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Abstract: This paper considers the Freedman model using the Liouville-Caputo fractional-order
derivative and the fractional-order derivative with Mittag—Leffler kernel in the Liouville-Caputo
sense. Alternative solutions via Laplace transform, Sumudu-Picard and Adams-Moulton rules
were obtained. We prove the uniqueness and existence of the solutions for the alternative model.
Numerical simulations for the prediction and interaction between a unilingual and a bilingual
population were obtained for different values of the fractional order.
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1. Introduction

Interactions between groups that speak different languages are occurring continuously in several
countries in the world due to globalization and cultural openness. Multilingualism is the use of more
than one language, either by an individual speaker or by a community of speakers. A mathematical
model portraying the interaction dynamics of a population considering bilingual components and
a monolingual component was proposed in [1,2]. Baggs in [2] studied the condition under which the
bilingual component could persist and conditions under which it could become extinct. The weakness
of these models is that they do not take into account the degree of interest in time and also the
memory of the interaction, meaning the recall of the original meeting or interaction or contact
up to a particular period of time in the present. Fractional calculus is one of the most powerful
mathematical tools used in recent decades to model real-world problems in many fields, such as science,
technology and engineering. The Liouville-Caputo fractional derivative involves the power-law
function. The Liouville-Caputo fractional-order derivative allows usual initial conditions when playing
with the integral transform, for instance the Laplace transform [3-5]. Recently, Abdon Atangana and
Dumitru Baleanu proposed two fractional-order operators involving the generalized Mittag—Leffler
function. The generalized Mittag-Leffler function was introduced in the literature to improve the
limitations posed by the power-law [6-12]. The two-parametric, three-parametric, four-parametric
and multiple Mittag—Leffler functions were presented by Wiman, Prabhakar, Shukla and Srivastava
in [13-18]. The kernel used in Atangana—Baleanu fractional differentiation appears naturally in several
physical problems as generalized exponential decay and as a power-law asymptotic for a very large
time [19-24]. The choice of this derivative is motivated by the fact that the interaction is not local,
but global, and also, the trend observed in the field does not follow the power-law. The generalized
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Mittag-Leffler function completely induced the effect of memory, which is very important in the
nonlinear Baggs—-Freedman model.

Atangana and Koca in [25] studied the nonlinear Baggs and Freedman model. Starting from the
integer-order Freedman model presented by [25], we have:

Dixy = (Ay — My — F)xq(t) — Lixf () —a- xigril(()) + G1Axxz(t), )
t)

t
Dixy = (A — My — B)xa(t) — sz%(t) +a- 15_2( (t() — G1Ax2(t),

where 0 < A;, M;, |F;| < 1 are the birth, death and emigration parameters fori € [1,2]. 0 < G; <1
is the infant language acquisition parameter, that proportion of births in the x, population raised

unilingually. 0 < & < 11is the non-infant language acquisition rate, the proportion of x; learning the x,

x1(B)xp(t)

language per unit time after infancy. The term « - 1 0

x due to virtual predation on the part of x; [26].

The aim of this work is to obtain alternative representations of the Freedman model considering
Liouville-Caputo and Atangana—Baleanu—Caputo fractional derivatives. The paper is organized as
follows: Section 2 introduces the fractional operators. Alternative representations of the Freedman
model are shown in Section 3. Finally, in Section 4, we conclude the manuscript.

describes that part of population x; lost to

2. Fractional Operators

The Liouville-Caputo fractional-order derivative of order 7 is defined by [27]:

EDIF) = ey [ FO-0)7a0,  0<q <1 @

The Laplace transform to Liouville-Caputo fractional-order derivative gives [27]:

m—1
LD f(H] = STE(S) = 3 s f0(0). ©
k=0
The Atangana-Baleanu—Caputo fractional-order derivative is defined as follows [19-22,24]:

ABCD’Y{f /f _7(1‘_9) }d@, 0<y<l, 4)

where B(B) = B(0) = B(1) = 1is anormalization function and E, is the Mittag—Leffler function [6-12].
The Mittag-Leffler kernel is a combination of both the exponential-law and power-law. For this
fractional derivative, we have at the same time the power-law and the stretched exponential as the
waiting time distribution.

