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Abstract: The introduction of fractional-order derivatives to epidemiological compartment models,
such as SIR models, has attracted much attention. When this introduction is done in an ad hoc manner,
it is difficult to reconcile parameters in the resulting fractional-order equations with the dynamics
of individuals. This issue is circumvented by deriving fractional-order models from an underlying
stochastic process. Here, we derive a fractional-order infectivity and recovery Susceptible Infectious
Recovered (SIR) model from the stochastic process of a continuous-time random walk (CTRW)
that incorporates a time-since-infection dependence on both the infectivity and the recovery of the
population. By considering a power-law dependence in the infectivity and recovery, fractional-order
derivatives appear in the generalised master equations that govern the evolution of the SIR
populations. Under the appropriate limits, this fractional-order infectivity and recovery model
reduces to both the standard SIR model and the fractional recovery SIR model.
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1. Introduction

The classic SIR epidemiological model was originally introduced by Kermack and McKendrick in
1927 [1]. This ordinary differential equation (ODE) system models the spread of an epidemic through
a population. The SIR model was generalised in the following decade by Kermack and McKendrick
to allow for age dependencies in disease transmission [2,3]. Since Kermack and McKendrick, the SIR
model has become widely used for modelling a range of diseases and has been extended to allow for
re-infection, latent infections and the interaction of species [4,5]. More recently, there has been increased
interest in the extension of SIR models through the incorporation of fractional derivatives [6–12].

In an SIR model, the population is split into three compartments, those susceptible (S) to the
disease, those infected (I), and those recovered (R) from the disease [1]. In a stochastic process view
of an SIR model, individuals begin in the susceptible compartment and transition into the infected
compartment with some probability after coming into contact with an infected individual. Infected
individuals then transition probabilistically to the recovered compartment. For the standard SIR model,
these probabilities are related to exponential waiting-time densities. The model can be constructed as
a directed continuous-time random walk (CTRW) through the SIR compartments [10,11,13].

Some disease processes are dependent on both the current state of the system and its history [14].
The classic SIR model cannot accomodate this; however, the age-structured models of Kermack and
McKendrick [2,3] can model such diseases. Fractional time derivatives, which include integrals over
the function’s history, can also be used to incorporate the system’s history [6–11]. The generalisation of
an integer-order derivative to a fractional derivative is not unique, with typical examples being the
Caputo derivative and Riemann–Liouville derivative [15]. Typically, fractional derivatives have been
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incorporated into compartment models by simply replacing the integer-order derivatives with Caputo
derivatives [6]. Whilst such models may be able to be fitted to data, the underlying assumptions, such
as the positivity of certain parameters and dimensional agreement, can be violated [13,16,17].

Fractional derivatives have recently been included in compartment models in a physically
consistent way by modelling the dynamics of transitions between compartments as a stochastic
process, a CTRW [10,11,13]. The parameters in the resulting fractional-order equations are well-defined
and consistent with the dynamics of the individuals in the population. Moreover, these fractional-order
equations are guaranteed to be dimensionally consistent.

In this paper, we extend the stochastic process derivation to allow for fractional-order infectivity
and fractional-order recovery. In Section 2, we derive the governing master equations of an SIR
model from a stochastic process with general history-dependent infectivity and recovery. In Section 3,
we consider particular forms of the infectivity and recovery such that the governing equations will
contain fractional derivatives. In Section 4, we consider the limits under which the fractional-order
infectivity and recovery SIR model reduce back to the classic and fractional recovery SIR models.
In Section 5, we derive the steady states of the fractional-order infectivity and recovery SIR model.

2. Derivation

We incorporate both a fractional-order infectivity and recovery into an SIR model by
deriving the master equations for a stochastic SIR model with age since infection dependences.
We consider a generalised CTRW through three compartments, those susceptible (S) to the infection,
those infectious (I) with the infection, and those recovered (R) from the infection. An individual is born
into the S compartment. They wait a random amount of time in each compartment before moving to the
next compartment. The individual may die in any compartment and be removed from consideration.
Here, we derive the master equations for the time evolution of an ensemble of individuals undergoing
these dynamics.

Considering an individual who has been infectious since time t′, the probability this infectious
individual will infect a particular susceptible person in the time interval t to t + δt is σ(t, t′)δt + o(δt).
The transmission rate per infected individual, σ(t, t′), is dependent on both how long the individual
has been infectious, t− t′, and the current time, t. If there are S(t) susceptible individuals at time t,
then in the time interval t to t + δt, the expected number of new infections per infected individual will
be σ(t, t′)S(t)δt + o(δt).

