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Abstract: The objective of this systematic review centers on cognitive assessment based on elec-
troencephalography (EEG) analysis in Virtual Reality (VR), Augmented Reality (AR) and Mixed
Reality (MR) environments, projected on Head Mounted Displays (HMD), in healthy individuals.
A range of electronic databases were searched (Scopus, ScienceDirect, IEEE Explore and PubMed),
using PRISMA research method and 82 experimental studies were included in the final report.
Specific aspects of cognitive function were evaluated, including cognitive load, immersion, spatial
awareness, interaction with the digital environment and attention. These were analyzed based on
various aspects of the analysis, including the number of participants, stimuli, frequency bands range,
data preprocessing and data analysis. Based on the analysis conducted, significant findings have
emerged both in terms of the experimental structure related to cognitive neuroscience and the key
parameters considered in the research. Also, numerous significant avenues and domains requiring
more extensive exploration have been identified within neuroscience and cognition research in digital
environments. These encompass factors such as the experimental setup, including issues like narrow
participant populations and the feasibility of using EEG equipment with a limited number of sensors
to overcome the challenges posed by the time-consuming placement of a multi-electrode EEG cap.
There is a clear need for more in-depth exploration in signal analysis, especially concerning the α,
β, and γ sub-bands and their role in providing more precise insights for evaluating cognitive states.
Finally, further research into augmented and mixed reality environments will enable the extraction of
more accurate conclusions regarding their utility in cognitive neuroscience.

Keywords: EEG; cognition; virtual reality; augmented reality; mixed reality; systematic review; PRISMA

1. Introduction

Cognition is one of the most fundamental research topics of the neuroscience field.
The last decade has seen an increase in interest in evaluating the impact of a system on
users’ cognitive state. A cognitive function is a broad term that refers to “mental processes
involved in the acquisition of knowledge, manipulation of information and reasoning” [1].
The evaluation of cognitive status is typically carried out through specifically designed
questionnaires. Nevertheless, this assessment approach encompasses the subjective ele-
ment, which can potentially lead to misleading conclusions.

Evidence has been presented that electroencephalogram (EEG) oscillations reflect
cognitive and memory performance, and they can be used as a viable method for cognitive
assessment. Electroencephalography is a non-invasive method to record the electrical activ-
ity of the brain, through a number of electrodes placed on the scalp. It has been shown that
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electrical activity represents neural cognitive and emotional functions. Intracranial EEG,
also called Electrocorticography (ECoG), involves invasive electrode implants, surgically
placed directly on the surface of the brain. This review does not include research using
invasive methods for EEG signal acquisition. The bandwidth of the EEG signals ranges
between 0.5–40 Hz. The five most commonly studied rhythms are the following:

• delta (δ) (0.5–4 Hz)—associated with deep sleep
• theta (θ) (4–8 Hz)—observed during quiet focus and sleep
• alpha (α) (8–14 Hz)—recorded with closed eyes and relaxing
• beta (β) (14–30 Hz)—associated with alertness and attentional allocation
• gamma (γ) (over 30 Hz)—linked with learning and high mental state

However, a significant number of researchers further subdivide the above-mentioned
frequency bands into sub-bands. According to this approach, α, β, and γ bands can be
further divided into:

• α1 (7–10 Hz)—associated with a relaxed but alert state
• α2 (10–13 Hz)—linked to more active cognitive processing than α1
• β1 (13–18 Hz)—associated with active, attentive cognitive processing
• β2 (18–30 Hz)—associated with more complex cognitive processes
• γ1 (30–40 Hz)—linked to sensory processing and perception
• γ2 (40–50 Hz)—involved in higher-level cognitive processes and feature binding
• γ3 (50–80 Hz)—useful for research focused on exploring the synchronization of neural

networks and its role in various cognitive functions

When designing their experiments, researchers often encounter difficulties in holding
the trials either in real life or in a laboratory environment. Digital environments offer
an excellent solution to this problem, promising to fill the gap between the physical and
the artificial environment. The Encyclopedia Britannica [2] describes VR as “the use of
computer modeling and simulation that enables a person to interact with an artificial three-
dimensional (3D) visual or other sensory environment”. According to the same source,
AR [3] is defined as “a process of combining or “augmenting” video or photographic
displays by overlaying the images with computer-generated data”, while MR is a new
technology, that combines both VR and AR experiences.

A distinction between low-immersion and high-immersion systems is typically made
in the literature. In low-immersion systems, the digital environment is displayed on a
conventional 2D screen and the interaction is controlled through a computer mouse or a
keyboard. In the case of AR low-immersion systems, often called see-through environments,
a mobile device is used to watch 3D visualizations on the scene, recorded by the device
camera. In highly immersive systems, a head-mounted-display (HMD) is often used. HMDs
are high-resolution display devices, fixed on one’s head and mounted in front of the eyes,
often combined with headsets or haptic feedback. The interaction is controlled through
motion sensors connected with a computer system, so the field of view can be changed
according to the users’ head movement, while exploring the digital environment [4,5].
However, a very serious drawback in conducting experiments through VR is the sensation
of dizziness and nausea, known as VR sickness, often experienced by participants. This
phenomenon can significantly affect cognitive state and, consequently, the experiment’s
results. This is one of the key reasons why research involving VR is not wide spread and
has a restricted number of participants. This review is focused on studies with stimulus
presented on HMD devices.

Recent research has focused on specific cognitive functions that can be categorized
into the following fields: cognitive load, immersion, spatial awareness, interaction with the
Digital Environment and attention. Interaction with the digital environment is a general
category with research in the fields of cognitive conflict, performance, communication,
affordance and creativity as shown in Figure 1.
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The methodological approach used to obtain relevant studies follows the Preferred 
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ity and they also assessed the risk of bias of all included studies. All disagreements were 
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Figure 1. Research objectives.

Cognition is a field that has been investigated by many neuroscientists, but to date,
there is no systematic review that reviewed cognitive assessment based on EEG analysis
in digital environments using HMDs. A synthesis of recent research in this domain will
foster a more complete understanding of the nature of cognition in VR, AR and MR
environments, and serve as a guide to future research in the field. In the sections below,
research stimulus and outcomes are analyzed. The methods for data preprocessing, artifact
removal, frequency bands and statistical analysis or classification methods on EEG data
recordings are also investigated.

2. Research Methodology

The methodological approach used to obtain relevant studies follows the Preferred
Reporting Items for Systematic Review and Meta-Analysis (PRISMA) [6]. More than two
independent researchers worked through the screening process of the articles for eligibility
and they also assessed the risk of bias of all included studies. All disagreements were
resolved by discussion consensus between the reviewers. The review protocol has been
registered with the Open Science Framework [7] (url: https://osf.io/kfx5p, accessed on
2 March 2023).

2.1. Data Sources

Electronic search was performed on December 2022 using the following databases:
Scopus, ScienceDirect, IEEE Explore and PubMed. The following keyword combinations
were employed in the search: ((“EEG” OR “electroencephalography”) AND (“augmented
reality” OR “virtual reality” OR “mixed reality”) AND (“cognition” OR “cognitive”)), that
have been published during the last ten years, from 2013 to 2022. Rayyan [8],a free web-tool
designed to help researchers working on reviews, was used for the screening of the total
2326 results extracted from the database search. After duplicate removal, title and abstract
screening, 427 articles remained for full text review. A detailed analysis of the screening
process is listed in Figure 2.

https://osf.io/kfx5p
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2.2. Inclusion Criteria

This systematic review includes articles providing results from:

• randomized controlled trials original primary research
• healthy participants from general population without pathological history or any kind

of disorders
• a Head Mounted Display device (HMD) as the stimuli projection system
• EEG signals as the only neuroimaging measure
• at least one EEG-assessed cognition related research topic (i.e., cognitive load, immer-

sion, spatial awareness, interaction with the digital environment, attention)
• at least one EEG-based neurobiological outcome

2.3. Exclusion Criteria

A number of articles have been excluded from this review, under the following criteria:

• conference articles and case studies
• theoretical studies, such as review articles, overviews, meta-analyses and book chapters
• research conducted on animals
• published in language other than English
• including participants with pathological history (e.g., Alzheimer’s disease, Parkin-

son, post-stroke patients, brain injury, autism, epilepsy, visual or cognitive impair-
ment/decline, disabilities, etc.);

• including participants with disorders (e.g., alcoholism, attention disorder, anxiety
disorder, psychosis, pathological gambling, etc.);

• including participants from expert groups (e.g., skiers, pilots)
• using biological measures other than EEG for the research outcomes (e.g., functional

Magnetic Resonance Imaging (fMRI), Electrocardiogram (ECG), Electrooculogram
(EOG), Electromyogram (EMG), Galvanic Skin Response (GSR), Heart Rate (HR),
Electrocardiogram (EKG))

• with research objectives not in the field of cognition (e.g., emotion, pain, sleep,
motor functions)

• not including VR, AR or MR stimuli
• with stimulus displayed on devices other than HMD (e.g., projectors, screens or

specially designed spaces)
• not reporting results (e.g., study protocols, datasets).
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2.4. Data Synthesis

A total of 82 studies met the inclusion criteria and the following data were extracted
and analyzed: publication year, total number of participants, digital environment type (AR,
VR or MR), EEG equipment type and electrode number. The papers were grouped into
five categories according to their objective area: cognitive load, interaction with the digital
environment and attention, as shown in Figure 1. For each category, objectives, outcomes,
frequency bands, preprocessing and artifact removal methods, classification methods and
statistical analysis methods on EEG data are examined.

3. Study Statistics
3.1. Publication Year

Included articles were published from 2013 until December 2022, with incremental
number of publications during the years. Table 1 presents the number of studies for each
publication year.

Table 1. Publication Year.

Publication Year # of Studies

2013 0

2014 1

2015 1

2016 2

2017 3

2018 9

2019 14

2020 13

2021 16

2022 23

Total 82

3.2. Total Number of Participants

The mean number of participants across all included articles was 34.8 (SD = 45.2,
range = 1–340). Table 2 illustrates the distribution of participants.

Table 2. Number of participants distribution.

Participants # of Studies

1–10 8

11–20 23

21–30 25

31–40 9

41–60 9

>60 8

Total 82

3.3. Digital Environment Type (VR, AR, MR) and Equipment

A wide range of HMD types exists, including see-through styles, mobile designs,
camera-attached AR styles, glass-based configurations, options with eye-tracking capa-
bilities, and varying resolutions. Table 3 shows the type of digital environment and the
equipment used to present the stimulus in the experimental tasks. The overwhelming
majority of tasks utilized VR (Figure 3).
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Table 3. Digital environment type and equipment.

Digital Environment Type Device References # of Studies

VR

Samsung Gear VR [5]

74

HTC Vive [9–38]

HTC Vive Pro [39–46]

HTC Vive Focus [47–49]

Oculus Rift DK2 [50–57]

Oculus Rift [58–63]

Oculus Rift S [64]

Oculus [65,66]

Oculus Go [67]

nVisor SX60 [68–70]

3DVR [71]

HTC Vive/Samsung Odyssey [72]

MIUI PLAY2 [73]

Silicon Micro Display ST1080-10V1 [74]

VIVE-P130 [75]

ACER WMR [76]

n/a [77–81]

AR

Hololens [82,83]

8

Hololens 2 [84]

Sony SmartEyeglass SED-E1 [85,86]

DreamWorld AR [87]

Vuzix Wrap 1200DXAR [88]

n/a [89]

Total 82
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3.4. EEG Equipment

EEG recording systems use wet or dry electrodes that must be in contact with the scalp. A
traditional multi-electrode system is usually fixed on the head using a cap or a helmet, which
helps to ensure the precise placement of the electrodes and their sufficient contact with the
scalp. More recent EEG technologies with limited number of electrodes have been developed,
where electrodes are fixed on a headband or a headset, providing an easy-to-use setting.
Table 4 displays a categorized list of EEG equipment utilized in the study. As illustrated in
Figure 4, the vast majority of the studies utilized a multi-electrode EEG equipment.
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Table 4. EEG equipment.

EEG Type References # of Studies Percentage

Cap
Patches
Helmet

ABM X-10 [5,15,16,20]

71 87%

G-Tec [9]

ASA Lab, ANT [51,68]

Nihon Kohden [39]

LiveAmp [10,44]

g.LADYBIRD [11,12,50]

g.GAMMAsys [72]

g.USBamp [36]

g.tec Nautilus [82]

Brain Products [77]

QuickAmp [79]

actiCHamp [62,63]

BrainAmp [46]

BrainAmp Move System [54,76]

Enobio 3 [13]

Enobio-32 [88]

StarStim 8 [35]

EPOC Flex [14]

Neuracle [17,18]

OpenBCI [47–49]

Biosemi Active Two [21]

Biosemi Actiview [42,43]

V-Amp [22]

ANT Neuro [52,53,64]

eegoSports [81]

ActiCAP [25,28,57,67,70,78]

BIOPAC MP160 [75]

Mobita [83]

EasyCap [32,41,85,86]

Scan SynAmps2 Express [30]

Curry 8 SynAmps2 Express [31]

Neuracle [74,80]

mBrainTrain [87]

Nuamps7181 [84]

B-Alert [33,37]

n/a [19,24,27,29,38,60,65,69,74,80]

Headband Headset

QUASAR DSI-7 [58]

11 13%

Looxid Link [40]

EMOTIV EPOC+ [34,59,66]

NeuroSky MindWave [23,45,71]

MUSE [26]

MyndPlay BrainBand XL [56]

n/a [89]
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3.5. Number of Electrodes Used

Not all studies process the signals acquired from the whole electrode set from the EEG
equipment used in their experiments. It usually depends on the Regions of Interest (ROIs)
they have determined that play the most significant role in their objective. Table 5 displays
the distribution of studies based on the number of electrodes used. Figure 5 displays
the number of electrodes used, categorized into four groups. It should be noted that the
number of electrodes is not reported for all articles.

Table 5. Distribution of number of electrodes utilized by researchers.

