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1. Introduction

The present work describes the results of a numerical experiment based on the approximate prime
counting function presented in [1]. By searching for a visual representation for the distribution of
primes different to the well known staircase plots of the prime counting function, the authors used
regular polygons and their relation to prime numbers as described in [2]. In doing so, fractal polygons
and curves have been derived which will be presented in the following.

The distribution of prime numbers is one of the central problems in analytic number theory.
Here, the prime counting function π(x), giving the number of primes less or equal to x ∈ R, is of
special interest. As stated in [3]: when the large-scale distribution of primes is considered, it appears in
many ways quite regular and obeys simple laws. One of the first central results regarding the asymptotic
distribution of primes is given by the prime number theorem, providing the limit

lim
x→∞

π(x)
x/ ln x

= 1, (1)

which was proved independently in 1896 by Jacques Salomon Hadamard and Charles-Jean de La Vallée
Poussin. Both proofs are based on complex analysis using the Riemann zeta function ζ(s) := ∑∞

n=1 1/ns,
with s ∈ C and the fact that ζ(s) 6= 0 for all s := 1 + iy, y > 0.

An improved approximation of π(x) is given by the Eulerian logarithmic integral

Li(x) :=
∫ x

2

dt
ln t

. (2)

This result was first mentioned by Carl Friedrich Gauß in 1849 in a letter to Encke refining the
estimate n/ ln(n) of π(n) given by the only 15 years old Gauß in 1792. This conjecture was also stated
by Legendre in 1798.

Fractal Fract. 2017, 1, 10; doi:10.3390/fractalfract1010010 www.mdpi.com/journal/fractalfract

http://www.mdpi.com/journal/fractalfract
http://www.mdpi.com
http://dx.doi.org/10.3390/fractalfract1010010
http://www.mdpi.com/journal/fractalfract


Fractal Fract. 2017, 1, 10 2 of 10

In 2007 Terence Tao gave an informal sketch of proof in his lecture “Structure and randomness in
the prime numbers” as follows [4]:

• Create a “sound wave” (or more precisely, the von Mangoldt function) which is noisy at prime number
times, and quiet at other times. [...]

• “Listen” (or take Fourier transforms) to this wave and record the notes that you hear (the zeroes of the
Riemann zeta function, or the “music of the primes”). Each such note corresponds to a hidden pattern in
the distribution of the primes.

In the same spirit, the present work tries to paint a picture of the primes. By combining an
alternative approximation of the prime counting function π(x) based on an additive function as
proposed in [1] with prime number related Fourier polygons used in the context of regularizing
polygon transformations as given in [2,5], fractal prime polygons and fractal prime curves are derived.

Three types of structures in the distribution of prime numbers are distinguished in [6]. The first is
local structure, like residue classes or arithmetic progression [7]. The second is asymptotic structure as
provided by the prime number theorem. The third is statistical structure as described for example in [8]
reporting an empirical evidence of fractal behavior in the distribution of primes or [9] describing fractal
fluctuations in the spacing intervals of adjacent prime numbers generic to diverse dynamical systems
in nature. Quasi self similar structures in the distribution of differences of prime-indexed primes with
scaling by prime-index order have been observed in [6]. The distribution of primes and prime-indexed
primes is studied in [10] by mapping primes into a binary image. It is observed that the recurrence
plots of prime distribution are similar to the Cantor dust. In the present work, the asymptotic structure
becomes visually apparent by the given fractals.

2. Approximations of the Prime Counting Function

This section presents briefly the prime counting function and its classic approximations.
Furthermore, an approximate prime counting function based on an additive function is described
which yields the starting point in deriving prime related fractals.

Let N := {1, 2, 3, . . . } denote the set of natural numbers, N0 := N∪{0}, and pk the kth prime number
with k ∈ N, i.e., p1 := 2, p2 := 3, p3 := 5, etc. For x ∈ R, the prime counting function is defined as

π(x) :=

{
0 if x < 2,

max{k ∈ N | pk ≤ x} else.
(3)

According to the prime number theorem, π(x) can be approximated by x/ ln(x), i.e., (1) holds
which will be denoted as π(x) ∼ x/ ln(x). An improved approximation is given by the Eulerian
logarithmic integral (2), i.e., π(x) ∼ Li(x). The graphs of the prime counting function and its two
approximations are depicted in Figure 1 for x ∈ [0, 100].
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Figure 1. The prime counting function π(x) and its approximations.