The probability that an individual who is infected at time t′ is still infected at time t is given by
the survival function Φ(t, t′). For an individual to become infected at time t, they must come into
contact with an individual who has become infected already. The flux of individuals into the infected
compartment I at time t is denoted by q+(I, t) and is therefore constructed recursively via

q+(I, t) =
∫ t

−∞
σ(t, t′)S(t)Φ(t, t′)q+(I, t′)dt′ (1)

Initial conditions are given as the number of individuals who are infected at time 0 and how long
each individual has been infected. This is given by the function i(−t′, 0) that represents the number of
individuals that are still infected at time 0 who were originally infected at some earlier time t′; hence,

q+(I, t′) =
i(−t′, 0)
Φ(0, t′)

, t′ < 0 (2)

Equation (1) can then be written as follows:

q+(I, t) =
∫ t

0
σ(t, t′)S(t)Φ(t, t′)q+(I, t′)dt′ +

∫ 0

−∞
σ(t, t′)S(t)

Φ(t, t′)
Φ(0, t′)

i(−t′, 0)dt′ (3)
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We assume that the rate of infection, σ(t, t′), is a function of both the current time, t, and the time
since infection, t− t′. This accounts for both time-dependent extrinsic changes as well as the intrinsic
change in the infectivity of the disease over its natural course. As such, we may write

σ(t, t′) = ω(t)ρ(t− t′) (4)

where ω(t) ≥ 0 is the extrinsic infectivity and ρ(t) ≥ 0 is the intrinsic infectivity. An individual may
only leave the infected compartment by either dying or recovering from the disease. Assuming that
these processes are independent, the survival function for remaining in the infectious compartment
can be written as follows:

Φ(t, t′) = φ(t− t′)θ(t, t′) (5)

Here, φ(t− t′) is the probability that an individual has not recovered and transitioned to the
R compartment by time t given that they were infected at an earlier time t′. Similarly θ(t, t′) is the
probability that an individual has not died by time t given that they were infected at the earlier time t′.
We assume that the survival function of the death process takes the following form:

θ(t, t′) = e−
∫ t

t′ γ(u)du (6)

and hence,
θ(t, t′) = θ(t, u)θ(u, t′), ∀ t′ < u < t (7)

Individuals in the infected compartment at time t must have arrived in the compartment at
some earlier time and not left the compartment. We can therefore express the number of individuals
in the infectious compartment via the flux into the compartment and the survival function, to give
the following:

I(t) = I0(t) +
∫ t

0
Φ(t, t′)q+(I, t′)dt′ (8)

The function I0(t) gives the number of individuals who were infected at time 0 who are still
infected at time t. In terms of the initial condition function, i(−t′, 0), this can be written as follows:

I0(t) =
∫ 0

−∞

Φ(t, t′)
Φ(0, t′)

i(−t′, 0)dt′ (9)

The master equations are derived by differentiating Equation (8). This yields

dI(t)
dt

= q+(I, t)−
∫ t

0
ψ(t− t′)θ(t, t′)q+(I, t′)dt′ − γ(t)

∫ t

0
φ(t− t′)θ(t, t′)q+(I, t′)dt′ +

dI0(t)
dt

(10)

where ψ(t) = − dφ(t)
dt is the probability density function related to φ(t). Using Equations (3)–(5),

Equation (10) can be written as follows:

dI(t)
dt

= ω(t)S(t)
(∫ t

0
ρ(t− t′)Φ(t, t′)q+(I, t′)dt′ +

∫ 0

−∞
ρ(t− t′)

Φ(t, t′)
Φ(0, t′)

i(−t′, 0)dt′
)

−
∫ t

0
ψ(t− t′)θ(t, t′)q+(I, t′)dt′ + θ(t, 0)

d
dt

(
I0(t)

θ(t, 0)

)
− γ(t)I(t)

(11)

A generalised master equation can be obtained by removing the dependence on q+(I, t) in the
above equation. Using Equation (7), Equation (8) can be rewritten as

I(t)
θ(t, 0)

=
I0(t)

θ(t, 0)
+
∫ t

0
φ(t− t′)

q+(I, t′)
θ(t′, 0)

dt′ (12)
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As this is now in the form of a convolution, taking a Laplace transform from t to s, L{·}, then gives