The Laplace transform of Equation (4) is defined as follows:

ZIEDIF(D)(s) = TRL] ) FOE, | -] ae]
®)
— B sZfWI(E) -7 1f(0)
1=y s”’+%

The Sumudu transform is derived from the classical Fourier integral [28]. The Sumudu transform
of Equation (4) is defined as:

ST{ICDI (1)} = 11 (4T(y + VE, (= 12-a7)) X [STU ) = FO)]. ©
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The Atangana—Baleanu fractional integral of order -y of a function f(t) is defined as:

IPIF0) = G 0+ g [ A =9)7s )

3. Freedman Model

In this section, we obtain alternative representations of the Freedman model considering
the Liouville-Caputo fractional derivative, and the special solution is obtained using a Laplace
transform method.

3.1. Freedman Model with the Power-Law Kernel
Considering Equation (2), the modified Freedman model with the power-law kernel is given as:

SDYx1(f) = (A — My — F)xp(£) — Lixd(t) — - 2020 4 G Asx (1),

+x1 () (8)
D xa(t) = (A2~ Mo — EJa(t) — Lurd(F) + - 345 B GiAwn(),

where 0 < ¢ < 1 is the fractional order, x;(f) represents the interaction of the majority unilingual
population and x;(t) is a bilingual population.

Applying the Laplace transform operator (3) and the inverse Laplace transform on both sides of
Equation (8), we obtain:

() = x1(0) + g*l{s%f [(Al — My — Fy)x(f) — Ly () — a2l GlAzxz(t)} (s)}(t), o
x2(t) = %(0) + 27 3.2 (A2 = My = B)xs (1) — Lo (1) + o« {22 — G Ao (1) (5) (1),
The following iterative formula is then proposed:
— 11
Xy (t) =& {ﬁg[(Al = )Xy 1)(1‘) Lix}, g (1)
1) (D)X (1) (£
g 1+1)x(1)J<zl< (t1)>( ) + G1 Anagy } (s) }
1 1(n ) (10)
sty (1) = £ 2] (A = Mo — By 1) () = Laxd,_y) (1)
X1(n—1) () Xp(—1)(t)
T T+ (1) (1) G1A2x2 (n-1) } (s) }
where,
x1(0) (1) = x1(0); Xp(0) (1) = x2(0), (11)
where the approximate solution is assumed to be obtained as a limit when “n” tend to infinity:
x(t) = m 200 (8); x2(8) = Hm ) (8). (12)
3.2. Stability Analysis of the Iteration Method
Theorem 1. We demonstrate that the recursive method given by Equation (10) is stable.
Proof. It is possible to find two positive constants Y and Z such that, for all:
0<t<T<oo, [lx1 ()]l <Y  and [|lx1(8)]] < Z. (13)
Now, we consider a subset of C;((a,)(0, T)) defined by:
H={p:@0)O1) = H o [(t—e)" olg)ulp)p <}, 19
I'(y)
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we now consider the operator ¢ defined as:

P(x1,x2) = { (A1 =My -

(Az - M, — Fz)Xz(t) —

Then:
< ¢p(x1,x2) —
< (A1 —M;—F)(x

( ) —
. g =X () (v ()X
- 1+ (1 () — X1 ()

< (A2 — My — B)(x(t) — X
- (1 (B =X1 (1)) (x2 (1) = X2 (#))
1-+(xq (1) = X1 (t))

where,
and

x(t) # Xa(b),

F)x(t) — le%(t) —

P(X1, X2), p(x1
Xi(t) —
2(t) G1Az(x2(t) — Xa(t)
2

40f 14

. x(h)xa(t)
l+x1 (t)

L X1(t)xa(t)
l+x1 (t)

+ G1A2x2(t),
- G]AzXz(t).