An alternative approximation of π(x) is proposed in [1]. Its definition is based on an additive
function which will be given in the following. Each n ∈ N \ {1} can be written as prime factorization
n = ∏k∈I(n) pαk(n)

k with the prime numbers pk and their associated multiplicities αk(n) ∈ N. Here,
I(n) denotes the index set of the prime numbers which are part of the factorization of n. For example,
for 50 = 21 × 52 it holds that I(n) = {1, 3} and α1(50) = 1, α3(50) = 2.

An additive function βα : N → N0 is given by the sum of all prime factors multiplied by their
associated multiplicities, i.e.,

βα(n) :=

{
0 for n = 1,

∑k∈I(n) αk(n)pk otherwise.
(4)

Here, additive function means that n1, n2 ∈ N implies βα(n1n2) = βα(n1) + βα(n2). Furthermore,
for prime numbers it follows readily that βα(pk) = pk, k ∈ N. The arithmetic properties of the function
βα(n) are discussed in [11]. Here, this function, also known as integer logarithm, is denoted as A(n).

Summing βα(n) for all n less or equal to a given real number x > 0 and applying proper scaling
leads to the definition of

βαδ(x) :=
12

π2x ∑
n∈N,n≤x

βα(n) . (5)

The graph of βαδ(x) is depicted red in Figure 1. As a central result, it has been shown in [1] that
βαδ(x) ∼ π(x) which is due to the representation

Bα(x) := ∑
n∈N,n≤x

βα(n) =
π2

12
x2

ln x
+O

(
x2

ln2 x

)
. (6)

This approximation of the prime counting function provides the first ingredient for deriving
prime related fractals. The second ingredient is given by the following section.

3. Polygon Transformations and Fourier Polygons

Regular polygons and their relation to prime numbers are described in [2] in the context of
regularizing polygon transformations. Such transformations, also generalized in [5], are based on
constructing similar triangles on the sides of the polygon to transform. By iteratively applying the
transformation, regular polygons are obtained for specific choices of the transformation parameters.
Here, a point of a planar polygon can be represented by a complex number, the polygon itself by a
vector of complex numbers. As is described briefly in this section, regularizing transformations can be
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represented by circulant matrices. Hence they are diagonalizable by the discrete Fourier matrix and the
limit polygons are linear combinations of column vectors of the discrete Fourier matrix. These column
vectors represent regular polygons which are denoted as Fourier polygons. This section gives a short
introduction to regularizing polygon transformations and the theoretical background which builds the
foundation for a specific choice of basis functions in finding an alternative geometric representation
for visualizing polygons and curves related to the distribution of primes.

For a given n ∈ N, n ≥ 3, let z = (z0, . . . , zn−1)
t ∈ Cn denote an arbitrary polygon in the complex

plane. In the following, all indices have to be taken modulo n. In the first transformation substep,
the similar triangles constructed on each directed side zkzk+1, k ∈ {0, . . . , n − 1}, of the polygon
are parameterized by a prescribed side subdivision ratio λ ∈ (0, 1) and a base angle θ ∈ (0, π/2).
This is done by constructing the perpendicular to the right of the side at the subdivision point
λzk + (1− λ)zk+1. On this perpendicular, a new polygon vertex z′k+1 is chosen in such a way that the
triangle side zkz′k+1 and the polygon side zkzk+1 enclose the prescribed angle θ. This is depicted on the
left side of Figure 2 for an initial polygon with vertices zk marked black. The construction of the first
transformation substep leads to a new polygon with vertices z′k marked blue. The subdivision points,
located on the edges of the initial polygon, are marked by white circles, the associated perpendiculars
by dashed lines, and the angles θ by grey arcs. In the given example, the transformation parameters
have been set to λ = 1/3 and θ = π/5.

Figure 2. Transformation of an initial polygon by two substeps based on similar triangles.

The rotational effect of the first transformation substep is compensated by applying a second
transformation substep with flipped similar triangles as is depicted on the right side of Figure 2.
Starting from the vertices z′k of the first transformation substep marked blue, this results in the polygon
with vertices z′′k depicted red. As has been shown in [5], for w := λ + i(1− λ) tan θ, the new polygon
vertices obtained by applying these two substeps are given by

z′k+1 := wzk + (1− w)zk+1 and z′′k := (1− w)z′k + wz′k+1 ,

respectively, where w denotes the complex conjugate of w. Both substeps are linear mappings in Cn

and the combined mapping is given by the matrix representation

z′′ = Mz, where Mj,k :=


|1− w|2 + |w|2 if j = k,

w(1− w) if j = k + 1,

w(1− w) if k = j + 1,

0 otherwise,

(7)

with j, k ∈ {0, . . . , n− 1}.
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The transformation matrix M is circulant and Hermitian [5]. Hence, with r := exp(2πi/n) denoting
the nth root of unity, it holds that M is diagonalized by the n× n unitary discrete Fourier matrix

F :=
1√
n

 r0·0 . . . r0·(n−1)

...
. . .