L
{

I(t)− I0(t)
θ(t, 0)

}
= L{φ(t)}L

{
q+(I, t)
θ(t, 0)

}
(13)

Again, using Equation (7), the first integral of Equation (11) can be rewritten using Laplace
transforms as

L
{∫ t

0
ρ(t− t′)φ(t− t′)

q+(I, t′)
θ(t′, 0)

dt′
}
= L{ρ(t)φ(t)}L

{
q+(I, t)
θ(t, 0)

}
(14)

Making use of Equation (13), this becomes

L{ρ(t)φ(t)}L
{

q+(I, t)
θ(t, 0)

}
=
L{ρ(t)φ(t)}
L {φ(t)} L

{
I(t)− I0(t)

θ(t, 0)

}
= L

{∫ t

0
KI(t− t′)

I(t′)− I0(t′)
θ(t′, 0)

dt′
} (15)

Here, we have defined the infectivity memory kernel as

KI(t) = L−1
{
L{ρ(t)φ(t)}
L{φ(t)}

}
(16)

where L−1{·} defines the inverse Laplace transform from s to t. Once again, using Equation (7),
the third integral of Equation (11) can similarly be rewritten using Laplace transforms as

L
{∫ t

0
ψ(t− t′)

q+(I, t′)
θ(t′, 0)

dt′
}
= L{ψ(t)}L

{
q+(I, t)
θ(t, 0)

}
(17)

Making use of Equation (13), this becomes

L{ψ(t)}L
{

q+(I, t)
θ(t, 0)

}
=
L{ψ(t)}
L {φ(t)}L

{
I(t)− I0(t)

θ(t, 0)

}
= L

{∫ t

0
KR(t− t′)

I(t′)− I0(t′)
θ(t′, 0)

dt′
} (18)

Here, we have defined the recovery memory kernel:

KR(t) = L−1
{
L{ψ(t)}
L{φ(t)}

}
(19)

Using Equations (15) and (18), Equation (11) becomes the master equation for the infectious compartment:

dI(t)
dt

= ω(t)S(t)
(

θ(t, 0)
∫ t

0
KI(t− t′)

I(t′)− I0(t′)
θ(t′, 0)

dt′ +
∫ 0

−∞
ρ(t− t′)

Φ(t, t′)
Φ(0, t′)

i(−t′, 0)dt′
)

− θ(t, 0)
(∫ t

0
KR(t− t′)

I(t′)− I0(t′)
θ(t′, 0)

dt′ − d
dt

(
I0(t)

θ(t, 0)

))
− γ(t)I(t)

(20)

This equation governs the time evolution of the number of individuals in the infectious
compartment. All individuals who enter the infectious compartment must have previously been
susceptible. Taking this into account, we may write the master equation for the susceptible
compartment, with the addition of the vital dynamics, as

dS(t)
dt

= λ(t)−ω(t)S(t)
(

θ(t, 0)
∫ t

0
KI(t− t′)

I(t′)− I0(t′)
θ(t′, 0)

dt′ +
∫ 0

−∞
ρ(t− t′)

Φ(t, t′)
Φ(0, t′)

i(−t′, 0)dt′
)

− γ(t)S(t)
(21)
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where λ(t) ≥ 0 is the flux into the compartment due to births. The per capita death rate is assumed to
be the same as that for the infectious compartment. Similarly, considering that individuals who enter
the recovered compartment must have left the infectious compartment, we write the master equation
for the recovered compartment as

dR(t)
dt

= θ(t, 0)
(∫ t

0
KR(t− t′)

I(t′)− I0(t′)
θ(t′, 0)

dt′ − d
dt

(
I0(t)

θ(t, 0)

))
− γ(t)R(t) (22)

Together, Equations (21)–(22) are the master equations for an SIR model with both time-since-
infection-dependent infectivity and recovery. These equations are simplified by taking the initial
conditions to be i(−t, 0) = i0δ(−t), where δ(t) is the Dirac delta function and i0 is a constant. With these
choices, we can write ∫ 0

−∞
ρ(t− t′)

Φ(t, t′)
Φ(0, t′)

i(−t′, 0)dt = ρ(t)i0Φ(t, 0) (23)

This leads to simplifications, and our full set of SIR master equations become

dS(t)
dt

= λ(t)−ω(t)S(t)θ(t, 0)
∫ t

0
KI(t− t′)

I(t′)
θ(t′, 0)

dt′ − γ(t)S(t) (24)

dI(t)
dt

= ω(t)S(t)θ(t, 0)
∫ t

0
KI(t− t′)

I(t′)
θ(t′, 0)

dt′ − θ(t, 0)
∫ t

0
KR(t− t′)

I(t′)
θ(t′, 0)

dt′ − γ(t)I(t) (25)

dR(t)
dt

= θ(t, 0)
∫ t

0
KR(t− t′)

I(t′)
θ(t′, 0)

dt′ − γ(t)R(t) (26)

Henceforth, we use the master equations with Dirac delta initial conditions for simplicity.