# of Sensors References # of Studies

1–4 [23,26,45,56,71,79,89] 7

6–14 [5,10–13,15–17,20,22,35–37,40,47–49,58,59,65,81,84,85,88] 24

16–35 [9,14,19,24,27,30,33,34,39,41,44,46,55,57,60,66,67,72,73,75,77,82,83,86,87] 25

>57 [18,21,25,28,29,31,32,38,42,43,50–54,61–64,68–70,74,76,78,80] 26
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3.6. Objective Area

The majority of researchers implemented experiments focusing on cognitive load anal-
ysis, many studies investigated the participants’ interaction with the digital environments
and attention, while a few papers assessed the immersion state and spatial awareness of
the subjects (Table 6).
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Table 6. Objective area.

Objective References # of Studies

Cognitive load [5,9–20,39–41,47–49,51,58,76,77,84–86,89] 27

Immersion [14,21–23,50,59,60,65,74,88] 10

Spatial awareness [24,25,42,43,52–54,61,68,71,78] 11

Interaction with the digital environment [23,26,28–32,44,55,62,64,67,69,72,79–81,83] 19

Attention [33–38,45,46,56,57,63,66,70,73,75,82,87] 17

It should be noted that a number of studies included objectives from more than one
field, but in many cases their results came from subjective analysis (i.e., questionnaires) or
from measurements other than EEG signals, for example, the time spent in a virtual room
or the number of successful targets hit, etc. In this review, only the results that come from
EEG analysis are reported. Figure 6 provides a visual representation of the distribution of
studies across different objectives.
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4. Results
4.1. Paper Layout

For each section a comparative analysis is presented for the objectives and outcomes,
the data preprocessing and artifact removal methods, the frequency bands and the classi-
fication or statistical analysis on EEG recordings the authors have implemented in their
research. Both statistically significant and non-significant results are included to avoid risk
of bias in the synthesis of the results.

4.2. Cognitive Load

Cognitive load, also known as information flow, refers to the quantity of data that can
be retained by working memory simultaneously. According to [90], cognitive load theory
can provide guidelines to support the delivery of information in a way that stimulates
learner engagement, leading to the maximization of cognitive performance. Table 7 presents
a summary of findings in the field of cognitive load research.
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Table 7. Cognitive load.

Authors,
Year,

Reference
Participants Stimuli Frequency Bands/

Range
Data

Preprocessing Artifact Removal
Classification

Technique/Statistical
Analysis

Main findings

(Seeling,
2017) [89] 30 VIEW dataset θ, α, β

average α/θ, α/β
average and variability,

α and θ variability,
R2, KNN

• the α/β ratio provides a good average
estimation of the cognitive load levels

• variable accuracies for individual cognitive
load assessment

(Gerry et al.,
2018) [9] 2 visual search task α notch, low pass central tendency of α,

ERD
• increased complexity was correlated with

decreased α power

(Ikiz et al.,
2019) [85] 4 automobile

assembly line β, γ notch BrainVision Analyzer
2 software

EEG graph area, One
Sample t-test

• no extra cognitive burden was associated
with utilizing AR glasses

• no age-related effects

(Makransky
et al., 2019)

[5]
52

text PC vs. VR,
with/no
narration

1–40 Hz ABM’s proprietary
software

LDFA, stepwise
regression, ANOVA

• participants learned less in the VE
• significantly higher cognitive load in

the VE
• no significant differences when

adding narration

(Kakkos et al.,
2019) [51] 29 flight simulator

(2D vs. VR) δ, θ, α, β, γ 0.5–40 Hz, notch ICA

eLORETA, AAL-116,
PLI, EG, EL, RFE-CBR,

10-fold cross-validation,
LDA, ANOVA

• elevated mental workload in 3D interfaces
• higher connectivity strength in

VR condition

(Qadir et al.,
2019) [39] 11 driving simulator

(2D vs. VR) θ, α1, α2, β CAR, EllipticalBPF, ICA,
EEGLAB automatic tool

%ERD, %ERS, CIT2FS,
e-LORETA

• more brain activation regions for VR
• higher cognitive load for the VR case
• CIT2FS performed better for VR

(Dey et al.,
2019) [10] 14

adaptive target
training
system

α
9–13 Hz, notch,

>0.3 Hz

threshold of max
absolute values or

variance, VI

mean of squares, mean
of last 4 epochs, TFR,

Monte Carlo
permutation test

• the brain has the ability to adjust for an
increased task load without
impacting performance
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Table 7. Cont.

Authors,
Year,

Reference
Participants Stimuli Frequency Bands/

Range
Data

Preprocessing Artifact Removal
Classification

Technique/Statistical
Analysis

Main findings

(Tremmel and
Krusienski,
2019) [11]

15 n-back task δ, α, β, γ 0–58 Hz, Welch’s
method

WCF
EMG-surrogate

Regression

LDA, 5-fold
cross-validation

• the proposed combination of two artifact
suppression techniques reduced artifacts

• acceptable workload
decoding performance

(Tremmel
et al., 2019)

[12]
15 n-back task θ, α, β, γ, HF >5 Hz HF suppression

Welch’s method,
Spearman’s correlation,

rLDA, 4-fold
cross-validation

• EEG measurements can differentiate
between three levels of workload

• better classification accuracies using HF
suppression, θ and β bands

(Sun et al.,
2019) [77] 28 2D vs. VR 0.05–100 Hz 100 µV threshold

N1, P2 mean, SD, 3-way
rmANOVA,

Greenhouse–Geisser
correction

• low cognitive load and improved learning
in VE for low spatial ability participants

• no significant difference in cognitive load
and less learning for high spatial
ability subjects

(Van
Goethem

et al., 2020)
[58]

8 2D vs. 3D shapes QStates software
Paired Sample t-test

• no significant difference for the assignment
in VR and 2D

(Nenna et al.,
2020) [76] 22

Visual
discrimination

task

θ, α1,
α2, β, γ

BeMoBIL,
FIR (0.2–90 Hz),

<40 Hz

automated rejection, VI,
AMICA

PSD, ANOVA,
Mauchly’s test,

Greenhouse–Geisser
correction, BC, P3-SNR

• even with simple tasks, walking affects the
simultaneous processing of visual stimuli.

(Škola et al.,
2020) [13]

15 VR storytelling θ, α, β2 1.5–100 Hz, notch ASR, MARA, AMICA PSD, neural
de/synchronization

• high levels of immersion and engagement
• increased cognitive processing

(Haruna et al.,
2020) [14] 9

BCI-Haptic
(with/without

VR)
θ, α, β 0.5 s epochs ffDTF, SCoT, VAR

• reduced cognitive burden on the remote
machine system operator
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Table 7. Cont.

Authors,
Year,

Reference
Participants Stimuli Frequency Bands/

Range
Data

Preprocessing Artifact Removal
Classification

Technique/Statistical
Analysis

Main findings

(Baceviciute
et al., 2020)

[15]
78 text (3 formats) θ, α 0.5–100 Hz, notch,

PSD (DFT) ICA (MARA)

mean peak frequency,
one-way ANOVA,

Tukey’s HSD, KWT, BC
post hoc Dunn’s tests

• reading was superior to listening for
retention, self-efficacy, and
extraneous attention

• text from a virtual book was less
cognitively demanding than the
overlay interface

(Baceviciute
et al., 2021)

[16]
48 Text (book vs.

VR) θ, α, β 0.5–100 Hz, notch
VI, ICA (MARA),

automatic channel
rejection

mean PSD, independent
samples t-test, BC

• participants achieved notably better results
on a knowledge transfer test when
using VR.

• reading in VR was more cognitively
effortful and less time efficient

(Tian, Zhang,
et al., 2021)

[17]
40 Films

(VR vs. 2D) θ, α, β FIR, notch, WT VI, ICA frequency band energy • fast-cutting rate brings a greater load

(Tian, Wang,
et al., 2021)

[18]
30 films θ, α, β notch, 0.5–90 Hz,

0.1–30 Hz, WT ICA, 100 µV threshold EEG energy, SVM

• pivotal role of frontal and parietal brain
regions on VEPs

• all editing methods affect cognitive load
and immersion in a VE

(Redlinger
et al., 2021a)

[49]
20 N-back memory

task θ, α, β1, β2 notch, >4 Hz, FFT EOG, VI power index,
rmANOVA, WSRT

• benefits of an HMD used in cognitive
training task

(Redlinger
et al., 2021b)

[47]
20 N-back memory

task θ, α, β1, β2 notch, >4 Hz, FFT ICA, EOG power index,
rmANOVA, WSRT

• benefits for visual angle of 20◦

• worse results for increased angles

(Redlinger
and Shao,
2021) [48]

12 Game (2d vs. VR) θ, α, β1, β2 notch, >4 Hz, FFT VI, EOG power index, WSRT • increased brain activity VR
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Table 7. Cont.

Authors,
Year,

Reference
Participants Stimuli Frequency Bands/

Range
Data

Preprocessing Artifact Removal
Classification

Technique/Statistical
Analysis

Main findings

(Aksoy et al.,
2021) [19] 20 N-back memory

task (VR vs. 2D) 0.5–30 Hz 100 µV threshold, VI

mean amplitude, peak
amplitude, peak latency

of N1, P1, P3,
rmANOVA

• the investigation of visual ERPs in
cognitive working memory tasks is
experimentally feasible, wearing a VR
HMD over an EEG headcap

(Atici-Ulusu
et al., 2021)

[86]
4

automobile
manufacturing

factory
β, γ β, γ wavelength

filtering, notch
BrainVision Analyzer 2

software

EEG graph area, SD,
One Sample t-test,

Mean

• participants using AR had lower
cognitive load

• easy adaptation to AR technology

(Lee et al.,
2022) [40] 15 3D objects θ, α 0.01–120 Hz, notch ICA Welch’s method

• participants were more intuitive and
relaxed when using Vive Wands

• the Leap motion has great potential for
providing immersive experience

(Tehrani et al.,
2022) [41] 10 VE construction

field θ, α, β 0.5–60 Hz ASR, ICA, VI WPD, SE,
Mann–Whitney U test

• the group working at heights reported
experiencing higher levels of fatigue
compared to the group working on
the ground.

(Baceviciute
et al., 2022)

[20]
63 text, auditory, text

and auditory θ, α 0.5–100 Hz, notch,
PSD (DFT) VI, ICA-MARA mean peak frequency,

SD, ANOVA
• the redundancy effect may not generalize

to VR

(W. Wang
et al., 2022)

[84]
20 flight simulator

2D vs. MR

P300 amplitude, P300
latency, paired t-test,

WPD, SE

• improved strategy presented for the
display interaction system for future
aerospace equipment

AMICA = Adaptive Mixture ICA, ANOVA = ANalysis Of Variance, ASR = Artifact Subspace Reconstruction, BC = Bonferroni Correction, CAR= Common Average Referencing,
DFT = Discrete Fourier Transform, ERD = Event-Related Desynchronization, ERS = Event-Related Synchronization, ICA = Independent Component Analysis, ffDTF = full frequency
Directed Transfer Function, FFT = Fast Fourier Transform, FIR = Finite Impulse Response, kNN = k-Nearest Neighbor, LDA = Linear Discriminant Analysis, LDFA = Linear
Discriminant Function Analysis, MARA = Multiple Artifacts Rejection Algorithm, PSD = Power Spectral Density, RFE-CBR = Recursive Feature Elimination-Correlation Bias Reduction,
rLDA = regularized LDA, rmANOVA = repeated-measures ANOVA, SCoT = Smooth Coherence Transform SD = Standard Deviation, SE = Sample Entropy, SNR = Signal to Noise Ratio,
SVM = Support Vector Machine, TFR = Time Frequency Representations, VAR = Vector Auto Regressive, VI = Visual Inspection, WCF= Warp Correlation Filter, WPD = Wavelet Packet
Decomposition, WSRT = Wilcoxon signed rank test, WT = Wavelet Transform.
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4.2.1. Objectives and Outcomes

Several studies investigated immersive digital environments in comparison with real-
world or non-immersive environments and their effect on the participants’ cognitive load.
Comparative studies ([85,86]) between real-life and AR on an automobile assembly line
assessed the cognitive load of four workers. In a similar study [14], nine subjects were
asked to manipulate a remote machine system in the VR space, using Brain Computer
Interface (BCI). A comparison was made on driving in a VR environment with that in a
traditional non-VR environment [39]. An MR flight simulator was proposed in [84] and
compared with a 2D display system. Reduced cognitive burden was measured in the
experiments using digital environments for all the above studies, providing evidence that
digital environments can improve learning and performance results. Another study also
comparing a 2D and VR version of a game similar to “Tetris”, found significant increase
in frontal midline θ rhythm for the Virtual Environment (VE) condition, associated with
higher levels of engagement [48].

In contrast with the previously mentioned studies, some articles showed higher
workload when participants read text in a VR lab simulation, in relation to a PC-based
application [5] and also in comparison with a traditional book [16]. Ambiguous learning
outcomes were presented, where the earlier study [5] supports less learning in the VE and
the latter article [16] reports better results in transfer tests. The effects of adding narration
were also investigated in [5], showing no significant difference. The same text presented as
an overlay, embedded in virtual book or as audio was further explored in a later study [15],
showing that reading text from a virtual book was less cognitively demanding than from
an overlay interface. On the other hand, a study focused on cognitive effort needed for
tasks with 3D solids (in VR) and for the same 2D solids printed on paper [58], showed no
significant difference on the cognitive load for the assignment in VR and in 2D. Another VR
vs. 2D comparative study [77] was conducted on two groups of participants with different
levels of spatial ability (low and high). The results showed that low-spatial ability students’
cognitive load and learning ability were increased in the VR environment, while for the
high-spatial ability subjects no significant change on the cognitive load were found for the
two different environments and lower learning performance for the VE.