...
r(n−1)·0 . . . r(n−1)·(n−1)

 (8)

with entries Fj,k = rjk/
√

n and zero-based indices j, k ∈ {0, . . . , n− 1} [12].
Let z(`) := M`z denote the polygon obtained by applying the transformation ` times. If ` tends

to infinity, the shape of the scaled limit polygon z(∞) depends on the dominating eigenvalue of M
and the associated column of F. In the following, such a kth column of F is denoted as the kth Fourier
polygon, i.e.,

fk :=
(

r0·k, . . . , r(n−1)·k
)t

, k ∈ {0, . . . , n− 1} . (9)

Hence, the Fourier polygons are the prototypes of the limit polygons obtained by iteratively
applying M. A full classification of these limit polygons with respect to the choice of the transformation
parameters λ and θ is given in [5]. Such transformations leading to regular polygons can for example
be used in finite element mesh smoothing [13]. Furthermore, similar smoothing schemes can also
be applied to volumetric meshes. Here, transformations can for example be based on geometric
constructions [14] or on the gradient flow of the mean volume [15].

For n = 4, the four Fourier polygons are depicted in the upper row of Figure 3. Since the jth
vertex of fk is the jkth power of r, f0 consists of four times the vertex 1 + 0i, as is indicated by the blue
point and the vertex label 0–3. The unit circle is marked by a dashed line, the roots of unity by white
circle markers. As can be seen, f1 is the regular counterclockwise oriented quadrilateral, f2 a doubled
segment with vertex multiplicity two.

Figure 3. Fourier polygons fk (blue) for n = 4 and n = 5 with given vertex indices.

In contrast to the case n = 4, there is no degenerate polygon in the case n = 5 except that for
k = 0, as is shown in the lower row of Figure 3. Since the kth Fourier polygon is derived by iteratively
connecting each kth vertex defined by the unit roots, and n = 5 is a prime number, each polygon vertex
has multiplicity one. That is, in the case of prime numbers, all fk are either regular n-gons or star shaped
n-gons if k > 0. This relation between iterative polygon transformation limits and prime numbers is
also analyzed in [2]. Furthermore, the roots of unity form a cyclic group under multiplication. For a
given number n and each prime number p ≤ n, there is an associated Fourier polygon fp−1 defined
by (9). This is the second ingredient in defining prime counting function related fractals.
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4. Deriving Prime Fractals

The graph of the approximate prime counting function βαδ(x) depicted in Figure 1 gives only
an impression for small values of x. Furthermore, it is not suitable to reveal more insight into the
inner structure of prime numbers and their distribution. In search for such a graphical representation,
a combination of the approximate prime counting function and Fourier polygons is considered in
the following.

The main ingredient of the approximate prime counting function βαδ given by (5) is its scaled
counterpart Bα(x) given by (6). For x ∈ N \ {1}, this sum can be written as

Bα(n) =
n

∑
k=2

βα(k) =
n

∑
k=2

∑
j∈I(k)

αj(k)pj = ∑
k∈N,pk≤n

blogpk
nc

∑
j=1

⌊
n

pj
k

⌋
︸ ︷︷ ︸

=:wk(n)

pk , (10)

where b·c denotes the floor function. That is, Bα(n) is a weighted sum of prime numbers. The latter
representation can be obtained by collecting all coefficients in the sum on the left side of (10) for each
prime number pk using a sieve of Eratosthenes based argument.

The key to prime fractals is to replace the prime numbers pk in the representation of Bα(n)
according to (10) by prime number associated Fourier polygons. This leads to the polygonal prime fractal

Fp(n) := ∑
k∈N,pk≤n

wk(n) fpk−1 , (11)

with fk denoting the Fourier polygon according to (9). Here, the Fourier polygon index pk − 1 consists
of the kth prime number subtracted by one, since zero based indices are used in the discrete Fourier
transformation scheme.