3. Fractional Infectivity and Recovery SIR

We incorporate fractional derivatives into both the infective and recovery terms by choosing
ψ(t) to be power-law distributed and ρ(t) related to our choice of ψ(t). In particular, we take ψ(t) to be
Mittag–Leffler distributed [18]:

ψ(t) =
tα−1

τα
Eα,α

(
−
(

t
τ

)α)
(27)

for 0 < α ≤ 1, where τ is a scaling parameter. This distribution has a power-law tail, such that
ψ(t) ∼ t−1−α for large values of t. Here, Eα,β(z) is the two-parameter Mittag–Leffler function, given by

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
(28)

The corresponding survival function φ(t) is

φ(t) = Eα,1

(
−
(

t
τ

)α)
(29)

The Laplace transform of the recovery memory kernel, Equation (19), with Mittag–Leffer
distributed ψ(t), is given by

L{KR(t)} =
L{ψ(t)}
L{φ(t)} = s1−ατ−α (30)

To express the inverse Laplace transform in the above equation, we consider the form of a Laplace
transform of a fractional derivative [19]:

0D1−α
t f (t) = L−1{s1−αLt{ f (t)}} (31)
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for f (t) that is smooth around the origin, where

0D1−α
t f (t) =

1
Γ(α)

d
dt

∫ t

0
(t− t′)α−1 f (t′)dt′ (32)

is the definition of the Riemann–Liouville fractional derivative. With this, a convolution with the
recovery memory kernel can be written as

∫ t

0
KR(t− t′)

I(t′)
θ(t′, 0)

dt′ = τ−α
0D1−α

t

(
I(t)

θ(t, 0)

)
(33)

A fractional derivative can be incorporated into the infectivity if the infective memory kernel,
Equation (16), has a Laplace transform similar to Equation (30). This is satisfied by taking ρ(t)
of the following form:

ρ(t) =
1

φ(t)
tβ−1

τβ
Eα,β

(
−
(

t
τ

)α)
(34)

where φ(t) is defined in Equation (29). As we require ρ(t) ≥ 0, we must constrain α and β such that
0 < α ≤ β ≤ 1. This constraint is easily verifiable for β = α, as ρ(t) can be reduced to

ρ(t) =
1

φ(t)
tα−1

τα
Eα,α

(
−
(

t
τ

)α)
=

ψ(t)
φ(t)

(35)

where ψ(t), as defined in Equation (27), and φ(t) are both positive functions. It is also possible to
express Equation (34) using fractional derivatives as

ρ(t) =
τ−β

φ(t) 0D
1−β
t φ(t) (36)

Using this form, it is clearer to see that the Laplace transform of the infectivity memory kernel becomes

L{KI(t)} =
L{ρ(t)φ(t)}
L{φ(t)} =

τ−βs1−βL{φ(t)}
L{φ(t)} = s1−βτ−β (37)

Using the relation between the Riemann–Liouville fractional derivative and its inverse Laplace
transform, Equation (31), we are able to express the first integral of Equation (25) as

∫ t

0
KI(t− t′)

I(t′)
θ(t′, 0)

dt′ = τ−β
0D

1−β
t

(
I(t)

θ(t, 0)

)
(38)

Substituting Equations (33) and (38) into the master Equations (24)–(26) yields the fractional-order
infectivity and recovery SIR model:

dS(t)
dt

= λ(t)− ω(t)S(t)θ(t, 0)
τβ 0D

1−β
t

(
I(t)

θ(t, 0)

)
− γ(t)S(t) (39)

dI(t)
dt

=
ω(t)S(t)θ(t, 0)

τβ 0D
1−β
t

(
I(t)

θ(t, 0)

)
− θ(t, 0)

τα 0D1−α
t

(
I(t)

θ(t, 0)