A satisfactory multi-level workload classification accuracy was achieved for three
mental workload levels and distinct development trends between 2D and 3D interfaces
were found in a simulated flight experiment [51]. An N-back working memory task was
implemented in article [19] in both VR and 2D environments. Findings indicated that it is
possible to investigate cognitive workload wearing a VR HMD over an EEG cap.

The majority of the experiments were conducted only within a VR, AR or MR en-
vironment, evaluating various aspects of their effects. A combined evaluation of an ap-
plication mixing interactive virtual reality (VR) experience with 360◦ storytelling [13]
showed increased cognitive processing, which was not associated with overloading. It
was considered as evidence of participants’ high levels of immersion and engagement.
The authors of [17,18] investigated the application of cognitive event segmentation theory
on VR films. The results suggest that 2D and VR films with fast-cutting rates are more
cognitively demanding and that the frontal and parietal brain regions are the main sources
of visual-evoked potentials.

In some papers, the main objective was to investigate how the task complexity can
influence cognitive load and performance. A study focused on redundancy [20], where
a VR educational application presented information to a total of 73 participants in two
different sensory channels at the same time (both written and auditory). The results suggest
that redundant content was not found to be more cognitively demanding than written
content alone.

An adaptive system, Levity [9], was implemented to measure the user’s level of
cognitive load and interactively adjust the complexity of a visual search task. In a similar
study [10], a cognitively adaptive selected target training system was explored, which
required 14 participants to complete 20 levels of increasing complexity. α power decrease [9]
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and significant differences in signal power between 1 and 30 Hz [10] were identified when
the task complexity increased. A visual discrimination task with two different levels of
complexity was designed in [76], while participants were standing (single-task) and while
walking overground (dual-task). Even when the task was easy, the effect of walking on
the simultaneous processing of visual stimuli was evident. An adaptive training task at
three separate visual angles was performed by 20 subjects in study [47]. In contrast with
previous studies, the study discovered that enlarging the screen size up to a visual angle of
around 20◦, led to improved performance in memory and learning tasks. However, beyond
this point, further increases in size were associated with a decline in task performance.

Other aspects of the cognitive load assessment were investigated by several studies. A
publicly available dataset (VIEW) of visual tasks, where participants were asked to rate
multimedia quality levels of images was evaluated by the authors of [89]. The results
reflected a large spread of accuracies for the individual cognitive load predictions across
subjects. The feasibility of passively monitoring cognitive workloads during classical
gesture tasks was evaluated in another research study [40]. The results indicated that
participants feel more intuitive and relaxed when using Vive wands in the VE. The objective
of [41] was to examine how working at heights contributes to the development of mental
fatigue, with the aim of preventing the risk of falls. The results suggested that height had a
negative impact on subjects’ alertness and indicated higher levels of mental fatigue. The
authors of [11,12] implemented EMG artifact removal techniques (WCF, EMG-surrogate
Regression, HF suppression), which led to better classification accuracies.

4.2.2. Data Preprocessing and Artifact Removal

The majority of researchers [9,10,13,15–20,40,41,47–49,51,85,86] have applied a notch
filter in order to remove the powerline noise. A variety of band-pass filters were also
applied: 9–13 Hz [10]; 0.5–40 Hz [51]; 0.5–30 Hz [19]; 0.05–30 Hz [77]; 0–58 Hz [11];
0.5–60 Hz [41]; 0.1–90 and 0.1–30 Hz [18]; 0.2–90 Hz [76]; 0.5–100 Hz [20]; 1.5–100 Hz [13];
0.01–120 Hz [40]. Only high-pass filters of 0.3 Hz [10]; 4 Hz [47–49] and 5 Hz [12] were
used, while the authors of [9] report the application of a low pass filter. In several papers,
Power Spectral Density (PSD) estimates were constructed using Discrete Fourier Transform
(DFT) [15,16,20] and Fast Fourier Transform (FFT) [47–49].

A visual inspection was also performed in [10,16,17,48,49,76] to reject low-quality tri-
als. The Welch’s method ([11,12]), a conservative Hampel filter [12], mean peak frequency
estimates [20], and Wavelet Transformation (WT) [17] were applied in a few studies. Auto-
mated methods, such as QStates software [58] and the BeMoBIL Preprocessing Pipeline [76]
were also selected for the preprocessing stage. A significant number of authors performed
Independent Component Analysis (ICA) [15–18,20,39–41,47,49,51]. A Visual Inspection (VI)
to manually clean artifacts was also implemented in several papers [8,10,20,41,48]. Muscle
artifacts were identified from comparison with the EOG data in a few cases [47–49]. Artifacts
were automatically removed using BrainVision Analyzer 2 software [85,86]; ABM’s propri-
etary software [5]; Artifact Subspace Reconstruction algorithm (ASR) [13,41]; Multiple-Artifact
Rejection Algorithm (MARA) [13,20]; a combination of two methods [11]: Warp Correlation
Filter (WCF) and EMG-surrogate Regression; Adaptive Mixture Independent Component
Analysis (AMICA) and a low-pass filter at 40 Hz [76]; 100 µV threshold [18,76]; Common
Average Referencing (CAR) and Elliptical BPF [39] and EEGLAB automatic channel rejection
tool [20].

4.2.3. Signal Analysis

The EEG signal was not decomposed into frequency bands in a few studies [5,19]. The
vast majority of authors [9–12,14–18,20,40,41,51,85,86,89] considered various subsets of the
δ, θ, α, β and γ frequency bands. Meanwhile, for the articles [8,13,39,47–49], the bands
of interest also include the α and/or β sub-bands. Higher frequency range, termed HF
(70–100 Hz), was additionally analyzed in study [12].
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4.2.4. Statistical Analysis

A variety of statistical analysis methods were implemented on EEG data for the assess-
ment of cognitive load. According to another approach, the area under the average EEG
graph was investigated, where higher cognitive load was considered when the absolute
value of the area was lower [85,86]. One Sample t-test was used for evaluation. The authors
of [9] measured the center of gravity frequency on the shape of the α peak and event-related
desynchronization (ERD) as the percentage of α band power decreased. Another method
was implemented in [10], based on the calculation of the mean of squared signals, Time-
Frequency Analysis (TFR) for the hardest and easiest levels of the training task and Monte
Carlo cluster-based permutation testing. In a similar direction, the sum of squares of all
points in each frequency band were calculated in [17] to represent the energy of the signal.

PSD estimates per frequency band were compared between the three experimental
conditions using one-way ANOVAs in study [15] and post hoc Tukey’s Honest Significant
Difference (HSD) tests, nonparametric Kruskal–Wallis test (KWT) and Bonferroni-corrected
(BC) post hoc Dunn’s tests were used for the analysis of the self-reported data. The
statistical analysis of another article [16] consisted of the computation of mean PSD, mean
peak frequency estimates and independent samples (IS) t-test. The researchers of [20],
focused on the between-group differences in mean EEG power, using one-way ANOVAs
and BC. For the P3 Signal-to-Noise Ratio (SNR) analysis presented in [76], PSDs, ANOVAs,
the Mauchly’s test of sphericity, the Greenhouse–Geisser correction and the Bonferroni
Correction (BC) method were used. The authors of [48] calculated the signal band power
and statistically analyzed it with Wilcoxon signed-rank tests, while the authors of [58], used
the software provided by the EEG hardware company to assess the cognitive load.

Statistical analysis of [47,49] included the calculation of the sum of power values,
mean and standard deviation, with repeated measures ANOVA (rmANOVA), and a non-
parametric, Wilcoxon Signed Rank Test (WSRT). In study [19], Event-Related Potential
(ERP) analysis was conducted, where mean amplitude, peak amplitude, peak latency of
N1, P1, P3 were computed and subsequently they were analyzed with rmANOVA. A
similar statistical ERP analysis was presented in article [77], where N1 and P2 mean and SD
amplitude were evaluated through 3-way rmANOVAs and Greenhouse–Geisser correction.

The information flow was computed in [14] with the use of smooth coherence trans-
form (SCoT) library, full frequency Directed Transfer Function (ffDTF) and stationary vector
autoregressive (VAR) model of the 30th order. To assess the participants’ cognitive load,
the authors of [13] used PSDs and calculated the index of neural de/synchronization as the
percentage change in the absolute band power between the baseline and the final phase.
The P300 average amplitudes and the average latency were analyzed by the authors of [84]
and paired t-test was applied. For the assessment of mental fatigue levels Wavelet Packet
Decomposition (WPD) and Sample entropy (SE) were computed, and seven indices for
measuring mental fatigue were obtained, namely θ, α, β, α/β, θ/α, θ/β, and (θ + α)/β, A
Mann–Whitney U test was performed to statistically compare mean PSD values.

4.2.5. Classification Methods

In a limited number of articles, the cognitive load was assessed using classification
methods. The authors of [5] developed a Linear Discriminant Function Analysis (LDFA)
classifier, they also derived the absolute and relative power spectra variables using stepwise
regression and calculated ANOVAs for the PC and VR condition. The authors of [18]
studied the Visual Evoked Potentials (VEP) and a Support Vector Machine (SVM) classifier
was implemented on EEG energy features, sLORETA and ANOVA. In article [89], four
position-dependent ratios were utilized as their main evaluation criteria (the average α/β
ratio, the average ratio of α and β, the variability of α and θ, and the variability of α and β)
using the k-Nearest-Neighbor (KNN) classification and regression approach to evaluate
whether the ratio levels can be correctly employed to identify the different cognitive
load levels.
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The authors of [39] extracted EEG features from the percentage ERD, followed by the
percentage ERS. A CIT2FS-induced pattern classifier, based on source localization through
e-LORETA, was implemented to classify into three cognitive load classes: High, Medium and
Low. In a similar direction, exact Low-Resolution Electromagnetic Tomography (eLORETA)
and a validated atlas (AAL-116) were employed by [51], resulting in 80 ROIs. PLI networks
were calculated for each epoch and frequency band. Global efficiency (EG) and local effi-
ciency (EL) of brain networks were employed, feature extraction was based on RFE-CBR, and
classification was performed with Linear Discriminant Analysis (LDA) using 100 repetitions
of 10-fold cross-validation. Moreover, a permutation test and two-way Analysis of Variance
(ANOVA) were performed. An LDA classifier with 5-fold cross-validation was used by [11],
while in [13] the Spearman’s correlation was computed and an rLDA classifier was imple-
mented with a 4-fold cross-validation. The authors of [40] used PSD-based feature extraction
and Welch’s method classification for the cognitive load estimation.

4.3. Immersion

This category covers studies related to body ownership, sense of presence (oneness),
agency and engagement. Body ownership is associated with the illusory perception that
an artificial or virtual object becomes part of one’s body. Sense of presence (or oneness)
refers to the situation where a person immersed in a VE gets the feeling that it is a real-life
environment. Agency is related to the sense of a person’s ability to influence a digital
environment. Table 8 presents a summary of findings in the field of immersion.

4.3.1. Objectives and Outcomes

One of the most commonly used experiments in the field of body ownership is the
rubber hand illusion, where participants perceive a model of a hand as an integral part
of their own body. A realistic 3D representation of a hand was chosen to create the same
illusion in both VR and AR in [88]. The findings indicate that β and γ bands in premotor
cortex activity are associated with body ownership statements. In another experiment [22],
the participant’s mirror-neuron system (MNS) and the error-monitoring system (EMS) were
stimulated by involuntary and unexpected virtual hand bounces. The results indicated
higher Pe/P300 effect among participants who had a stronger rubber hand illusion ex-
perience and increased tendency for affective empathy. Agency and responsibility were
also investigated in [50] by studying the control of movements of an embodied avatar, via
BCI technology in three experimental conditions: no VR, Steady-State Visually Evoked
Potentials (SSVEP) and observation with VR. Evidence was found that the sense of agency
in BCI systems is strongest for sensorimotor areas activation.

Differences between 2D and VR video watching from three categories (sports, news, and
advertisements) showed higher β-wave activity for VR compared to 2D [65]. It was also shown
that videos with fast transitions induced higher β activity. The optimum exposure duration
to a virtual classroom environment was evaluated in [21]. The results suggested significant
differences in brain activity between realistic and non-realistic VEs. Furthermore, it was found
that the time required by the brain to perceive and adapt to the artificial environment is at
least 42.8 s. The authors of [74] showed the feasibility of adding irrelevant auditory stimuli in
experiments, for the evaluation of the levels of immersion in both 2D and 3D environments in
tasks with increasing difficulty. Another study in the field of education explored the effects of
a VR training application on immersion, in comparison with a lecture-based design [23]. The
results indicated increased attention-related and meditation-related brain wave activity and
desynchronized α waves in the VR environment.

A new method was proposed by the authors of [14] to measure sense of oneness in
a visual haptics experiment. A comparative study of cycling in an immersive and non-
immersive VE was conducted in [59]. The results confirmed that the participants were more
engaged and performed better in the immersive VE. Ethnic bias in empathic resonance to
pain was investigated in [60]. Amplified beta ERD was measured when a digital agent of
the same color (with the participant’s virtual body) “experienced” pain.
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Table 8. Immersion.

Authors, Year,
Reference Participants Objective Stimuli Frequency Bands/

Range Data Preprocessing Artifact
Removal

Classification Tech-
nique/Statistical

Analysis
Main Findings

(Burns and
Fairclough, 2015)

[74]
20 immersion auditory oddball

task (2D/VR) 0.1–30 Hz GA ERP, mean
amplitudes

• immersion was characterized as the
focused attention on external
auditory stimuli unrelated to the
game, and it was assessed indirectly
by analyzing ERPs in response to an
auditory oddball task

(Škola and
Liarokapis, 2016)

[88]
30 body ownership

virtual hand
(Physical, VR,

AR)
δ, θ, α, β, γ 1.5–95 Hz, notch,

FFT ICA (MARA) PC
• correlation between ownership

statements and β, γ bands in
premotor cortex activity

(Baka et al., 2018)
[21] 33 sense of

presence
VE realistic,
non-realistic θ, α, β1, β2 0.1–60 Hz, notch,

FFT, 10 ROI VI Mann–Whitney,
KWT

• non-realistic and realistic VEs
induce different brain oscillations

• the duration of VR applications
must be at least 42.8 s in order to
be effective

(Kweon et al.,
2018) [65] 20 immersion videos (2D/VR) α, β

paired t-test, α, β
wave difference

2D/VR

• higher brain activity and enhanced
experience in the VR condition

• differences in video genre

(Haruna et al.,
2020) [14] 9 sense of oneness visual haptics

feedback θ, α, β 0.5 s epochs ffDTF, SCoT, VAR
• the proposed method can measure

effectively participants’ sense
of presence

(Raz et al., 2020)
[22] 18 body ownership virtual hand mu rhythm >0.1 Hz, Morlet WT ICA, VI

ERSP, ERP,
cluster-based

permutation, PC,
ANOVA, two-tailed

signed rank test

• The alternative body can induce
sensorimotor sensitivity through
synchronicity and
semantic congruence.