For n = 104, the polygonal prime fractal Fp(104) is depicted in Figure 4. It is a linear combination
of π(104) = 1229 Fourier polygons fpk−1, each weighted with its associated coefficient wk(n) as
defined in (10). This polygon consists of n = 104 vertices. The fractal structure of this polygon is
already visible for this comparably low value of n. However, due to its discrete nature, self similarity
is not that obvious for some parts of the polygon. Therefore, an improved fractal is derived by using
the continuous Fourier basis instead of the discrete Fourier basis. That is, the Fourier polygon fk is
replaced by the Fourier basis function fk(t) := exp(ikt). This results in the prime fractal curve

Fc(n, t) := ∑
k∈N,pk≤n

wk(n) exp
(
i(pk − 1)t

)
, with t ∈ (−π, π] . (12)
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Figure 4. Polygonal prime fractal Fp(104).

For n = 106, the resulting prime fractal curve is depicted in Figure 5a. It has been obtained
by evaluating Fc(106, t) at 107 equidistant parameters t ∈ (−π, π]. In this case, Fc is the sum of
π(106) = 78498 weighted Fourier basis functions. A zoom of the box marked red in Figure 5a is
depicted in Figure 5b. The recurring structures show the fractal nature of the curve.

The fractal dimension of a curve, also known as Minkowski-Bouligand dimension, is given by

d := lim
ε→∞

log N(ε)

log(1/ε)
, (13)

where ε denotes the edge length of the square boxes covering the fractal curve and N(ε) the
number of covering boxes [16]. For the curve depicted in Figure 5a, the fractal dimension is
estimated by recursively subdividing a tight initial square bounding box of Fc. For each subdivision
level m ∈ {0, . . . , 20}, this results in a grid of 2m × 2m squares and the associated estimate
dm := log(Nm)/ log(2m), where Nm denotes the number of grid boxes with nonempty intersections
with the fractal curve. The approximate fractal dimension for the finest subdivision grid results to
d20 ≈ 1.3995.
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(a)

(b) (c)

Figure 5. Prime fractal curve Fc for n = 106 and 107 evaluation points tk ∈ (−π, π]. Boxes of successive
zooms are marked red. (a) Full fractal; (b) Zoom level 1; (c) Zoom level 2.

Figure 6 depicts the number of nonempty intersection boxes Nm versus the grid width εm for
m ∈ {0, . . . , 20} using logarithmic scales for both axes. The fractal dimension estimate derived by the
slope of the line of best fit of these 21 points amounts to d ≈ 1.4107.
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Figure 6. Log-log plot of intersecting boxes number versus grid width.

5. Conclusions

In this publication, prime number related fractal polygons and curves have been derived by
combining two different results. One is the approximation of the prime counting function π(x) by the
partial sum βαδ(x) based on an additive function as proposed in [1]. The other are prime indexed basis
functions of the continuous Fourier transform. The motivation for this are the column vectors of the
discrete Fourier matrix used for diagonalizing a circulant Hermitian matrix representing a regularizing
transformation of polygons in the complex plane.

As has been shown in earlier publications [2,5], there is a relation between the shape of limit
polygons of such iteratively applied polygon transformations and prime numbers. This is due to the
cyclic group defined by the roots of unity and the exponential representation of the entries of the
columns of the discrete Fourier matrix. The latter are called Fourier polygons. For prime number
indices, these polygons are star shaped.

By replacing the prime numbers in a scaled representation of βαδ(x) for a given x ∈ N by the
associated Fourier polygons, the polygonal prime fractal Fp is derived. Its graphical features are
increased, if x tends to infinity. Alternatively, by using the prime number related basis functions of
the continuous Fourier transform, the prime fractal curve Fc is derived which is approximated by Fp.
The prime fractal polygon as well as the prime fractal curve show similar patterns on different scales as
has been demonstrated graphically. In addition, a numerical estimate for the fractal dimension based
on the box counting method was derived for the case n = 106. However, obtaining more detailed
results for much larger n would be desirable.

The given result combines aspects from prime number theory, group theory, and circulant
Hermitian matrices. It is based on Fourier transformation which also plays a role in dynamical
systems associated to geometric element transformations [17]. The resulting prime fractals provide an
alternative visual representation of an approximation of the prime counting function and with this of
prime numbers and their structures itself. It is hoped that these alternative representations provide
a basis for further insights into the structure of the distribution of prime numbers. Furthermore,
applying similar visualization techniques to other number theory functions might reveal additional
insights. This is also the subject of the subsequent publication [18] analyzing fractal curves from prime
trigonometric series and the distribution of prime numbers.
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