)
− γ(t)I(t) (40)

dR(t)
dt

=
θ(t, 0)

τα 0D1−α
t

(
I(t)

θ(t, 0)

)
− γ(t)R(t) (41)

4. Reduction to Classic and Fractional Recovery SIR Models

Both the classic SIR and fractional recovery model are special cases of our derived
Equations (39)–(41). In this section, we consider the parameters required for the classic and fractional
recovery SIR and how they relate to the generalised fractional model we have derived above. The classic
SIR model can be obtained by taking constant functions for the birth-, death- and time-dependent
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infectivity rates, that is, λ(t) = λ, γ(t) = γ and ω(t) = ω, respectively, and by taking the limit as
α, β→ 1. Noting that the limit is

lim
α→1

0D1−α
t

(
I(t)

θ(t, 0)

)
=

I(t)
θ(t, 0)

(42)

we obtain the classic SIR equations:

dS(t)
dt

= λ− ω

τ
S(t)I(t)− γS(t) (43)

dI(t)
dt

=
ω

τ
S(t)I(t)− 1

τ
I(t)− γI(t) (44)

dR(t)
dt

=
1
τ

I(t)− γR(t) (45)

By considering the relationship between the fractional exponents α and β and Equations (29) and (36),
we gain insight into the underlying stochastic process of the classic SIR model. For α = 1,
the waiting-time function, Equation (29), reduces to an exponential function:

φ(t) = e−
t
τ (46)

Taking the limit β → 1 to the age of infection-dependent infectivity, Equation (36)
becomes a constant:

ρ(t) = lim
β→1

τ−β

φ(t) 0D
1−β
t φ(t) =

1
τ

(47)

We note that this limit is independent of the form of φ(t).
In a similar fashion, we obtain the fractional recovery SIR model [10] by taking the limit β→ 1

whilst leaving 0 < α ≤ 1. Making use of the limit in Equation (42) and the functional form of ρ(t) from
Equation (47), we obtain

dS(t)
dt

= λ(t)− ω

τ
S(t)I(t)− γ(t)S(t) (48)

dI(t)
dt

=
ω

τ
S(t)I(t)− θ(t, 0)

τα 0D1−α
t

(
I(t)

θ(t, 0)

)
− γ(t)I(t) (49)

dR(t)
dt

=
θ(t, 0)

τα 0D1−α
t

(
I(t)

θ(t, 0)

)
− γ(t)R(t) (50)

While the fractional recovery SIR model can be obtained from the general fractional infectivity
and fractional recovery SIR model, we are unable to obtain the fractional infectivity SIR model
[11]. The fractional infectivity SIR model requires α = 1 and 0 < β < 1; hence β < α violates our
non-negativity conditions for ρ(t). A different form of ρ(t) was considered in [11]. The form of the
fractional infectivity in [11] could not readily be generalized to include a fractional recovery. Thus the
model here with both fractional recovery and fractional infectivity provides an alternate form of
fractional infectivity. The choice of which type of fractional infectivity model should be used could
only be decided by comparisons with data.

5. Equilibrium State Analysis

The set of fractional-order infectivity and recovery SIR Equations (39)–(41) are a non-autonomous
dynamical system because of both the history dependence of the fractional derivative and the time
dependence of the parameters. To find the equilibrium states, we simplify the model by taking all
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time-dependent parameters to be constants, that is, λ(t) = λ, γ(t) = γ and ω(t) = ω. Hence the
simplified master equations become

dS(t)
dt

= λ− ωS(t)θ(t, 0)
τβ 0D

1−β
t

(
I(t)

θ(t, 0)

)
− γS(t) (51)

dI(t)
dt

=
ωS(t)θ(t, 0)

τβ 0D
1−β
t

(
I(t)

θ(t, 0)

)
− θ(t, 0)

τα 0D1−α
t

(
I(t)

θ(t, 0)

)
− γI(t) (52)

dR(t)
dt

=
θ(t, 0)

τα 0D1−α
t

(
I(t)

θ(t, 0)

)
− γR(t) (53)

The constant recovery rate allows us to write Equation (6) as

θ(t, 0) = e−γt (54)

For an equilibrium state (S∗, I∗, R∗) to exist, the following limits must exist:

lim
t→∞

S(t) = S∗, lim
t→∞

I(t) = I∗, lim
t→∞

R(t) = R∗ (55)

