2

1) (45)

which, as expected, coincides with the Lévy-stable risk-neutral parameter µ1 when γ = 1. As a
particular case, we obtain a nice approximation for the risk-neutral parameter in the fractional
Black–Scholes model (α = 2):

µγ = − σ2

Γ(1 + 2γ)
+ O(σ4) (46)

which resumes to the well-known gaussian parameter − σ2

2 when γ = 1.
In Figure 1, we plot the evolution of µ in function of the parameters γ, σ and α; thanks to the

exponential convergence of the series (44), it suffices to consider only the very first few terms of the
series to obtain an excellent level of precision.

Figure 1. In the first graph, we plot the evolution of µγ in function of γ for different stability parameters
α ∈ [1.6, 1] and market volatility σ = 20%. We only consider γ > 0.38 so that the condition γ > 1− 1

α

is fulfilled for any of the chosen stabilities. In graph 2 and 3, we plot the evolution of µγ in function of
the market volatility and the stability parameter resp., for different values of the fractionality γ.



Fractal Fract. 2018, 2, 15 9 of 16

3.2. Option Price

In all the following we will use the notation [log]: = log S
K + rτ, so that the payoff in (26) can

be written:
[Se(r+µγ)τ+y − K]+ = K[e[log]+µγτ+y − 1]+ (47)

3.2.1. Mellin–Barnes Representation of the Option Price

The call price (26) can be expressed as a double Mellin–Barnes integral. First, one introduces
in (26) the Mellin–Barnes representation (27) for the Green function; second, one writes a Mellin–Barnes
representation for the exponential term in (47):

e[log]+µγτ+y =

c2+i∞∫
c2−i∞

(−1)−t2 Γ(t2)([log] + µγτ + y)−t2
dt2

2iπ
c2 > 0 (48)

The integral over the Green variable y becomes a particular case of a Bêta integral, which is
straightforward to calculate, and one obtains the representation for the option price:

Vα,γ(S, K, r, µγ, τ) = Ke−rτ

α

c1+i∞∫
c1−i∞

c2+i∞∫
c2−i∞

(−1)−t2 Γ(t2)Γ(1−t2)Γ(−1−t1+t2)
Γ(1− γ

α t1)

×(−[log]− µγτ)1+t1−t2(−µγτγ)−
t1
α

dt1
2iπ ∧

dt2
2iπ

(49)

The vector c := [c1, c2] is an element of the C2-polyhedra P := {(t1, t2) ∈ C2, 0 < Re(t2) <

1, Re(t2 − t1) > 0}, which generalizes the notion of convergence strip for one-dimensional
Mellin transform.

3.2.2. Series Representation of the Option Price

The double Mellin–Barnes integral (49) can also be expressed as a sum of residues.
In one dimension, it is usual to sum the residues right or left to the convergence strip of the Mellin
transform, like we have done for the risk-neutral parameter, where the integral (34) has been computed
by right-summing the residues to obtain the series (44). In two dimensions, this procedure generalizes
to a summation to a subregion of C2, determined by a characteristic vector associated to the integrand.
The incoming residues are computed by the two-dimensional analogue to the Cauchy formula:

Res
[

f (t1, t2)
dt1

2iπt1
∧ dt2

2iπt2

]
= f (0, 0) (50)

This procedure has been introduced in [26,27]. Namely, the characteristic quantity (39) generalizes
to a characteristic vector, which, in the case of the double Mellin–Barnes integral (49) reads

∆ =

[
−1 + γ

α

1

]
(51)

The rule (41) generalizes to

f (x1, x2) = ∑
[t1,t2]∈Π∆

Res
[

f ∗(t1, t2) x−t1
1 x−t2

2

]
(52)

where Π∆ is the subset of C2 defined by

Π∆ =
{

t := [t1, t2] ∈ C2 , Re(∆.s) < Re(∆.c)
}

(53)
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in the sense of the euclidean scalar product. In the plane Re
(
C2), Π∆ is therefore the region located

under the line
Re(t2) =

(
1− γ

α

)
(Re(t1)− c1) + c2 (54)

whose slope is positive because by hypothesis γ ≤ α. In this region, poles come from functions Γ(−1−
t1 + t2) and Γ(t2) which are singular at every negative integer value of their argument (see Figure 2).

Figure 2. Residues contributing to the evaluation of the double Mellin–Barnes integral (49).