— X1, % —Xo) >
Ly(x1(t) —

(
2(8)) = (()
(

— G Az (x2(t) —

x(t) # Xa(t). (15)

Applying the absolute value on both sides, we have:

< P(x1,x2) —

{( — M — F) — Ly||x1(t) -

T+ |21 (1) = X1 (1)]]
{(Az -M,—F) -
. @

Then,
< P(x1,x2) —

T T (- X (1)
{(Az — My — B) + La||xp(t) —

to - Aa@O=X Ol

where,
< P(x1,x2) —

with:

(X1, X2), p(x1

o (4 X (t)—Xo(t
o OOy G 4, B0 1 ()
Lo[|x2(t) — X

10|l
T s e ~ Grdallxa(t) -

(X1, X2), ¢(x1
{(A — M — F) + Ly||x1 () -

Xy (1) —Xo(t X7 (t)—X t
Xl Gy, 22Uy (1) -

—X
T e + Gz llea(t) -

¢(X1, X2), ¢(x1
- { M| (1) -

N|[xa(t) —

— X1, % — X3) >

Xa1(t)]]

Xi(H|, (16)
2(1)]]

Xa(t)][%.

— X1, % —Xp) >

X1(8)]]

Xq (1), (17)
Xa(1)]]

Xa (1),

—X1,x0 — Xp) >

X1(8)|%, (18)

Xa(1)|[%,

[[x2(t) — Xa(t)]|

M= (Ay — My — Fy) + Ly||x1(t) = Xy (t)|| +«

and:

N = (Ay — My — F) + Ly||x2(t) —

1+

X (8[| +

+ G1A2Hx2(t) — X2(t)||

x1(t) — X1 ()| [? [[x1(t) — X1 ()]

() -
L[| (t) —

Xy (8)]]

G A,.
Xi(O]E

(19)

Furthermore, if we consider a given non-null vector (x1, x2), then using the some routine as the

above case, we obtain:

< 4)(3('1,3(2) -
M |x1(t) —
NJ|xa(t) —

P(X1, X2),9(x1
Xy (O x1 (D],
X (O[[lx2(B)]],

— Xy, — Xp) >
(20)
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From the results obtained in Equations (18) and (20), we conclude that the iterative method used
is stable. This complete the proof. [

Now, we consider the Adams method [29,30] to solve the system given by Equation (8). The basic
idea of the n-step Adams—Bashforth method is to use a polynomial interpolation for f(t,y(t)) passing
through n points: (¢, f;), (ti-1, fi—1), ---» (ti—n+1, fi—n+1)- Correspondingly, the n-step Adams-Moulton
method uses a polynomial 1nterpolat10n for f(t,y(t)) passing through n + 1 points: (ti11, fit1),
(i fi)s o (b fin).

The fractional Adams method is derived as follows [30]:

= 420 fhia “)+— 2 b8t f),
]:

]' ( ) j= 1)
frr1 = 0 k+1f0 W (,ZOﬂj,ng(fj/fj) + ﬂk+1,k+1g(tk+1/fzf+1)> /
= =
where,
w [ (E G E ) i=o
Aik+1 = T+ ((k=j+2)7 4 (k=) =2(k—j+1)7) 1<j<k,
1 j=k+1, (22)

hY . . .
biky1 = 7((k +1—7)7—=(k—j)7), j=0,12,..,k

Following this procedure, we can propose a numerical solution for System (8) using the Adams
method (21) as follows:

n—1 k t
n(t) = 'L 0O+ [t =07 [(Ar = My = R)xa(u) = L () - - SEEE + Guana () Jdu -
n—1 k t
salt) = L a0 + s (=7 [(42 = Ma — Faysa(s) = Laxd ) + - 2880 — Gy g .
0
3.3. Freedman Model with the Mittag—Leffler Kernel
Considering Equation (4), the modified Freedman model is given as:
S‘BCD?xl(t) = (Al — Ml — Fl)xl(t) - le%(t) — - xl( 3{ (E)) +G AzXz(t) (24)
05Dl xa(t) = (Ay — My — FBa)xp(#) — Lox3(t) 4 a - Sl

l+x1( ) — G1Azx2(t),
where 0 < 7 < 1 is the fractional order, x1 (t) represents the interaction of the majority unilingual
population and x;(t) is a bilingual population.