• no association was found between
Mu power and Pe/P300
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Table 8. Cont.

Authors, Year,
Reference Participants Objective Stimuli Frequency Bands/

Range Data Preprocessing Artifact
Removal

Classification Tech-
nique/Statistical

Analysis
Main Findings

(Nierula et al.,
2021) [50] 29 body ownership,

agency BCI (no VR/VR) α
0.5–40 Hz, notch,

CSP, HT
VI, VMA, MD,

ICA

sBEM, ERD%,
Tikhonov-

regularized
minimum-norm

• the sense of agency can be
generated by controlling
movements with BCI

• agency and responsibility are
correlated with increased activity of
sensorimotor areas

(Bogacz et al.,
2021) [59] 14 engagement VE cycling α

1–20 Hz, Welch’s
method VI ROI analysis, α

power peak
• the subjects were more engaged in

the immersive condition

(Harjunen et al.,
2022) [60] 58 embodiment VR hands, VR

agents β CSD, FFT ICA

ERD/ERS, average β
ERD, rmANOVA,

F-tests, type-III sum
of squares, planned

pairwise
comparisons

• sensorimotor resonance was
modulated by changes in bodily
resemblance to others’
perceived pain

(Y.-Y. Wang et al.,
2022) [23] 72 immersion images, game θ, α, β, γ

average, log values,
MANOVA,

MANCOVA

• VR leads to increased brain wave
activity related to attention and
meditation, as well as
desynchronization of α waves

ANOVA = ANalysis Of Variance, CSP = Common Spatial Pattern, ERD = Event-Related Desynchronization, ERP = Event-Related Potentials, ERS = Event-Related Synchronization,
ERSP = Event-Related Spectral Dynamics, ICA = Independent Component Analysis, ffDTF = full frequency Directed Transfer Function, FFT = Fast Fourier Transform, GA = Grand
Average, HT = Hilbert Transform, KWT = Kruskal–Wallis test, MANOVA = Multivariate Analysis of Variance, MANCOVA = Multivariate Analysis of Covariance, MARA = Multiple
Artifacts Rejection Algorithm, MD = Mahalanobis Distance, PC = Pearson Correlation, ROI = Regions Of Interest, sBEM = symmetric Boundary Element Method, CoT= Smooth
Coherence Transform, VAR = Vector AutoRegressive, VI = Visual Inspection, VMA = Variance of the Maximal Activity, WT = Wavelet Transform.
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4.3.2. Data Pre-Processing and Artifact Removal

A variety of bandpass filters were applied by the researchers as follows: 1–20 Hz [59],
0.1–30 [74], 0.5–40 Hz [50], 0.1–60 Hz [21] and 1.5–95 Hz [88]. The authors of [22] used
a 0.1 Hz high-pass filter. A notch filter was applied in [21,88]. A number of other pre-
processing methods were also used: FFT [21,60,88], Hilbert Transform (HT) [50], Morlet
wavelet [22] and Welch’s method [59].

Artifacts were identified by visual inspection in [21,22,50,59]. ICA was also an artifact
rejection method performed by a significant number of authors [50,60,65,88]. Several other
methods were used as follows: the Variance of the Maximal Activity (VMA) and the
Mahalanobis distance (MD) [50], Artifact Subspace Reconstruction (ASR) [65], ICLabel [65].

4.3.3. Signal Analysis

All frequency bands, δ, θ, α, β and γ were considered by [88], while only α band was
considered in [50,59]. Only β band was used in [60]. Brain rhythms of interest included
sub-bands only in [21] (θ, α, β and γ1). The mu rhythm, defined as the frequency band
between 8 and 13 Hz and measured at central electrodes, was investigated in [22].

4.3.4. Statistical Analysis

A wide spread of statistical analysis methods on EEG recordings was implemented.
The Grand Average (GA) and mean amplitude of ERPs [74]; Pearson Correlation (PC)
analysis [22,88]; α and β brain activity and paired t-tests [65]; the power spectra and the
average across segments for ten ROIs, non-parametric tests (Mann–Whitney and KWT) [21];
Event-Related Spectral Perturbations (ERSP), a non-parametric cluster-based permutation
test, ANOVAs, FDR-corrected two-sided signed rank test and permutation test [22]; the
time points with lowest ERD% extracted with the HT, Common Spatial Pattern (CSP)
analysis, the mean, the symmetric Boundary Element Method (sBEM) and the Tikhonov-
regularized minimum-norm [50]; the average β ERD/ERS for two ROIs (left/right hemi-
sphere), rmANOVA, uANOVA, F-tests with type-III sum of squares and planned pairwise
comparisons [60]; differences in peak α power under non-immersive and immersive sce-
narios, average, log value computation, Multivariate Analysis Of Variance (MANOVA) and
Multivariate Analysis of Covariance (MANCOVA) [59].

4.4. Spatial Awareness

Spatial navigation wayfinding behavior refers to the ability of a person to find their way
to a goal location. Table 9 presents a summary of findings in the field of spatial awareness.

4.4.1. Objectives and Outcomes

The authors of [68] suggested that experiments developed for research on spatial naviga-
tion should not be static, as kinesthetic and vestibular information may alter α brain waves.

A virtual house environment model was proposed in [52], where the effect of different
colors of the target (bathroom door) was studied in association with the participants’ age.
The results showed no significant differences in brain activity between the different colors
of the target door for the young group, while in the elderly group green and red colors
evoked a significantly larger P3b with respect to the other door colors. In a similar direction,
the effects of three different interior designs (color, graphics, architectural features) were
evaluated in [43]. Improvements in some orientation behaviors for the most extensive
wayfinding design were found with no significant improvements on performance or in
self-reported cognitive state. The assessment of the effects of social characteristics (gender,
age, level of education) and the height of the ceiling indicated that wayfinding behavior
was influenced by these factors [71].
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Table 9. Spatial awareness.

Authors, Year,
Reference Participants Stimuli Frequency Bands/

Range Data Preprocessing Artifact Removal
Classification

Technique/Statistical
Analysis

Main Findings

(Ehinger et al.,
2014) [68] 5 triangle

completion task α 1–120 Hz VI, AMICA, BEM
ERSP, PCA, k-means,
ROI analysis (Monte

Carlo)

• Significant differences in brain activity
between experiments with static and
walking subjects

(de Tommaso M
et al., 2016) [52] 28 VE home colors 0.5–80 Hz 0.5–80 Hz VI, ASA-ANT software,

ICA

GA, P3b amplitude and
latency, one-way

ANOVA, MANOVA,
scalp maps, BC

• in young group increase in P3b amplitude
for the target, regardless of the door color

• in elderly group significantly different P3b
amplitudes for green and red target, no
increase for the white stimulus

(Sharma et al.,
2017) [53] 30 maze θ 4–8 Hz VI, ICA

%θ change, ERD/ERS,
DFT, IS t-tests, ANOVA,

ROI analysis

• better performance when landmarks where
present compared to the no
landmark condition

(Erkan, 2018) [71] 340 maze θ, α, β EEG-Analyzer Tool, FFT Gratton, Coles, and
Donchin algorithm θ, α, β activity

• wayfinding behavior is influenced by
personal and social characteristics of
people and is related to space height

(Gehrke and
Gramann, 2021)

[54]
29 Maze θ, α 124–500 Hz VI, ICA, AMICA

MAD, SD, MD, BEM,
k-means clustering,

LME, Tukey’s, Spectral
maps, ERSP

• α power oscillations can be used for the
investigation of wayfinding behavior

(C.-S. Yang et al.,
2021) [24] 41 spatial task α, β 1–45 Hz VI, ASR, AMICA k-means, ERSP,

correlation analysis

• participants’ preferred spatial reference
frame (allocentric/egocentric) may change
for different environments

(Liang et al., 2021)
[25] 19 teleporter δ, θ, α, β 1–50 Hz, Morlet WT ASR, ICA mean, WSRT, SVM

• spatial distance and temporal durations
during navigation are associated with
different power changes in brain signals
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Table 9. Cont.

Authors, Year,
Reference Participants Stimuli Frequency Bands/

Range Data Preprocessing Artifact Removal
Classification

Technique/Statistical
Analysis

Main Findings

(Ellena et al.,
2021) [61] 22 avatar 0.5–30 Hz 0.5–30 Hz voltage threshold, SD,

ICA

N1 mean amplitudes,
rmANOVA,

Newman–Keuls

• intrusion of fearful faces into the
peripersonal space may heighten the
expectation of a visual event occurring in
the periphery.

(Yi et al., 2022)
[78] 19 Open dataset δ, θ, α, β 1–50 Hz, Morlet WT ASR, ICA pMFLR, PCA,

cross-validation

• the proposed algorithm leads to an
interpretable classification

• frontal and parietal δ-θ are the most related
to distance judgment oscillations

(Zhu et al., 2022)
[42] 30 VE hospital θ, α, β 1–50 Hz, PREP Pipeline,

SSI, CSP ASR, ICA, VI log transform, RF, 5-fold
cross-validation ROC

• navigational uncertainty state can be
potentially identified by EEG
data processing

(Kalantari et al.,
2022) [43] 63 VE hospital δ, θ, α, β, γ ICA

IC cluster analysis,
one-way ANOVA, post
hoc Tukey HSD, ERSP

• improvements in orientation behaviors for
the extensive wayfinding design and
greater neurological activation

• no improvement in wayfinding
performance and self-reported experience

AMICA = Adaptive Mixture, ANOVA = Analysis Of Variance, ASR = Artifact Subspace Reconstruction, BEM = Boundary Element Method, BC = Bonferroni Correction, DFT = Discrete
Fourier Transform, ERSP = Event-Related Spectral Dynamics, GA = Grand Average, IC = Independent Component, ICA = Independent Component Analysis, IS = Independent
Samples, HSD = Honest Significant Difference, LME = Linear Mixed Effects, MANOVA = Multivariate Analysis of Variance, MAD = Mean Absolute Distance, MD = Mahalanobis
Distance, PCA = Principal Component Analysis, pMFLR = penalized Multiple Functional Logistic Regression, RF = Random Forest, rmANOVA = repeated-measures ANOVA,
ROC = Receiver Operating Characteristics, ROI = Regions Of Interest, SD = Standard Deviation, SVM = Support Vector Machine, VI = Visual Inspection, WSRT = Wilcoxon signed rank test,
WT = Wavelet Transform.
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Maze-like environments were designed in [53] to investigate the influence of land-
marks on performance during navigation. The findings revealed better performance (fewer
errors, shorter times to complete the task) when landmarks were present compared to the
no landmark condition mainly on the left-hemispheric region. A virtual maze was also used
for the assessment of spatial learning [54]. A significant α power decrease was identified
in the presence of novel walls and with the increase in walking distance. The possibility
of using EEG as a metric for the identification of uncertainty states, while navigating in a
VR hospital environment, was the research objective of a study [42], where high accuracies
were achieved with the use of the proposed machine-learning classification approach.

A three-stage algorithm [78] was applied to an openly available dataset, leading to
interpretable classification and indicating a pivotal role of frontal and parietal delta-theta
oscillations in distance judgment. In a similar direction, in paper [25], a teleportation
task was implemented to assess perceived distance and duration. Results suggested that
occipital α frequencies are associated with both distance and duration, but for the rest of
the brain regions and frequency bands no common brain activity could be linked with
both distance and duration. Another study [61] focused on the participants’ modulation
on spatial perspective when fearful faces appear in close proximity, indicating a potential
threat. The results confirmed a reduction in N1 mean amplitude, proportional to the speed
of their reaction and elicited by the peripheral probe for near fearful relative to neutral
faces. Allocentric and egocentric navigation was the research objective of [24], where both
behavioral and brain dynamics results indicated alterations in subjects’ spatial reference
frame, depending on the environment type.

4.4.2. Data Preprocessing and Artifact Removal

A variety of band-pass filters was used by the researchers as follows: 0.5–30 Hz [61];
4–8 Hz [53], 124–500 Hz [54]; 1–45 Hz [24]; 1–50 Hz [78]; 0.1–50 Hz [25,42], 1–120 Hz in
study [68]. A number of other methods were also used: the PREP Pipeline for the removal
of line noise [42]; the ‘EEG-Analyzer Tool’, developed by the authors of [71] for creation of
‘power spectra’ graphics; and Morlet WT [25].

Artifacts were identified by visual inspection in [24,42,52,53,68]. ICA was also an artifact
rejection method preferred by a significant number of authors: [25,42,43,52–54,61,78]. Sev-
eral other methods were used as follows: the algorithm developed by Gratton, Coles, and
Donchin [71], AMICA [24,54,68]; BEM [54,68]; ASR [24,25,42,78]; the ASA-ANT software [52];
CSP [42]; the removal of flat line channels [42]; a voltage threshold of 400 µV, SD [61].

4.4.3. Signal Analysis

The main frequency bands (δ, θ, α, β, γ) or a subset of them were used in almost all
papers [24,42,43,53,54,68,71,78], where different frequency ranges were considered rather
than frequency bands by the authors of [52,61], while there were not any articles reposting
the use of sub-bands.