From the singular behavior of the Gamma function around a singularity [25] and the Cauchy
formula (50), we obtain the series for the call price under double-fractional model:

Vα,γ(S, K, r, µγ, τ) =
Ke−rτ

α

∞

∑
n=0
m=1

(−1)n

n!Γ(1− γ n−m
α )

(−[log]− µγτ)n(−µγτγ)
m−n

α (55)

Full details of this calculation can be found in [9].

4. Applications

Let us discuss several applications of the series formula for the space-time fractional option prices.
We show that it can be used for estimating the market parameters of the option prices. The calculation
of the option price is very quick compared to the other methods (Mellin–Barnes representation,
numerical estimation, . . . ). We also briefly discuss the applications to implied volatility.

4.1. Call Price

When fixing an upper bound for the n (resp. m) summation in the double series (55), we are
left with a simple series whose m-(resp. n) partial sums converges very quickly to the option price
(see Figure 3, where the parameters are S = 3800, K = 4000, r = 1%, σ = 20%, α = 1.7, γ = 0.9).
We may observe that the convergence of the m-sums are monotone, while the n-sums oscillate around
the final price.
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Figure 3. Convergence of the m and n partial sums of the double-fractional call price double series
formula (55).

In the graphs in Figure 4, we study the evolution of the option price (55) in function of different
parameters. In the first graph we fix S = 3800, K = 4000, r = 1% σ = 20% and we plot the evolution
of the price in function of γ, for different stability parameters α ∈ [1.5, 2]; we choose to consider only
γ > 0.33 so that the condition γ > 1− 1

α is satisfied for all stabilities, and observe that the prices are
a decreasing function of the time fractionality. In graph 2 we let α vary between 1 and 2 and note
that when γ ≤ 1 then the prices are always a decreasing function of the stability, while for γ > 1 they
possess a maximum. In graph 3 (resp. 4) we plot the evolution of the option price in function of the
spot price S (resp. market volatility σ) for various time fractionality γ, and with fixed stability α = 1.7;
note that the prices are, as expected, always a monotonous (growing) function of the spot and of the
volatility, which is coherent with the non-arbitrage hypothesis of financial markets. Finally, we show
the estimated parameters of the three option pricing models for the real options of S&P 500 options.
The results are presented in Table 1, which has been taken from [7].

Figure 4. Evolution of the double-fractional call price in function of various parameters
(time-fractionality parameter γ, stability parameter α, asset (spot) price S and market volatility σ.
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Table 1. Estimated values of option pricing parameters based on Black–Scholes model, FMLS model
and Space-time fractional model. The estimation was done for all options and separately for call
options and put options, respectively. We see that for this case is γ very close to one, which does
not have to be true for illiquid markets or during the abnormal periods. AE denotes the aggregated
error, which is defined as the sum of absolute differences between estimated price and market price.
Table was taken from Ref. [7] and it is possible to find more details about the estimation there.

All Options
Parameter Black–Scholes Lévy Stable Double-Fractional

α - 1.493(0.028) 1.503(0.037)
γ - - 1.017(0.019)
σ 0.1696(0.027) 0.140(0.021) 0.143(0.030)

AE 8240(638) 6994(545) 6931(553)
Call Options

Parameter Black–Scholes Lévy Stable Double-Fractional
α - 1.563(0.041) 1.585(0.038)
γ - - 1.034(0.024)
σ 0.140(0.021) 0.118(0.026) 0.137(0.020)

AE 3882(807) 3610(812) 3550(828)
Put Options

Parameter Black–Scholes Lévy Stable Double-Fractional
α - 1.493(0.031) 1.508(0.036)
γ - - 1.047(0.017)
σ 0.193(0.039) 0.163(0.034) 0.163(0.037)

AE 3741(711) 3114(591) 2968(594)

4.2. Implied Volatility

The process of implying the market volatility consists in finding for which volatility σI
a model-driven option price coincides with the observable price C, that is when

V(S, K, r, σI , τ) = C (56)

A typical procedure is to imply a Black–Scholes volatility (by using the Black–Scholes formula
for the price and solving (56) by means of numerical methods, such as a Newton–Raphson algorithm,
see for instance [10]) and use it as an input parameter in a more sophisticated model. Let us show how
the analytic series (55) allows to imply a market volatility, and compare with the Gaussian one.