Taking the limit as t→ ∞, Equations (51)–(53) reduce to

0 = λ− lim
t→∞

ωτ−βS(t)e−γt
0D

1−β
t

(
eγt I(t)

)
− γS∗ (56)

0 = lim
t→∞

ωτ−βS(t)e−γt
0D

1−β
t

(
eγt I(t)

)
− lim

t→∞
e−γtτ−α

0D1−α
t

(
eγt I(t)

)
− γI∗ (57)

0 = lim
t→∞

e−γtτ−α
0D1−α

t
(
eγt I(t)

)
− γR∗ (58)

We use the result of [10] to evaluate the limit:

lim
t→∞

e−γt
0D1−α

t
(
eγt I(t)

)
= γ1−α I∗ (59)

The remaining limit can be split into

lim
t→∞

S(t)e−γt
0D

1−β
t

(
eγt I(t)

)
=

(
lim
t→∞

S(t)
)(

lim
t→∞

e−γt
0D

1−β
t

(
eγt I(t)

))
(60)

Then using the limit in Equation (55) we have

lim
t→∞

S(t)e−γt
0D

1−β
t

(
eγt I(t)

)
= γ1−βS∗ I∗ (61)

Substituting Equation (61) into Equations (56)–(58) yields

0 = λ−ωτ−βγ1−βS∗ I∗ − γS∗ (62)

0 = ωτ−βγ1−βS∗ I∗ − τ−αγ1−α I∗ − γI∗ (63)

0 = τ−αγ1−α I∗ − γR∗ (64)

These equations permit two distinct equilibrium states, a disease-free state:

S∗ =
λ

γ
, I∗ = 0, R∗ = 0 (65)

and an endemic state:

S∗ = (τγ)−α+1
ω(τγ)−β , I∗ = λ

γ((τγ)−α+1)
− 1

ω(τγ)−β , R∗ = (τγ)−α

(
λ

γ((τγ)−α+1)
− 1

ω(τγ)−β

)
(66)
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For all valid values of the parameters, the disease-free state will give non-negative populations
and hence be physically obtainable. The same is not true of the endemic state, which is only physically
obtainable if

λω

(τγ)−α + 1
> τβγβ+1 (67)

In the case for which α = β = 1, the equilibrium states recover the equilibrium states of the
standard SIR ODE model with vital dynamics. We expect that the endemic state will be asymptotically
stable when it is physically obtainable in a similar manner to the endemic state for the fractional recovery
SIR model [10].

Basic Reproduction Number

It is also possible to calculate the basic reproduction number for this model. This is defined as
the expected number of individuals who will become infected from a single infectious individual in
an otherwise uninfected population. This can be calculated from

R0 =
∫ ∞

0

ωNθ(t, 0)
τβ 0D

1−β
t

(
I0(t)

θ(t, 0)

)
(68)

where N is the total equilibrium population. From Equation (9), with i(−t, 0) = δ(−t), we have

I0(t) = e−γtEα,1

(
−
(

t
τ

)α)
(69)

It is then left to solve

R0 =
∫ ∞

0

ωNe−γt

τβ 0D
1−β
t

(
Eα,1

(
−
(

t
τ

)α))
(70)

The fractional derivative of the Mittag–Leffler function is well known, and hence this can be
simplified to

R0 =
∫ ∞

0

ωNe−γt

τβ
tβ−1Eα,β

(
−
(

t
τ

)α)
(71)

This integral is now in a standard form and has the solution [20]:

R0 =
ωN
τβ

(
γα−β

γα + τ−α

)
(72)

We can also rewrite the existence criterion for the endemic steady state, Equation (67), in terms of
R0, by noting that the equilibrium population is N = λ

γ , giving

R0 > 1 (73)

6. Summary and Discussion

In this work, we have derived a fractional-order infectivity and recovery model using a stochastic
process. The fractional derivatives arise as a consequence of taking an age of infection-dependent
infectivity and recovery to be power-law-distributed. In doing so, we have shown how to incorporate
fractional derivatives into the model without violating the physicality of the parameters of the model.
Under appropriate limits, we are able to simplify this generalised fractional model to the fractional
recovery and classic SIR models. We have shown the conditions under which an endemic steady state
exists. Whilst the fractional-order models here are well-defined, the fractional derivatives originate
from power law assumptions, and these assumptions need to be tested by fitting to data. Some methods
for fitting fractional-order equations to data have been proposed in [21], and this could be a useful
starting point for further work.
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