4.4.4. Statistical Analysis

The percentage change and the ratio ERD/ERS in θ power were computed in [53] and
DFT was computed for eight ROIs. Independent sample t-tests and univariate ANOVA
were applied to the behavioral measures. The P3b amplitude and latencies were estimated
in [52], by one-way ANOVA, MANOVA and a post hoc BC. Scalp Maps of the Grand
Average (GA) of the P3b and Statistical Probability Maps (SPM), were constructed and
evaluated. The activity of the frequency bands of interest (θ, α, β) was used as a metric
by the authors of [71]. A number of statistical methods were used in [54], including Mean
Absolute Distance (MAD), SD, Mahalanobis Distance (MD), BEM, k-means clustering,
Linear Mixed Effects (LME), Tukey’s, Spectral maps and ERSPs. According to another
approach [61], the first maximal negative deflection after T1 was used for the evaluation
of the N1 component of the left and right temporo-occipital recording sites. Subsequently,
rmANOVA and the Newman–Keuls test were used.
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4.4.5. Classification Methods

Several analysis approaches were demonstrated in [54]. Mean absolute amplitude,
SD, the MD, a dipole fitting procedure and an ROI-driven repetitive k-means clustering
approach were employed. EEG analysis was based on spectral maps and ERSPs. For the
statistical analysis of the EEG signals, linear mixed effects model and Tukey’s correction
were evaluated. Significant modulation of α oscillations was identified through single-
trial regression. The same clustering method, k-means, along with ERSP and correlation
analysis for four ROIs (occipital, frontal, parietal and central) were used by the authors
of [24]. Moreover, in study [68], k-means clustering was applied, together with ERSPs
using a Morlet Wavelet transformation, Principal Component Analysis (PCA) with an ROI
analysis with Monte Carlo tests.

An SVM classifier was implemented in [25], after the computation of mean band power
and Wilcoxon signed rank tests were run for the statistical analysis on the EEG recordings.
Penalized Multiple Functional Logistic Regression (pMFLR), PCA, and cross-validation
were used to classify human behaviors in study [78]. A Random Forest (RF) classifier with
100 trees was applied in [42]. A 5-fold cross-validation and the area under the Receiver
Operating Characteristics (ROC) curve were additionally computed. IC cluster analysis
was applied in [43], localized to Brodmann Area 18 (BA18) of the brain. One-way ANOVA
and the post hoc Tukey HSD method for multiple comparisons were also applied. Finally,
ERSPs were calculated and tested via the bootstrap re-sampling method.

4.5. Interaction with the Digital Environment

In this section a collection of studies is included, investigating different aspects of the
effect that a VE may have on human cognition. Some of the objectives being evaluated
are the following: cognitive conflict, performance, human communication/collaboration
and affordance. It should be noted that the description below includes only the articles
that measured performance and work efficiency through EEG signal analysis, and not by
other measurements, such as time to complete the task, etc. Table 10 presents a summary of
findings in the field of interaction with the digital environment.

4.5.1. Objectives and Outcomes

Studying the impact of transitional affordances, it was found that perception is influ-
enced by potential actions afforded by an environment [81]. Cognitive conflict occurs when
there is a mismatch between the perceived and the expected results of one’s action. The
authors of [27] designed a VE to study cognitive conflict for three hand representations
(realistic, robotic, arrow). ERP analysis showed that participants were more sensitive in
cognitive conflict occurrences for the more realistic representations. A model (BCINet)
was proposed and tested on two datasets (CC and pHRC) in comparison with established
models (EEGNet, DeepConvNet, ShallowNet) [29]. The results showed significantly higher
classification accuracy with less trainable parameters. The same authors also evaluated the
impact of task duration on the assessment of cognitive conflict, where more pronounced
brain activity was found in tasks with longer completion time [30]. In a later study [31], the
authors investigated how the velocity of hand movements impacts human brain responses
using an object selection task. According to their findings, the integration of hand move-
ments with visual and proprioceptive information during interactions with real and virtual
objects requires velocity as an essential component.
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Table 10. Interaction with the digital environment.

Authors, Year,
Reference Participants Objective Stimuli Frequency Bands/

Range Data Preprocessing Artifact Removal
Classification Tech-

nique/Statistical
Analysis

Main Findings

(Hubbard
et al., 2017)

[26]
12 learning

performance
Working memory

task α, β2 FFT ERP, TFR
• learning performance can

be improved using a VR
and EEG-feedback system

(Singh et al.,
2018) [27] 32 cognitive conflict object selection task 0.5–50 Hz VI

PEN, P300,
rmANCOVA,
mmANOVA

• close-to-real VEs induce
higher brain activity in
cognitive conflict tasks

(Tromp et al.,
2018) [69] 20 language

comprehension VE restaurant 0.01–40 Hz 0.01–40 Hz Brain Vision
Analyzer

ERPs, N400,
ANOVA,

Greenhouse-Geisser
correction

• a N400 effect was observed
when the mismatch
mechanisms were activated

(Spapé et al.,
2019) [55] 66 message

meaning game 0.2–80 Hz, notch, <40
Hz,

ICA, VI, Autoreject
algorithm

rmANOVA, N1,
MFN, P3, LPP

• the decoding of a message
precedes the processing of
the message source
(i.e., the messenger)

(Djebbara
et al., 2019)

[81]
19 transitional

affordance
VE

Go/No Go 0.2–40 Hz 1–100 Hz ICA, VI, SD

VEP, MRCP, Peak
Analysis,

rmANOVA, Tukey’s
HSD

• potential actions afforded
by an environment, may
alter perception

(J. Li et al.,
2020) [79] 30 work efficiency 3 VEs/lighting β PC

• the efficiency of human
work is primarily
associated with the right
temporal lobe region and
the β rhythms.

(Foerster et al.,
2020) [28] 40 motor learning labeled novel tools β 1–50 Hz, notch, voltage thresholds

ERD/ERS, pairwise
comparison,

two-tailed t-tests,
cluster analysis
(Monte Carlo)

• language modulated the
learning of novel tool use

• β power was reduced while
using labeled tools
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Table 10. Cont.

Authors, Year,
Reference Participants Objective Stimuli Frequency Bands/

Range Data Preprocessing Artifact Removal
Classification Tech-

nique/Statistical
Analysis

Main Findings

(Choi et al.,
2020) [67] 14 performance,

presence BCI 8–36 Hz data augmentation

FBCSP, LDA,
ANOVA, 4-fold
cross-validation,

Mann–Whitney U
test, BC, ERD ratio

• embodiable feedback
induces higher control
performance, more
distinctive brain activity
patterns and enhanced
cortical activation

(Singh and
Tao, 2020) [29] 26 cognitive conflict CC, pHRC datasets

BCINet, EEGNet,
DeepConvNet,

ShallowNet

• the proposed BCINet model
has better classification
performance than other
well-known models

(Singh et al.,
2020) [30] 33 cognitive conflict object selection task 0.5–50 Hz ICA, VI PEN, Pe, PC,

rmANOVA

• longer object selection tasks
are more informative
for cognitive
conflict evaluation

(Singh et al.,
2021) [31] 20 cognitive conflict object selection task δ, θ, α, β 0.1–40 Hz Kurtosis, ICA,

DIPFIT, BESA

PEN, Pe, ANOVA,
ANCOVA,

One-sample t-tests,
1000-fold

permutation test

• velocity is an important
factor for combining hand
movements with visual and
proprioceptive data while
interacting with real or
virtual objects

(Immink et al.,
2021) [44] 45 performance game marksmanship 0.1–40 Hz, IRASA

ICA, >150 µV, flat
channels, EMG, ECG,

EOG

REML, Type II Wald
χ2-tests

• the 1/f aperiodic
parameters are the most
correlated parameters
with predicting
visuomotor performance
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Table 10. Cont.

Authors, Year,
Reference Participants Objective Stimuli Frequency Bands/

Range Data Preprocessing Artifact Removal
Classification Tech-

nique/Statistical
Analysis

Main Findings

(Foerster and
Goslin, 2021)

[32]
37 affordance virtual objects θ, α, β, mu band 0.1–40 Hz, Laplacian

filter, FFT, TFR

Autoreject algorithm,
frontal and

prefrontal exclusion
ITC, rmANOVA

• the results endorse the
embodied cognition
approach as opposed to the
reasoning-based approach
for object processing

(Yu et al., 2021)
[80] 36

reorganizations of
functional brain

networks
2D, 3D videos α, β, γ SVM, RF

• the proposed classifier
(SVM) can be utilized to
study the neural
mechanisms underlying
various visual experiences
from the perspective of a
brain network, with an
accuracy of 0.908

(Gumilar et al.,
2021) [72] 24 inter-brain

synchrony
real world vs. VR

Avatar δ, θ, α, β, γ 0.5–60 Hz, notch,
automated pipeline VI, ICA eLORETA, PLV

• VR induces similar with the
real-world
inter-brain synchrony

(Cruz-Garza
et al., 2022)

[62]
23 performance VE classroom δ, θ, α, β, γ 0.5–50 Hz, frequency

band-power, PDC ASR, ICLabel, ICA KWT, k-SVM

• no significant differences
on performance

• significant changes in EEG
features for the short-term
memory tasks

(Y.-Y. Wang
et al., 2022)

[23]
72 creativity θ, α, β, γ MANOVA,

MANCOVA

• positive VR impact on the
feasibility of the creative
process

• No significant effects of VR
on variety and novelty
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Table 10. Cont.

Authors, Year,
Reference Participants Objective Stimuli Frequency Bands/

Range Data Preprocessing Artifact Removal
Classification Tech-

nique/Statistical
Analysis

Main Findings

(Gregory et al.,
2022) [64] 49 Working memory

performance

Memory task
(Social/non-social

cue)
θ, α 0.5–36 Hz VI, ICA TFR (Morlet WT)

• social cue altered working
memory for status
information, but did not
affect location information

• working memory for both
status and location
information was influenced
by non-social cues.

(Giannopulu
et al., 2022)

[83]
27 mental imagery,

creativity virtual objects β, γ 1–80 Hz, PSD, PDC VI, ICA

Levene’s test, paired
sample t-tests,

rmANOVA, PC,
PCA, Factor

Analysis, Bartlett’s
test

• creativity assessment
cannot be limited to a
single brain area, but it
should investigate various
interconnected networks

ANOVA = Analysis Of Variance, ANCOVA = Analysis of Covariance, ASR = Artifact Subspace Reconstruction, BC = Bonferroni-correction, eLORETA = exact Low-Resolution
Electromagnetic Tomography, ERD = Event-Related Desynchronization, ERP = Event-Related Potentials, ERS = Event-Related Synchronization, FBCSP= Filter Bank Common Spatial
Pattern, FFT = Fast Fourier Transform, HSD = Honest Significant Difference, ICA = Independent Component Analysis, IRASA = Irregular-Resampling Auto-Spectral Analysis,
ITC = Inter-Trial Coherence, KWT = Kruskal–Wallis test, LDA = Linear Discriminant Analysis, LPP = Late Positive Potential, MANOVA = Multivariate Analysis of Variance,
MANCOVA = Multivariate Analysis of Covariance, MFN = Medial Frontal Negativity, MMANOVA = Multilevel MANOVA, MRCP = Movement-Related Cortical Potentials,
PC = Pearson Correlation, PCA = Principal Component Analysis, PDC = Partial Directed Coherence, PEN = Prediction Error Negativity, PLV = Phase Locking Value, PSD = Power
Spectral Density, REML = Restricted Maximum Likelihood, RF = Random Forest, rmANOVA = repeated-measures ANOVA, SVM = Support Vector Machine, TFR = Time Frequency
Representations, VEP = Visual Evoked Potentials, VI = Visual Inspection, WT = Wavelet Transform.
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The objective of several studies was performance and work efficiency. An adaptive to
the users’ cognitive state system was designed by the authors of [26], aiming to enhance
learning. The results indicated the feasibility of this system and also the need for efficient
artifact removal and feature selection methods to improve prediction accuracy. A total of
three VEs (open natural, semi-open library, and closed basement) were designed in [79]
to investigate the influence of natural light on work efficiency. The findings indicated a
strong correlation between the β rhythms of the right temporal lobe region of the brain
and efficiency. The findings of [44] indicated that individual 1/f intercept and slope
parameters of aperiodic resting state neural activity could be used in predicting visuomotor
performance and also the capability of a person to improve their performance with practice,
using a VR marksmanship task. Performance enhancement was also investigated in [67],
where the proposed control scheme provided virtually embodiable feedback during the
control of a two-dimensional movement of a device. The results indicated that the absence
of embodiable feedback led to higher control performance, greater discriminability in brain
activity patterns, and increased cortical activation.

Four virtual classrooms were designed by the authors of [62], in order to investigate
whether different window placement and room dimensions affect cognitive performance. In
contrast with previous work no significant difference on working memory or mental fatigue
was found. However, for the cognitive tasks involving short-term memory encoding, there
were consistent and significant alterations in EEG features. Working memory performance
was investigated in [64], using an experiment where a social (avatar) and non-social (stick)
cue appeared in the VE and participants were asked to remember the location and the
status of virtual objects. The performance on status information was found to be affected
by both social and non-social cues, but the location information was altered only by the
non-social cue.

Human communication was investigated in several studies, focusing on linguis-
tic/verbal information and inter-brain synchrony/collaboration. Using an experiment
where participants were immersed in a realistic 3D environment (virtual restaurant) a
reliable N400 effect was observed when there was a mismatch between the visual and the
auditory stimulus, showing that the combination of VR and EEG can be used to study
language comprehension [69]. The effect of language on motor learning, where novel tools
were presented with identifying labels, was investigated in [28]. Findings suggested that
labels may strengthen one’s memory and learning ability. A VR-based economic decision-
making game was proposed by the authors of [55] to investigate if interpersonal touch and
facial expressions influence participants perception and response to financial offers with
different levels of fairness. The results suggest that at an early stage of processing fairness
perception is not altered by the nonverbal context, but it can affect one’s perception after
the message is decoded.