Now, we obtain an alternative solution using an iterative scheme. The technique involves coupling
the Sumudu transform and its inverse. The Sumudu transform is an integral transform similar to
the Laplace transform, introduced by Watugala to solve differential equations [28-32]. Applying the
Sumudu transform (6) and the inverse Sumudu transform on both sides of the system (24) yields:

n(t) = x1(0) + 57 yr(wl);( g ST[(A1 — My — ) (1) — Ly(t) — o 0200 1 Gy 4y (1)] ], o
XQ(t) :X2(0)+ST { 1=y -ST[(Aszszz)xZ(t)7L2x2( )“1’0&%(()) G Az.Xz( )]}

B(7)2T(v+1)E, (ﬂljm
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The following recursive formula for Equation (25) is obtained:

N () = X1 (0) + ST {B(’Y)’Yr(7+1)E7 (‘ﬁuﬁ

ST [(A1 — My — F)xy (1) = Lyx3 ) (1)

Xq(n) ()Xo ()
oL +G1A2x2(n)(t)”,

) 1y (26)
Oman)(H) = x1(,)(0) + ST
B(1) T (7+1)E, (-ﬁu”>
ST[ (A2 = My = Ba) o (1) — Lo, (1)
1) () %o(n) (1)
+a 2D — Gy Az (1)) ],
and the solution of Equation (26) is provided by:

x(8) = lim xq () (£); x(t) = lim xp() (£). (27)

3.4. Stability Analysis of the Iteration Method

Now, we provide in detail the stability analysis of this method and show the uniqueness of the special
solutions using the fixed point theory and properties of the inner product and the Hilbert space, respectively.

Let (X, | - |) be a Banach space and Ha self-map of X. Let z,, 11 = g(H, z,) be a particular recursive
procedure. The following conditions must be satisfied for z,, 11 = Hz,.

1.  The fixed point set of H has at least one element.
2.z, converges to a point P € F(H).
3. limy_eo xu(t) = P.
Property 1. Let (X, |- |) be a Banach space and Ha self-map of X satisfying:
[|Hx = He || < ]| X — Hl| +77[|x —2[|, (28)
forall x,z € X, where 0 < 1,0 <15 < 1. Suppose that H is Picard H-stable.

Considering the following recursive formula, we have:

_ -1 L
e () = 1) (0) 4 {B(v)WF(WJrl)EW(ll”rm)

-S [(Al - M; — Fl)xl(n) (t) — le%(n) ()
X t)x t
A %20 (1) + GlAzxz(n)(t)] },

Ty () () (29)
x2(1’1+1)(t) = xz(n) (0) —+ S_l{ 1—y
BT (r+1)Ey (*ﬁm)
S [(Az — Mz — B)xy() () — Lox3 ) (t)
X1(n (t)X n (t>
—1—04% — G1Aaxy () (t)] }r
where: 1—9 (30)

B(7)9T(y + 1)157( - ﬁm)

correspond to the fractional Lagrange multiplier.
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Theorem 2. Let K be a self-map defined as:

Ky (] = x1<n+1><f>—xl<n><f>+s1{B<y>wmf>!( )
T\ T T4

S[(Ar = My = F)ay) (1) = i () = a0 1 GrAsxo) ()] ],

—1 1—y (31)
KLty (D] = o) (£) = oy (1) + 571
B(7)7T(7+1)E, (*ﬁ'ﬂ>
) (D)X (1)
-5 [(Az — My — B2)xp() (F) — szﬁ(n)(t) + ’X% — G1Axy(y) (f)} },
is K-stable in L' (a, b) if:
1+ (A = My — B)F(7) = L[y (8) + %10y (D] (7) — « Lo 0() + GrAzk(7) < 1, )
14 (A2 — My — B)i(y) — La|xa0s) () + X0y (D)7 (7) + “%5(7) —Gi1Azo(y) <1,

where f(),d(7y),w(y),k(7),i(y),r(v),s(y) and o(y) are functions from:

= (3)

5_1{ s}.
B(7)9T (v + 1)157( - ﬁuv)

Proof. The proof consists of showing that K has a fixed point. To achieve this, we consider:

Klx1n41) (O] = Klx141) (D] = 21) (0) = 1) (0) + 51{ o
B(m)T(y+1)E, (—ﬁuv)

-5 [((A1 — My — F1)xy() (t) — (A1 — My — Fy)xq () (1)) — (lef(n)(f) + le%(m)(f))

X1(n t)—x m t))-(x n(t)_x m(t))
B ((X( 1(n)( )1+1(<x1><i))()t)(jc(1()m>(t) 2(m) > + G Az (2 (1) — xz(m)(t))} }

and:

K[x(041)(8)] = K[xa(m41) ()] = X() (0) — X2 (0) + 5_1{ —
BT+, (- )

-S [((Az — My — B2) Xy (t) — (A2 — Ma — B2) X () — (szi(n)(t) + szi(m)(t)) (34)

(x n (t)fx m (t))(x n (t)fx m (t))
+ <"‘ T e (s @ ) = G1Aa{agu) (1) = 320 (1)) }

Using the properties of the norm and considering the triangular inequality, we get:

[ KDt ) (8)] = K gy (D] < 1) (8) = 2.6y ()] + 5_1{ o
B('Y)’W(’Hl)&,(—ﬁm)

-S [((Al = My — F1)xq() (£) = (A1 — My — Fp)xq () (1)) — (le%(n)(t) + le%(m)(t)) (35)

+ <1X (x](")(t)xl('w(t)).(xz(")(t)XZ("Z)(t))> - G1A2(x2(n)(f) - xz(m)(t))} }

1+(x1(n) (t)_xl(m) (t)

we consider that the solutions play the some role, i.e., ||xa(,) (£) = %oy () || = [[x7 () (£) — X33y () ]-
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Using the linearity of the inverse Sumudu transform, we get:

K213y ()] = K210y (D] < 23y (B) = 233y ()]

+sl{ o~ ( )s(<A1 — M1 = F) [y (1) - x1<m)<t>1||)}

B(7)7T(v+1)Ey | — 25 u7

+S_1{ B(y)T( o 1 ) S<|| —L [x%(n) (t) - x%(m) ()]l |) }

Y+1)E, <7mm

(36)

—i—Sl{ 1—y
B(v)vf(%l)Ew( W)

_S<||_“< o (0GE10) (O)CEa0) (=16 (D) %100y 100 () =13 () 3300 () ey ()= (1)

1+<x1 <><1+x1 O) t 1+<x1n< <1+x1 D)

)]

Since x1(,,) (t) and x;,,)(t) are bounded, we can find the following positive constants, €, §, 0,
and p such that for all #:

+51{ 1=y S||GrAz[xy () (t) — xl(m)(t))]ll}-
B(y)T( )

Y+1)E, ( = U7

@Ol <e O < B [[1+x10 0] <p, (37)
220y ()] < 6, H1+x1 YOI <n, (n,m) € NxN.
Considering Equations (36) and (37), we obtain:
K210y ()] = K1 () (D] < 122 00) (8) = %1y (B)]]
eBte 38
-(1 (A1 = My = B)£(Y) = Ll 3y (8) + 1y (D11 (7) — 2L 0o() +clAzk<fy>>, %)
and:
1K [x2) ()] = K[x2m) (D] < [1220) (£) = X2 (1)
! € € 39
-(1+ (A2 — M — F2)i(7) = Lal () () + oy (D)7 (7) + & B () clAzo<v>), 9
where f(y),d(7),w(7v),k(7v),i(7),r(7),s(y) and o(7y) are functions from (33).
We next show that K satisfies Property 1. Consider Equations (38) and (39), yielding;:
7(0,0), 1 = 1+ (A1 = My — F) f () = Lally ) (8) + x1.3m (D) () — Eﬂ;;Jrew(’Y) + G1Azk(7),
1+ (42— Mo — E2)i(r) Lol (1) + ooy (0)Cr) + W () — Gy Azol),