4.2.1. At-the-Money Volatility

When the asset is “at-the-money forward”, that is when

S = Ke−rτ (57)

then there exists an approximation for the Black–Scholes formula [28]

V(S, K, r, σ, τ) =
S√
2π

σ
√

τ + O
(
(σ
√

τ)3
)

(58)

and therefore, at first order, the solution to the implied volatility Equation (56) reads

σI =
C
S

√
2π

τ
(59)
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Such an approximation can also be derived in the double-fractional Black–Scholes model (α = 2):
note that, with our notations, the ATM-forward hypothesis (57) reads [log] = 0 and therefore in this
case the pricing formula (55) becomes a power series (i.e., with only positive powers of µγ and τ):

V2,γ(S, K, r, µ, τ) =
S
2

[
1

Γ(1 + γ
2 )

√
−µγτγ + O(−µγτγ)

]
(60)

Using first order approximation (46) for the risk-neutral parameter

µγ = − σ2

Γ(1 + 2γ)
(61)

in the first order term of the power series (60), we obtain an approximation for the implied fractional
Black–Scholes volatility (in the ATM forward case):

σI = 2
C
S

Γ(1 +
γ

2
)

√
Γ(1 + 2γ)

τγ
(62)

Let us remark that the formula (62) resumes to the Black–Scholes implied volatility formula (59)
when γ = 1 (recall that Γ( 3

2 ) =
√

π
2 ). In Figure 5 we plot the evolution of formula (62) in function of γ

for a time to maturity τ = 1.027 and various exercise and call prices (see market datas in Table 2).

Figure 5. The at-the-money implied volatility for the double-fractional Black–Scholes model, as a function
of time fractionarity γ.

Table 2. Implied volatility for S & P 500 index call options.

Strike Call Price BS Vol F-BS Vol (γ = 0.8) F-BS Vol (γ = 0.9) F-BS Vol (γ = 1.1)
900 118.9 0.4708 0.3163 0.3827 0.5900
940 92.7 0.4462 0.3066 0.3670 0.5330
980 69.5 0.4232 0.2929 0.3493 0.5210

1020 49.2 0.3976 0.2754 0.3284 0.4891
1060 32.3 0.3711 0.2557 0.3058 0.4574
1100 19.5 0.3475 0.2380 0.2857 0.4186
1150 8.9 0.3279 0.2269 0.2727 0.3938
1180 5.1 0.3301 0.2324 0.2789 0.3764
1220 2 0.3514 0.2514 0.3015 0.3692
1280 0.25 0.4110 0.2949 0.3544 0.4166
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4.2.2. Volatility Smile

In Table 2, we provide observable market bid (offered) prices for S & P 500 call options with several
exercise (strike) prices traded end 2008, quotation date = 3 November 2008, expiry = 17 January 2009
(source: eurexchange.com). We compute the implied Black–Scholes volatility as well as the implied
fractional Black–Scholes volatility for various time fractionalities. They are obtained via a truncation of
the series (55) to n, m = 4 and the approximation (46) for the parameter µγ.

In Figure 6 we plot the implied volatilities obtained in Table 2 for and for 0.8 ≤ γ ≤ 1.1.
We observe that the usual volatility smile (that is, the existence of a minimum around the spot price) is
preserved, although less smooth when γ > 1. Interestingly, when γ ≤ 1, the minimal implied volatility
is attained for the same strike price (independently of γ).

Figure 6. Implied volatility for the fractional Black–Scholes model (market price S = 966.3).

5. Conclusions

In this paper, we have discussed the application of space-time fractional diffusion in option
pricing and its relation to Black–Scholes model and Finite moments Lévy stable model. Models based
on fractional diffusion enable to model the risk redistribution in order to incorporate large drops,
memory effects and abnormal periods. We have briefly introduced all aforementioned models and
described their main properties. Additionally, we have presented the series representation for all
models, which is based on Mellin–Barnes integral representation of the option price and residue
summation in C2. This mathematical techniques can overcome the technical difficulties of the fractional
models, which is caused by the fact that the resulting prices are normally expressed in terms of
integral transforms (Fourier, Laplace or Mellin) and the practical calculation is time consuming and
understandable only to people trained in fractional calculus. The resulting series representation can be
easily grasped by any financial practitioner. We have also applied the formulas to real financial data
in order to demonstrate fast convergence and stability of the method. We have particularly shown
numerical estimations of model parameters from the real data, applications to implied volatility and
presence of volatility smile.

Fractional models provide a fruitful field for further investigations of financial systems,
including portfolio management, derivative pricing, commodity pricing and many other possible
applications. Naturally, in these applications it is necessary to carefully define the proper fractional
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derivatives and boundary conditions. In some cases, as e.g. in the case of fractional geometric Brownian
motion, it is also necessary to overcome the mathematical issues, as non-existence of moments, etc.
Some of these topics will be addressed in the future research.
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