Hyper-scanning is a neuroimaging technique, used to record neural activity from multiple
participants at the same time, to investigate whether there is an interaction and synchronicity
between their brains. Three pilot-studies were conducted in [72], where participants performed
finger-pointing and finger-tracking exercises in pairs in two scenarios (real world and VR).
Similar inter-brain synchrony was found to be induced by VR and the real-world.

Novel objects were presented to forty-three participants in study [32] and brain function
was evaluated during the process of learning the function and usage of the objects. It was
found that motor processing was influenced by object recognition. The results further support
that object processing is not based only on previous experience, but is also shaped by the
entire body interactions while solving a problem. In a similar direction, participants were
asked to use familiar or abstract objects, both in real-world and AR, to create a scene [83]. The
findings support that creativity cannot be evaluated for a single brain area but involves many
regions of the brain. The influence of VR on creative performance was explored by the authors
of [23]. The results revealed that VR can be a useful tool for the creative process, but it doesn’t
affect significantly the variety, novelty and creative outcomes.
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The neural activity of different visual experiences during 2D and 3D video watching
were measured in [80], where the proposed SVM classifier achieved a classification accuracy
of 0.908.

4.5.2. Data Preprocessing and Artifact Removal

A notch filter was applied in a few papers [28,55,72] and FFT was used by [32]. A vari-
ety of band-pass filters was implemented as follows: 0.01–40 Hz [69], 0.1–40 Hz [31,32,44],
0.5–36 Hz [64], 0.5 Hz–50 Hz [27,30,62], 1–50 Hz [28], 0.5–60 Hz [72], 0.2–80 Hz [55],
1 Hz–80 Hz [83]. A combination of two band pass filters 1–100 Hz and 0.2–40 Hz [81]
and a 40-Hz low-pass filter [55] were also applied. Other preprocessing methods included
FFT [26], data augmentation [67], a surface Laplacian filter and TFRs, using a family of
Morlet wavelets [32], an automated pre-processing pipeline proposed by Makoto and
an approach proposed by Sareen et al. [72], PSD [83], frequency band-power and Partial
Directed Coherence (PDC) and ROI analysis [62,83].

Artifacts were identified by visual inspection in several papers [27,30,55,64,81,83].
ICA was also an artifact rejection method preferred by a significant number of au-
thors: [30,31,62,64,72,81,83]. While a combination of ICA and MARA was also used
in study [55]. A number of authors removed specific channels or trials, regarded as
artifactual such as trials during which the participants performed significant hand mo-
tions [23], data exceeding a 150 µV peak-to-peak amplitude criterion [44], a variety of
voltage thresholds [28], components containing recordings from flat channels [42,44],
signals that reflected EMG, ECG and EOG activity [44], channels with more than five
SDs from the joint probability of the recorded electrodes [81], the signals from the frontal
and prefrontal electrodes [32] and also those with less than 0.70 correlation with nearby
channels [42].

Several other methods were implemented, namely the VMA and the MD [50], the
Kurtosis method and equivalent dipole model fitting (DIPFIT) with a spherical four-shell
(BESA) head model, the Brain Vision Analyzer software [69], the Autoreject algorithm
and an individually tailored threshold-based artefact rejection procedure that used a stair
climbing procedure [55], multiple source analysis and artifact subspace reconstruction
(ASR) [44,62], the Irregular-Resampling Auto-Spectral Analysis method (IRASA) [44],
ICLabel and ICA [44,62].

4.5.3. Signal Analysis

The mu rhythm, defined as the frequency band between 8 and 13 Hz, measured at
central electrodes was investigated in studies [22,32]. All five frequencies δ, θ, α, β and γ were
considered in a few studies [57,62,72]. Various subsets were also used α, β, and γ [80]; β and
γ [14,32,71,82]; θ and α [64]; β [79]. In study [26] α and β2 frequency bands were investigated,
the only case of sub-band consideration. Finally, different frequency ranges were considered
rather than frequency bands by a significant number of authors [44,67,69,80].

4.5.4. Statistical Analysis

The Phase Locking Value (PLV) was calculated to measure inter-brain synchrony in [72],
the HT and source localization, using eLORETA were also applied, while cross-spectral
matrices were computed for each band of interest and for each subject. Average ERPs, the
presence of a sustained N400 effect, repeated ANOVAs and the Greenhouse–Geisser correction
were applied by the authors of [69]. Pairwise correlation comparison indicated four points
and one ROI in [79]. LME models, fit by Restricted Maximum Likelihood (REML) estimates
and type II Wald χ2-tests were used in [44]. In study [64] Morlet wavelet transformation was
applied to compute TFRs. ERPs and TFRs were considered in [26].

The VEPs and Movement-Related Cortical Potentials (MRCP) were analyzed in [81],
using an automatic peak detection algorithm. The mean peak amplitudes were subjected
to rmANOVA analysis. Tukey’s HSD was employed for post hoc analysis, and in instances
where sphericity was violated, corrected p-values were reported. Statistical analysis con-
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sisted of the calculation of the Inter-Trial Coherence (ITC) and rmANOVA for the four
ROIs in study [32]. Another study was focused on the analysis of the N1, (Medial Frontal
Negativity) MFN, P3 and the Late Positive Potential (LPP), using rmANOVA [55]. The
authors of [83], after verifying that equal variance could be assumed using Levene’s test,
they performed paired sample t-test, rmANOVA, pairwise PC. Corellograms were com-
puted using Factor Analysis, PCA and the Bartlett’s test. The amplitude of Prediction Error
Negativity (PEN) and Pe were statistically analyzed with PCA and rmANOVA in [30]. Also,
in article [27] the amplitude of PEN and P300 were evaluated with Multilevel Multivariate
ANOVA (mmANOVA) and rmANCOVA.

4.5.5. Classification Methods

Feature extraction was performed in [67], using the Filter Bank Common Spatial
Pattern (FBCSP) algorithm and Bayesian formulation of Fisher’s LDA classification was ap-
plied on the features and a two-way ANOVA with 4-fold cross-validation were performed.
The Mann–Whitney U test and BC were applied to investigate the ERD ratios. In study [28]
ERD/ERS ratios were evaluated with pairwise comparison and two-tailed t-tests and a
Monte Carlo cluster analysis was performed. A Convolutional Neural Network (CNN)
based model (BCINet, [29]) was developed, followed by classification using ‘softmax’ and
optimization with ‘adam’. CC and pHRC datasets were divided into 60%, 20%, 20% for
training, validation, and testing, respectively, for binary conditions using stratified sam-
pling method. A neural network-based clustering approach was implemented in [31] to
extract the PEN and Pe and the statistical analysis on the EEG data was conducted using
ANOVA, ANCOVA, one-sample t-test, 1000-fold permutation test on PEN and Pe ampli-
tude. A non-parametric KWT was performed by the authors of [62] for feature selection
and a kernel SVM (k-SVM) was used as a classifier. A SVM classifier was also performed
in [80], using an RF-based feature selection model.

4.6. Attention

Table 11 presents a summary of findings in the field of attention research.

4.6.1. Objectives and Outcomes

The effect of avatar ethnicity (white vs. black) and appearance (business man vs.
beggar, with casual dress as a control condition) on the participants’ alertness were studied
in [34]. Higher levels of attention (alarm reaction) were measured when white participants
were asked to help a white beggar or a black businessman and higher engagement when
interacting with a black beggar or a white businessman. In a similar direction the authors
of [70] measured increased alpha suppression, which is linked with greater attention
allocation, when there was solidarity between the participant and the avatar in cases where
the avatar was rated as average. An authoring tool (BARGAIN, [66]) for affective game
design was proposed, which can be used to define rules for game adaptation according to
the user’s emotional state, resulting in an enhanced game experience. A study evaluated
enhancements in both overall attention levels and the degree of engagement in young
university students with a proposed 30-min software program (Virtual ART, [35]), inspired
by Attention Restoration Theory (ART). An average score of approximately 85.37% accuracy
of the proposed by [82] method, proved the feasibility of a real-time assessment of internal
and external attention in an AR environment. The authors of [57] showed that goal directed
attention may be assessed, using a saccadic eye experiment, where brain activity was
evaluated through EEG analysis. The effects of restorative VEs on subject’ attention and
engagement for three creativity tests were assessed in study [75]. An increase in attention
and engagement levels was associated with improvements on subjects’ creativity.
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Table 11. Attention.

Authors, Year,
Reference Participants Stimuli Frequency Bands/

Range Data Preprocessing Artifact Removal
Classification

Technique/Statistical
Analysis

Main Findings

(Heyselaar et al.,
2018) [70] 30 static photos, VR

avatars δ, θ, α, β <150 Hz, TFR VI, ICA cluster randomization,
ANOVA, Wald χ2 tests

• increased alpha suppression
indicates greater
attention allocation

• interaction with another individual
influence attentional allocation

(Berger and
Davelaar, 2018)

[56]
22 Stroop task

(VR vs. 2D) α FFT α average power
Gratton effect,

factorial ANOVA,
Regression analysis

• large decreases in the Gratton
effect reflect efficient training

• larger learning rates in the VR
group compared to the 2D group.

(X. Yang et al.,
2019) [45] 60 Virtual paintbrush with

feedback eSense algorithm eSense algorithm

• participants who received
reminder feedback had a higher
attention value, significantly
higher flow states, and higher
quality creative product levels than
those in the groups with no
feedback or encouraging feedback

(Rupp et al., 2019)
[33] 10 Attention and memory

tasks (2D vs. VR) 0.1–50 Hz, 1–40 Hz, FFT ICA, GA of ERP,
ABM software ERP

• no significant differences between
2D and VR

(Park et al., 2019)
[57] 15 saccadic exercise θ, α, β 1–50 Hz ICA, 80 µV threshold PSD, ERSP, t-test, FCA

• goal directed attention may be
assessed by EEG analysis

(Vortmann et al.,
2019) [82] 14 VE (ring–sphere) θ, α, β, γ 1–50 Hz, notch, PSD no artifact cleaning

hyperparameter
optimization, LDA,
Ledoit–Wolf lemma,

ANOVA, 5-fold
cross-validation

• it is feasible to perform real-time
assessment of internal and external
attention in AR environments
using basic machine
learning mechanisms.
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Table 11. Cont.

Authors, Year,
Reference Participants Stimuli Frequency Bands/

Range Data Preprocessing Artifact Removal
Classification

Technique/Statistical
Analysis

Main Findings

(D’Errico et al.,
2020)) [34] 40 VE θ, α, β, β1, β2 3–40 Hz, PSD ICA, SNR (θ/β), (β2/β1),

(β/(α + θ))

• white participants exhibited
greater attention towards white
beggars or black businessmen and

• greater engagement towards black
beggars or white businessmen

(G. Li et al., 2020)
[35] 50 Oddball task θ, α 0.5–30 Hz, notch ICA, 100 µV threshold

P3b latency, ITC(θ),
IEC(θ), ANOVA,

paired t-test

• the proposed software improves
attention and
enhances engagement

(Benlamine et al.,
2021) [66] 29 game θ, α, β Distraction = θ/β

Engagement = β/(α + θ)
• emotion adaptive games enhance

user experience

(Wan et al., 2021)
[36] 20 game (2D vs. VR)

N-back paradigm Notch, EEMD ICA, Wavelet
threshold denoising P300, LSTM

• enhanced engagement in VR mode comparing with 3D mode
• in VR mode males reached the peak of attention in less time

than females

(Llinares et al.,
2021) [37] 160 VE classroom β, β2 β, β2 relative power,

Mann–Whitney
• cold-hued colors enhance working

memory and attention

(Tian and Wang,
2021) [38] 20 Videos (2D vs. VR) α, β 0.1–95 Hz, notch, WT ICA, 100 µV threshold Mean energy, t-test

• participants attention in VR
remains high even in repeated
viewing, in contrast with
2D condition

(Cao et al., 2021)
[46] 32 VE (interior,

street, park) α 0.1–30 Hz 20 µV threshold, ICA
ERP, Linear Mixed

Effects Models, Type II
Kenward–Roger test

• higher early visual attention for
the VR condition

• no differences on participants’
recall functions
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Table 11. Cont.

Authors, Year,
Reference Participants Stimuli Frequency Bands/

Range Data Preprocessing Artifact Removal
Classification

Technique/Statistical
Analysis

Main Findings

(Zhang et al.,
2022) [73] 16 videos θ, α

Granger causality,
characteristic path
length, GE, causal
density and flow

• higher brain fatigue when using
the HMD, rather than screen

(Chen et al., 2022)
[87] 28 AR circles θ, α, β 0.1–30 Hz VI, ICA, PSD, time

series topography

α MI, α lateralization
value, correlation

analysis

• walking causes more distraction
compared with standing tasks

(Darfler et al.,
2022) [63] 21 visual memory task θ, α, β 0.5–50 Hz ASR, ICA, ICLabel ERSP, k-means,

one-way ANOVA

• the presence of an avatar in a
virtual classroom causes
distraction and alters visual
memory and performance

(H. Li et al., 2022)
[75] 72 restorative VE δ, θ, α, β, β1, β2, γ 1–40 Hz, notch VI, 150 µV threshold

PSD, rmANOVA,
alertness = β2/β1,

engagement = β/(θ + α)

• greater attention
• creativity improvement

ANOVA = Analysis Of Variance, ASR = Artifact Subspace Reconstruction, EEMD = Ensemble Empirical Mode Decomposition, ERD = Event-Related Desynchronization, ERP = Event-
Related Potentials, ERSP = Event-Related Spectral Dynamics, GA = Grand Average, GE = Global Efficiency, ICA = Independent Component Analysis, IEC = Inter-trial Coherence,
ITC = Inter-Trial Coherence, LDA = Linear Discriminant Analysis, LSTM = Long Short-Term Memory, MI = Modulation Index, PSD = Power Spectral Density, SNR = Signal to Noise
Ratio, TFR = Time Frequency Representations, WT = Wavelet Transform.
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A Stroop task was designed by the authors of [56], for the training of 22 participants to
increase their level of α amplitude, which is correlated with attentional control. Feedback
was provided to half of the participants in a 3D VE and the other half in a 2D environ-
ment. Larger learning rates, associated with larger decreases in the Gratton effect, were
observed for the VE in comparison with the 2D environment. The feedback type was the
objective of [45], where sixty participants received either no feedback, reminder feedback
or encouraging feedback whenever EEG signal analysis showed inattention state, during
a VR creativity task. Findings showed that participants who received reminder feedback
had a higher attention value, significantly higher flow states, and higher quality creative
product levels than those in the groups with no feedback or encouraging feedback. In a
similar direction, comparative studies between 2D and VR were presented in papers [33,36]
to assess the working memory state and attentional state of the participants. The results
of [33] suggest that attention is not influenced by the extra equipment needed for the VE
(HMD) and no significant differences in brain activity were found between the VR and 2D
tasks. The findings of [36] indicate better performance and engagement in the VR mode.
There was also a significant gender-related difference for the VE, where males reached the
peak of attention in a shorter time than females. Higher brain fatigue was found to be
induced in [73], while participants watched VR videos using HMD in comparison with a
traditional 2D display.