We conclude that K is Picard K-stable. [

3.5. Uniqueness of the Special Solution

Theorem 3. We consider the Hilbert space H = L?((a,b) x (0,k)) that can be defined as the set of
those functions:

v:(a,b)x[0,T] =R, //uvdudv < oo. (40)
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We now consider the following operator:

(Ay — My — F)xp () — Lix2(t) — o200 4 6 4,0(p),
7(0,0), 7 = { g

(Ay — My — Bo)xp(t) — Lax(t) + oc"ifi’j%f)) — G1Axx(t),

Proof. We prove that the inner product of:

(T(xq1(t) = x12(t), x21(t) — x22(t), (w1, w2)), (41)

where (x11(t) — x12(t)), x01(t) — x22(t) are special solutions of the system. We can assume that

(r11(8) = x12(F)) = 221 (£) — x22(8).
Using the relationship between the norm and the inner function, we get:

<(A1 — My — Fy)(x11(£) = 12()) = Ly (1 (£) — 212(1))? — @222 0ar O] 4 6 45 (9 (1) - xzz(t)),aﬂ)

v (42)
X xpp ()|
< (A1 = My = B)|lxn = xnllleor || + Ll [ = xaa Plleon || + aqrd SOOI oy || + Ga sl — x| aon |
and:
<<A2 — Ma — ) (e (1) — w22(8)) = La(an (1) — wa(8))? + G220 00 G, 1y (s (1) — "”(”)"”2) (43)
< (A2 + M — B)||xa1 — xolll|wz|] + La||x22 — x|z + “%HWH + G4y |[x22 — x| |wa[;
for large number m and n, both solutions converge to the exact solution; if 7 = || X7 — Xq1||, || X1 — X12]|
and v = ||xp — x21], ||x2 — x22]|, we have:
A
n< 2 , (44)
—xpa(t
2<(A1 — My — Fp) + Ly||x11(¢) — x02(8) || + ‘X% + G1A2>
and: A
v< n , (45)
B —x1 (¢
2 ((Az + Mz — B) + La||x22(t) — x21(t)|| + “% + G1A2>
where A, and A, are two very small positive parameters.
Using the topology concept, we conclude that A, < 0 and A, < 0, where:
((Al =My — ) + Lyf|xqi (t) — xi2(8) || + D‘M + G1A2> #0,
(46)

((Az + My — F2) + La||x22(t) — x21 ()] + “% + G1A2> # 0.

X2 () —x21 ()

This completes the proof. [

Involving the Atangana-Baleanu fractional integral, we can propose a numerical solution using
the Adams-Moulton rule:

Ly fllan) = F)] v 2 [flte)
0 T (tugr)] = B(7) [ +12 } I'(y) k;){ -
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where:
bl = (k+1)7 — (k). (48)

Considering the above numerical scheme, we have:

n £) =Xy () (¢
(Ay — My — Fp) 2= 0m©

Xy(n41) (£) = X1y (B) = 2y () + {1('7)

(1 (1) (D =21 (1) (D) (H=2(,p) (1))
L <x%<n+1)(t)fx%(n)(t)) . 1(n+1)\D"¥1(n) 2X2(n+1) *2(n) 4 GiAy (x2(71+1)_x2(;1)(t))
2 T+ (eg 1) () =213 (£)) 2
(49)

(Ay — M, — Pl)xl(k+l)(t)2_x1(k)(t) — L (X%(kﬂ)(t);x%(k)(f))

+5057 Lo by -

(g (k1) (D=1 (1) (D) (¥ 1) (D) =20y ()

- 7 _ Xa(ker1) %2 ()
& T4 (e gegny (D) —x1 5 (1)) G1A2< 2 )] !

and:

n t)—=X(m) (¢
101 (A — My — By) 2o om0

L (B2t =2 () e O e DL G A (P20 ~%20n) ()
2 2 T T4+ (xy (1) () =21 () (1)) TG 2
(50)

(Ay — My — Pz)xz(k+1)(t)2_x2(k)(t) _ L2<x§(k+1)(t)2*"§(k)(t)>

+ai7 Lo by -

(1 (k1) (D=1 () (D) (41 (D= ) (1))

- 2 _ Y1) ~%2(m) ()
A R CTIGE==T0) s )] :

The proof of existence is described in detail by Alkahtani in [20].

4. Numerical Results

Example 1. We present numerical simulations of the special solution of our model using the Adams—Moulton
rule given by Equation (23) and Equations (49) and (50) for different arbitrary values of fractional order vy.
We consider Ay = 0.017; A, = 0.30; M; = 0.06; M = 0.007; L; = 0.01; L, = 0.004; F; = 0.3; F, =0.7;
G1 = 0.01; & = 0.05; and initial conditions x(0) = 10; y(0) = 10, arbitrarily chosen. The simulation time
is 10 s, and the step size used in evaluating the approximate solution was h = 0.001. The numerical results
given in Figures la—d, 2a—d, 3a—d, and 4a—d show numerical simulations of the special solution of our model as
a function of time for different values of y.

The figures show the interaction dynamics between a bilingual component and a monolingual
component of a population in a particular environment. These numerical results show the influence of
fractional order 7 in the prediction between the unilingual and bilingual population.
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Figure 1. Numerical simulation for the nonlinear Freedman model via Liouville-Caputo fractional
operator. In (a,c), the prediction between the two populations for y = 1 (classical case) and y = 0.9.
In (b,d), the interaction between the unilingual and bilingual population for y = 1 (classical case) and
v =09.
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Figure 2. Numerical simulation for the nonlinear Freedman model via Liouville-Caputo fractional
operator. In (a,c), the prediction between the two populations for y = 0.8 and v = 0.7. In (b,d), the
interaction between the unilingual and bilingual population for v = 0.8 (classical case) and v = 0.7.
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Figure 3. Numerical simulation for the nonlinear Freedman model via Atangana-Baleanu—Caputo
fractional operator. In (a,c), the prediction between the two populations for v = 1 (classical case) and
v = 0.9. In (b,d), the interaction between the unilingual and bilingual population for ¢ = 1 (classical
case) and y = 0.9.
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Figure 4. Numerical simulation for the nonlinear Freedman model via Atangana-Baleanu—Caputo
fractional operator. In (a,c), the prediction between the two populations for v = 0.8 and v = 0.7.
In (b,d), the interaction between the unilingual and bilingual population for v = 0.8 (classical case)
and v =0.7.
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5. Conclusions

A Freedman model was considered using the fractional derivatives of the Liouville-Caputo
and Atangana—-Baleanu—Caputo types. The solutions of the alternative models were obtained using
an iterative scheme based on the Laplace transform and the Sumudu transform. Furthermore, we
employed the fixed point theorem to study the stability analysis of the iterative methods, and using
properties of the inner product and the Hilbert space, the uniqueness of the special solution was
presented in detail. Additionally, special solutions via the Adams—-Moulton rule were obtained for both
fractional derivatives. The results obtained using the Liouville-Caputo and Atangana-Baleanu-Caputo
derivatives are exactly the same as the ordinary case. However, as vy takes values smaller than one,
the results obtained become a little different, having a remarkable difference when v < 0.9. This is due
to the kernel involved in the definitions of the fractional derivative. The computer used for obtaining
the results in this paper is an Intel Core i7, 2.6-GHz processor, 16.0 GB RAM (MATLAB R.2013a).
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