In study [38], a repeated video viewing in 2D and VR were compared. Results
suggested higher levels of attention in the VR condition which was at the same level for
the repeated video viewing as well and stronger immersion. The authors of [46] designed
2D and VR tasks, where participants watched emotional or neutral films. Higher α activity
was measured for the VR tasks, linked with increased early visual attention, while no
differences on recall functions were found. A study focused on the effect of warm and
cold hue-colored virtual classrooms on attention and memory functions [37], showed that
cold hue colors improve performance in attention and memory tasks. A visual selective
attention task was designed by the authors of [87], where participants were either standing
or walking freely. The results showed that walking affects visual cortical processing.

Visual working memory, a core cognitive function associated with attention, was the
objective of [63]. Findings suggest that visual memory in a VR classroom setting is affected
by the presence of an avatar, which alters attentional focus.

4.6.2. Data Preprocessing and Artifact Removal

A notch-filter was applied at 50 Hz by [35,36,38,75,82]. A variety of band-pass fil-
tering ranges of the data were applied; 3–40 Hz [34]; 0.5–30 Hz [35]; 0.5–10 Hz [63];
1–40 Hz [33,75]; 1–50 Hz [33,57,82]; 0.1–30 Hz [46,87], 0.1–95 Hz [38], a 150 Hz low-pass
filter was also used [70]. Several other preprocessing techniques were applied, including
TFRs [70]; PSDs using Welch’s method [34]; PSDs using the multitaper method, average
and maximum power computation [82]; FFT [33,56]; WT [38] and the Ensemble Empirical
Mode Decomposition (EEMD) [36].

Visual inspection was used by a small number of authors [70,75,87] to reject noisy
channels. ICA was also implemented in many articles [33–35,38,46,63,70,87]. A small
number of other techniques were also applied, including SNR [34], ASR and ICLabel [63],
a voltage threshold of 150 µV [75], 100 µV [35,38], 80 µV [57] and 20 µV [46], the wavelet
threshold denoising algorithm [36], a combination of the time-series signal, the signal
topography, and the power spectrum [87], α average power [56], the NeuroSky Think Gear
technology [45], ABM’s proprietary software and the GA of ERP [33].

4.6.3. Signal Analysis

The authors of the following papers: [35,37,38,46,56,57,63,66,70,73,82,87] considered
various subsets of the δ, θ, α, β and γ frequency bands, while in very few [34,75] the bands
of interest also included β sub-bands. The signal was not decomposed into frequency
bands by the authors of [33,35,36,45].



Big Data Cogn. Comput. 2023, 7, 163 36 of 50

4.6.4. Statistical Analysis

Several statistical analyses methods have been applied to assess participants’ attention.
The authors of [34] calculated three indexes: the calmness index (θ/β), the alertness index
(β2/β1) and the engagement index (β/(α + θ)). In a similar direction, the distraction
index (θ/β) which is negatively correlated with attention, was used in study [66]. A non-
parametric cluster level randomization routine was used by the authors of [70] and resulted
features were analyzed using an LME model. A step-wise “best-path” reduction procedure
and the ANOVA function with Wald χ2 tests were also implemented.

Another research ([35]) focused on the computation of P3b latency, the frontal midline
ITC and Inter-trial Coherence (IEC) in the theta frequency band. Subsequently, data were
analyzed using ANOVA and paired t-tests.

Factorial ANOVAs and regression analysis on the Gratton difference were used in [56].
The participants’ attention was measured via the NeuroSky brainwave device software
(eSense) in study [45], while the products were evaluated by five researchers and the
average value represented the creative quality of each product. According to another
approach [37], four EEG metrics were calculated, based on the relative power of β and β2
band from selected electrodes. The Mann–Whitney U test was applied. In study [38] the
mean power of α and β bands was compared for the 2D and VR tasks and for the repeated
video viewing and t-tests were used for the comparison of subjective and objective data.
Conclusions were drawn through ERP analysis in [33]. ERP analysis, a Linear Mixed Effects
Model and Type II Kenward–Roger tests were applied in [46].

The construction of the EEG brain networks by Granger Causality and the computation
of the characteristic path length, Global Efficiency (GE), causal density, and causal flow in
the frequency domain of the brain effective network was selected from the authors of [73]
for the statistical analysis of the signal. In a study presented in [87] the computation of
α Modulation Index (MI) and α laterization value for the ERP and the time-frequency
were considered. Subsequently, a cross-participant correlation analysis between ERP
components, behavioral performance, and α MI was conducted. In study [57] ERSPs
and PSDs were evaluated by t-tests and a Functional Connectivity Analysis was also
implemented. The authors of [23] calculated the log values from the average changes in
brain wave activity during each stage of the task and applied MANOVA and MANCOVA.
In study [75] statistical analysis consisted of the calculation of PSD, rmANOVA and two
additional measures: the alertness (β2/β1) and the engagement (β/(θ + α)) index. A
k-means clustering and ERSP analysis along with one-way ANOVA was implemented in
study [63].

4.6.5. Classification Methods

A limited number of classification methods have been used for attentional assessment
including LDA with 5-fold cross-validation, along with hyperparameter optimization,
constrained classifier-Ledoit–Wolf lemma and ANOVA F-Value [82] and bidirectional Long
Short-Term Memory (LSTM) neural network based on the BPTT algorithm and a 10-fold
cross-validation, where attention features were extracted with the HHT method, split into
two parts: empirical mode decomposition (EMD) and the HT [36].

5. Discussion

This systematic review includes research articles that employ EEG signal analysis
to assess the cognitive state of participants who were immersed into VR, AR or MR
environments, projected on HMDs. The research is conducted on the results of four
established scientific databases, Scopus, ScienceDirect, IEEE Explore and PubMed. The first
part of the review presents statistical results of the articles, such as publication year, number
of participants, digital environment type, EEG equipment type, number of electrodes
and objective area. In the second part, the papers are grouped into five main categories
according to their field (cognitive load, immersion, spatial awareness, interaction with the
digital environment and attention) and for each category the objectives and outcomes, data
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preprocessing and artifact removal methods, EEG signal analysis and statistical analysis or
classification methods are analyzed.

There are several important remarks derived from the review. Although the mean
number of participants across all included articles was 33.8, the median is much lower
being 25.5, since two studies [37,71] had a significantly larger number of participants (340
and 180 participants, respectively). Moreover, in 38% of the studies the total number of
subjects is 20 or less, while in many cases the participants are divided into two groups, one
in the physical environment and another one immersed in a virtual world, which leads in
even narrower populations.

The vast majority of studies (~85%) use multi-electrode (>6) EEG equipment that
record signals from multiple channels, offering the possibility of extracting more reliable
measurements and more accurate conclusions on brain function. In addition, scientists
have at their disposal a capable dataset to experiment on, and then extract the most useful
characteristics for their research. However, fitting this type of EEG takes a lot of time
and can cause extra fatigue to the participants, altering the research conclusions. This
might also be the reason why the sample size is relatively small in the majority of the
articles. Moreover, the increased number of electrodes can also increase the complexity of
the calculations and add more artifacts to the recorded data, because of the HMD placement
on top of the EEG electrodes. The relationship between the number of participants and
the number of recording electrodes is depicted in Figure 7. The highest concentration of
articles employs equipment with less than 20 electrodes and population with less than 50
participants. Furthermore, there is a significant number of articles that employ equipment
with 57–64 electrodes and 16–50 participants. It is clear that a very small amount of research
has been conducted for large numbers of participants (y-axis) or electrodes (x-axis).
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On the other hand, only 10% of all surveys investigated the cognitive effects of AR
and there is no fully immersive MR experiment on cognition research. In a fully immersive
MR environment the experiment setup does not include any 2D screens for the projection
of the 3D elements. For example, the participants can wear an AR-HMD, while the VR



Big Data Cogn. Comput. 2023, 7, 163 38 of 50

content can be viewed in a Computer-Aided Virtual Environment (CAVE), providing a
much stronger sense of presence.

Regarding the frequencies that have been considered from the researchers, in a few
cases [5,19,26,27,30,33,44,52,61,67,69,74,77,81] the signal frequency spectrum is not divided
into frequency bands, while in most work the 5 basic bands (i.e., δ, θ, α, β, γ) or a subset
of them are used [9–11,13–17,19,21–23,28,31,32,34,35,37–41,44,46,50,51,57,59,60,62,64,70–73,
75,79,80,83,85,88,89]. In recent years there has been a tendency to investigate α, β, and γ

sub-bands, namely α1, α2, β1, β2, γ1, γ2 and γ3. A quite small number of articles [8,13,21,
26,34,37,39,47–49,75] have considered these sub-bands. Also, mu-rhythm, defined as the
frequency band between 8 and 13 Hz and measured at central electrodes, was considered
by the authors of [22,44]. Moreover, in study [13] the higher frequency range, termed as HF
(70–100 Hz), was analyzed.

When it comes to artifact removal, visual inspection was a common method applied by
a significant number of authors (~30%). Visual inspection could be useful for small datasets,
but a sufficient automatic artifact rejection algorithm should rather be applied in large
datasets. A limited number of methods for automatic artifact removal have been presented
in the literature. Tremmel and Krusienski [11] reduced artifacts using a combination of
two artifact suppression techniques: the Autoreject algorithm and an individually tailored
threshold-based artefact rejection procedure that used a stair climbing procedure. Other
automated artifact removal techniques were the BeMoBIL Preprocessing Pipeline [76],
Artifact Subspace Reconstruction algorithm (ASR) [13,24,25,41,42,62,63,78] and EEGLAB
automatic channel rejection tool [20], the algorithm developed by Gratton, Coles, and
Donchin [71].

The techniques utilized to extract characteristics are presented in Table 12. These
methods are categorized into Time-domain analysis, Frequency-domain Analysis, Time-
frequency Analysis, Connectivity Analysis, Topographical Analysis and Nonlinear Analysis.
It can be easily observed that there is a lack of research using Topographical Analysis and
Nonlinear Analysis techniques, while the most popular seem to be the Time-domain
analysis and Frequency-domain Analysis. These two categories also exhibit the highest
diversity of distinct methodologies. Most studies employed statistical analysis methods for
feature extraction, with fewer utilizing classification and clustering approaches (Table 13).
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Table 12. Feature extraction methods.

Time-domain Analysis

Amplitude Analysis ERP, P300 amplitude, N1, P3, LPP, MFN, P3b, ERP mean amplitude,
mean amplitudes (N1, P1, P3), N1, P2 mean and SD amplitudes, N400 [19,26,27,33,52,55,69,74,77,84]

Peak Analysis VEP, MRCP, PEN, Pe, peak amplitudes (N1, P1, P3), first maximal
negative deflection after T1 [19,27,30,31,61,81]

Area Under the Curve Analysis Area under the average EEG graph [85,86]

Latency Analysis P300 latencies, P3b amplitude latency [35,52,84]

Time-series Analysis VAR [14]

Frequency-domain Analysis

Spectral analysis PSD, Welch [13,15,16,40,57,75,76,83]

Directed connectivity analysis DTF, ffDTF [14,53]

Non-linear analysis PLV [72]

Energy and power measures Energy, sum of power, absolute band power, relative band power, power
peak, power index [13,17,37,38,47–49,59]

Band power ratio measures α/β, θ/α, θ/β, (θ + α)/β, θ/β, β2/β1, β/(θ + α) [66,75,84]

Specific band activity measures θ, α, β [71,83]

Other frequency domain measures %θ change, ITC, IEC, α and β wave difference, mean peak frequency [20,32,35,53,65]

Time-frequency Analysis WPD, TFR, ERSP, ERD, ERS [9,10,13,22,26,28,39,41,43,50,53,57,60,63,64,67,84]

Connectivity Analysis
Functional Connectivity Analysis,

Granger causality, characteristic path length, causal density and flow, GE,
PC, PCA, SCoT, VAR

[14,22,30,57,73,79,83,87,88]

Topographical Analysis Scalp maps, IC Cluster analysis, ROI analysis [43,52,59]

Nonlinear Analysis entropy [41,84]
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Table 13. Feature analysis methods.

Statistical analysis

Descriptive statistics GA, sum of squares, mean of squares, Average log
values, SD [10,17,20,52,59,74,87]

ANOVA methods ANOVA, rmANOVA, rmANOVA, MANOVA, uANOVA,
fANOVA, ANCOVA, MANCOVA [15,19,20,22,23,27,30–32,35,43,47,49,52,53,55,56,59,61,69,75–77,81,83]

Nonparametric statistics
two-tailed signed rank test, permutation test,

Mann–Whitney U test, Cluster-based permutation
testing, WSRT, KWT

[10,15,21,22,28,31,37,41,47–49,65,84]

Parametric tests t-test, Type II Wald x2-tests, regression analysis, pMFLR [16,28,31,35,38,44,53,56–58,65,78,81,83–86]

Post hoc tests Post hoc Tukey HSD, post hoc Dunn’s tests,
Tukey’s HSD, Newman–Kleus [15,43,56,61,81]

Other methods

Levene’s test, Mauchly’s test, pairwise comparisons,
REML, Gratton effect, Greenhouse-Geisser correction, BC,

sBEM, Tikhonov-regularized minimum-norm, F-tests
type-III sum of squares, MI lateralization

[15,16,28,44,50,52,59,69,76,83,87]

Classification

Ensemble CIT2FS, RF [42,53]

Artificial Neural Networks CNN, LSTM [28,31,36]

Other Methods SVM, LDA, LDFA, rLDA, KNN [5,11,12,18,25,51,62,67,80,82,89]

Clustering k-means [63]
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Comparative Study

Several efforts have been made in the literature to review works associated with
cognitive assessment. However, only a few of these efforts have focused on assessment
via electroencephalography and even fewer of them take immersive digital environments
into account as a stimulus. Souza and Naves [91] presented a scoping review, focused
on attention assessment in VEs. They reported results on the number of participants, the
stimulus duration, EEG system variables (i.e., number of channels, sampling frequency, con-
nectivity (wired/wireless), electrode locations), signal processing methods, data processing
(user-dependent/independent, online/offline) and level of immersion. The articles were
grouped into the following categories: attention allocation, workload, drive simulation,
fatigue, game, VR variables, serious games.

The systematic meta-analysis of [92] evaluated human-environmental perception.
The research investigated participant demographics (age, sex), the type of the recording
signal (eye tracking, Electrodermal Activity (EDA)/EMG, EEG), the factors that influence
environmental perception (color, sound, design, nature, point of vision, etc.) and the
stimulus type (Real Environment, Virtual Screen, Semi Immersive, Virtual Immersive,
V-Simulation, Images/Static, Real time Render). The authors of [93] provided an overview
of various types of virtual reality (VR) used in biomedical practice and discussed their
measurable effects on brain structure and cognitive performance. They also examined
the important medical applications of VR technologies that enhance the quality of life for
patients with neurological deficits. Finally, they discussed how the use of VR can benefit
healthy individuals in terms of self-improvement and personal development. The cognitive
abilities associated with human “narrative cognition” were explored in [94] both generally
and specifically in relation to Mixed Reality Technologies.

Another research review [95] aimed to achieve several objectives, including clarifying
the concept of design evaluation for human well-being, exploring available non-invasive
methodologies for monitoring human neurological responses (such as fMRI, MEG, fNIRS,
EEG), describing the specifications of the visual simulator used for virtual environments,
and systematically reviewing existing literature that utilized empirical methodology for in-
tegrating an immersive visual virtual system with biometric data collection for architecture
design evaluation pre- or post-occupancy.

This work investigated the cognitive effects of digital environments, projected on
HMDs and assessed through EEG signal processing. To the extent of the authors’ knowl-
edge, there are no systematic reviews presented in the literature focused on this area. This
review has a wide year range (2013–2022) and is focused on healthy subjects. In literature
there are several reviews that investigate cognitive state of participants with pathological
history or disorders, but very few are focused on general population and even less are
systematic. As evidenced by Table 14, this systematic review covers the widest range of
works and includes the largest number of articles, related to this area. Furthermore, this
review can serve as a complete guide for researchers in neuroscience, as it is focused on the
comprehensive presentation of experimental procedures, starting from the description of
the experiment, the stages of signal processing, and finally, the key findings.
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Table 14. Review articles on EEG cognitive assessment.

Authors, Year,
Reference

Review Type Year Range Articles
Included Main Objective Sub-Categories Conclusions

(Souza and Naves,
2021) [91] Scoping 2011–2020 40 attention

workload fatigue

• Attention allocation
• VR Variables
• Drive simulation
• Learning
• Workload
• Fatigue

• lack of standard terminology
• controlled trials may lead to biased conclusions
• HMD-VR can isolate external sources of distraction,

so they could play a key role for research focused
on internal attention

• Wide diversity in research methodologies
and outcomes

• Gender bias
• through N100, N200, P100 and P300 in

fronto-central-occipital brain areas and P300 in
fronto-parietal brain areas are indicated for
ERP analysis

• changes in β/θ ratio in fronto-parietal brain areas,
θ in occipital and frontal area are the most
informative for attention allocation research

(Shynu et al., 2021)
[92] Systematic 2005–2020 44 Environmental perception

• Influence of Real environment
• Impact of Virtual screen
• The effectiveness of a

semi-immersive environment
• Virtual immersive based

performance
• Consideration of age category
• Tools used for physiological

readings
• the impact of viewpoint on the

perception of the environment
• Impact of sound on an

environment

• people prefer having elements of the natural
environment in their living space

• differences in the perception of the environment
related with gender, age, social, and other
cognitive factors

• psycho-perception studies can be conducted using
artificial environments

• more research is needed on age (especially elderly
population) and gender influence in
environmental perception

• the environmental design elements which could aid
healthy and differentiable individuals has been
very little investigated



Big Data Cogn. Comput. 2023, 7, 163 43 of 50

Table 14. Cont.

Authors, Year,
Reference

Review Type Year Range Articles
Included Main Objective Sub-Categories Conclusions

(Georgiev et al., 2021)
[93] Literature 1984–2021 240

Neurorehabilitation and
Cognitive Enhancement

• Types of Virtual Reality
• Virtual Reality for

Neurorehabilitation
• Virtual Reality for

Replacement of Function
• Virtual Reality for

Self-Enhancement

• the utilization of VR has potential advantages in
areas such as training, research,
and neurorehabilitation

• BCIs have the potential to aid in the restoration of
lost functions, such as speech or mobility

• VR can enhance the sense of embodiment and
enable precise control over bionic devices, which in
turn can extend the capabilities of the human body

(Bruni et al., 2021)
[94] Literature 1999–2021 98 narrative cognition

• studies that directly or
indirectly characterize aspects
of narrative experience

• studies that investigate mixed
reality experiences with or
without narrative
considerations

• further research should be conducted on the
cognitive aspect of narrative engagement in mixed
reality systems

• narrative cognition is considered a primary
cognitive mode of humans for
structuring experiences

• narratives in MRT and transmedia platforms can be
used widely and in a variety of types

(Mostafavi, 2022) [95] Systematic 2015–2019 13 spatial design evaluation
• architectural design evaluation
• environments
• human biometric feedback

• A complete protocol that documents the
psychological comfort parameters of the
experimental environment being monitored is
necessary for advancing the field

• Insufficient knowledge of how humans respond to
the physical environment can impede architects’
ability to anticipate the various perceptions of a
particular space resulting from their design choices

This study Systematic 2013–2022 63 EEG cognitive assessment
using HMD

• Cognitive load
• Immersion
• Spatial awareness
• Interaction with the

digital environment
• Attention

• Further investigation is required in the fields of:
• immersive AR and MR applications
• automated artifact removal techniques
• signal frequency sub-bands
• classification methods
• efficiency of EEG headsets with small

electrode number
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6. Conclusions

To the best of the authors’ knowledge, there is currently no existing systematic review
in the literature that specifically focuses on this area. This review encompasses a broad range
of years (2013–2022) and primarily emphasizes research conducted on healthy subjects.
This systematic review encompasses the widest array of studies and includes the largest
number of articles within this field. Additionally, this review serves as a comprehensive
guide for researchers in neuroscience, offering a detailed presentation of experimental
procedures, including the number of participants, stimuli, frequency bands range, data
preprocessing and EEG signal analysis.

From the study of the research papers included in this systematic review, various
topics emerge that need to be further investigated. It was observed that the conclusions
may be biased due to the small number of participants. Future research should expand the
quantity of samples, to avoid bias in experimental results and to increase reproducibility.
Special attention should be paid to the fact that people’s cognitive abilities are affected
by age, so elderly people may not be the best fit for general-purpose experiments i.e.,
experiments that do not study cognitive abilities in relation to age.

The authors of [21] suggested that any VR application, needs to last at least for 42.8
s in order to be effective, meaning that the exposure time in the MR environment should
be sufficient in order to achieve the participants’ illusion of being immersed into a close-
to-real environment. On the other hand, due to VR motion sickness caused by HMDs,
an upper bound should be set for the duration of the experiments, for the limitation of
misleading results. Another direction in this field could be the optimization of motion
related algorithms to limit the effect of the unpleasant feeling of illness.

A diverse range of HMD types is presented in Table 3. It is crucial to recognize
that the choice of HMD can exert a substantial impact on cognitive assessment outcomes,
influencing critical elements such as visual immersion, user comfort, interactivity, sensory
input, and the overall user experience. For researchers engaged in cognitive assessments
within virtual environments, a meticulous evaluation of these factors during HMD selection
is essential to guarantee the validity and reliability of their assessments.

Regarding the EEG signal analysis methods, there is a gap in the research of estab-
lishing a sufficient automated artifact rejection pipeline that would not need any human
interference, such as visual inspection. Also, very few researchers have focused on α, β
and γ sub-bands. Continued exploration of α, β and γ sub-bands may also contribute to
advancing our understanding of cognitive assessment, shedding light on aspects such as
attention, memory, perception, and executive functions.

Statistical analysis on EEG recordings is a robust method for assessment, because it
can provide insights for the understanding of the relationship between EEG variables, it
can handle missing values or noisy data and can be an excellent tool to test hypotheses.
However, classifiers can provide more qualitative results for EEG data with complex
patterns, they can provide automated results and can be used to develop BCI applications.
They can also serve as a research prediction tool and handle large datasets more efficiently.
Only a small percentage (~20%) of the studies utilized classification methods to draw their
conclusions. Further investigation into the use of these methods could facilitate research in
the area of this review.

Despite the extensive literature available on the use of VR in an experimental setting,
research focused on AR and MR environments remains notably limited. Future research in
this direction could fill the gap between the new immersive technologies and the current
knowledge of their effects on human cognition. On the other hand, in several research
papers, MR environments are designed using HMD equipment for the AR part of the
application and a 2D monitor for the VR application. They are also called monitor-based
(non-immersive) video displays [96]. A highly immersive MR environment is considered to
include an immersive 3D virtual environment that can be produced in specially designed
rooms (e.g., CAVE system) where the VE is projected on three or four walls. Whether the
combination of VR and AR truly adds value in human cognition remains an open question.
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There is also a lack of publicly available EEG datasets in digital environments, created for
the study of human cognition. More data availability can enhance the investigation of brain
function in this field.

A limited number of articles support that reliable conclusions can be drawn using
headband or cap-type EEG equipment, which use a smaller number of electrodes and
involve a much easier installation process on the scalp. Experiments using both EEG types
for the same stimuli and setup can provide the research community with more evidence on
the lowest number of electrodes sufficient to draw reliable results.

According to [97], instructional methods should avoid overloading working memory
with extraneous activities that do not directly contribute to learning, as working memory
has limited capacity. Several studies considered an increase in cognitive load as overloading
or as cognitive burden, though others have linked this increase with higher levels of
immersion or attention. More research has to be conducted to determine how the outcomes
reflect positive or negative effects, as well as the circumstances under which the utilization
of digital environments can be regarded as cognitively advantageous rather than being a
cause of fatigue and distraction.
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ANOVA Analysis of Variance
AR Augmented Reality
ASR Artifact Subspace Reconstruction
BC Bonferroni Correction
BCI Brain Computer Interface
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CNN Convolutional Neural Network
CSP Common Spatial Pattern
DFT Discrete Fourier Transform
ECG Electrocardiogram
EDA Electrodermal Activity
EEG Electroencephalogram
EEMD Ensemble Empirical Mode Decomposition
EKG Electrocardiogram
eLORETA exact Low-Resolution Electromagnetic Tomography
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EMG Electromyogram
EOG Electrooculogram
ERSP Event-Related Spectral Perturbation
ERP Event-Related Potential
FBCSP Filter Bank Common Spatial Pattern
FFT Fast Fourier Transform
ffDTF full frequency Directed Transfer Function
fMRI functional Magnetic Resonance Imaging
GA Grand Average
GE Global Efficiency
GSR Galvanic Skin Response
HMD Head Mounted Display
HR Heart Rate
HSD Honest Significant Difference
HT Hilbert Transform
ICA Independent Component Analysis
IEC Inter-trial Coherence
IRASA Irregular-Resampling Auto-Spectral Analysis
IS Independent Samples
ITC Inter-Trial Coherence
KWT Kruskal–Wallis test
LDA Linear Discriminant Analysis
LDFA Linear Discriminant Function Analysis
LME Linear Mixed Effects
LPP Late Positive Potential
LSTM Long Short-Term Memory
MAD Mean Absolute Distance
MANOVA Multivariate Analysis Of Variance
MANCOVA Multivariate Analysis of Covariance
MARA Multiple Artifacts Rejection Algorithm
MD Mahalanobis Distance
MI Modulation Index
MFN Medial Frontal Negativity
MMANOVA Multilevel Multivariate ANalysis Of VAriance
MR Mixed Reality
MRCP Movement-Related Cortical Potentials
PCA Principal Component Analysis
PC Pearson Correlation
PEN Prediction Error Negativity
PLV Phase Locking Value
pMFLR penalized Multiple Functional Logistic Regression
REML REstricted Maximum Likelihood
RF Random Forest
rmANOVA repeated measures ANOVA
ROC Receiver Operating Characteristics
ROI Region of Interest
sBEM symmetric Boundary Element Method
SD Standard Deviation
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
TFR Time-Frequency Analysis
VI Visual Inspection
VE Virtual Environment
VEP Visual Evoked Potentials
VMA Variance of the Maximal Activity
VR Virtual Reality
WSRT Wilcoxon Signed-Rank Test
WT Wavelet Transformation
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