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Abstract: Improved disease prediction accuracy and reliability are the main concerns in the devel-
opment of models for the medical field. This study examined methods for increasing classification
accuracy and proposed a precise and reliable framework for categorizing breast cancers using mam-
mography scans. Concatenated Convolutional Neural Networks (CNN) were developed based on
three models: Two by transfer learning and one entirely from scratch. Misclassification of lesions from
mammography images can also be reduced using this approach. Bayesian optimization performs
hyperparameter tuning of the layers, and data augmentation will refine the model by using more
training samples. Analysis of the model’s accuracy revealed that it can accurately predict disease with
97.26% accuracy in binary cases and 99.13% accuracy in multi-classification cases. These findings
are in contrast with recent studies on the same issue using the same dataset and demonstrated a
16% increase in multi-classification accuracy. In addition, an accuracy improvement of 6.4% was
achieved after hyperparameter modification and augmentation. Thus, the model tested in this study
was deemed superior to those presented in the extant literature. Hence, the concatenation of three
different CNNs from scratch and transfer learning allows the extraction of distinct and significant
features without leaving them out, enabling the model to make exact diagnoses.

Keywords: artificial intelligence; machine learning; breast tumors; convolutional neural networks;
Bayesian optimization

1. Introduction

Tumors are unnatural and aberrant cell growth in the body. They are often caused by
genetic issues. Cancerous or malignant tumors are the most harmful form of tumor cells
because they can develop and spread to neighboring tissue and organs. Benign tumors
fall into the noncancerous category and do not invade and spread to other cells [1]. There
were 45.62 million cancer cases worldwide and 5.75 million cancer-related deaths in 1990.
In 2017, there were 9.56 million cancer-related fatalities and 100.48 million cancer cases.
Worryingly, the rates of cancer incidence and death have been rising yearly. One leading
cause of cancer is breast tumors. Of the 18 million new cases of cancer documented in
2018, 11.6% were characterized as breast cancer. Of the 9.5 million deaths due to cancer
documented in the same year, 6.6% were due to breast cancer. Projections published in
2019 anticipated that there would be 10 million cancer deaths, 6.5% of which would be
attributable to breast cancer, and 19 million new cancer cases, 11.5% of which would be
breast cancers [2]. In 2020, breast cancer claimed the lives of 685,000 persons worldwide
and it became the most common cancer among women since 7.8 million women had been
diagnosed with it [3]. By 2040, there will likely be 3.2 million more new cases of breast
cancer worldwide than the number documented in 2020 [4].

Breast cancer develops when breast tissue grows to form a tumor because of breast cell
mutations that cause the cells to divide. Once formed, they have the potential to develop
and spread into adjacent cells and tissues. It is unclear what variables prompt the onset
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of the development of harmful cells. Age, gender, genetics, and family history all have
links to breast cancer risk. Additionally, it is more likely to develop in individuals who use
hormone replacement therapy (HRT), smoke, drink alcohol, are obese, and/or have been
exposed to radiation [5].

Treatment for breast cancer varies according to a range of variables, including the
tumor’s size, location, and whether it has spread to other organs. Surgery, chemotherapeutic
agents, radiation, hormone therapy, immunotherapy, targeted medication therapy, etc., are
all possible forms of treatment. The study in [6] found that the average survival percentage
for women who were given a Stage I breast cancer diagnosis was 96.8%. Periodic breast
examinations by medical professionals can help to facilitate the early detection of a tumor.
Using a variety of techniques, including mammograms, positron emission tomography
(PET) scanning, magnetic resonance imaging (MRI), etc., healthcare professionals check the
breasts to look for breast malignancies [7].

In this study, breast tumor classifications were performed on mammograms labeled
as negative or positive in binary classifications. In multi-classifications, positive cases
are divided into benign masses, malignant masses, benign calcifications, and malignant
calcifications. Each type of breast tumor has different characteristics that can be inspected
using mammograms to classify them correctly [8]. The masses were large white lumps
appearing in the breast tissues. They can be found in different shapes, which helps identify
whether they are benign or malignant. Benign masses are smoother, more regular, round,
or almost round, whereas malignant masses are irregular and often have spiky edges [9,10].
Moreover, calcifications are small white dots or round bodies in groups appearing in breast
tissues. Differences in the size and distribution of these calcifications can help identify
whether they are benign or malignant. Benign calcifications are larger than malignant
calcifications and are scattered over a region. In contrast, malignant calcifications are small
and distributed linearly in segments [11].

The highest disease prediction accuracy with reliability is the key factor when applying
deep learning (DL) techniques to medical fields. Although Convolutional Neural Networks
(CNN) models that are already developed could offer better prediction performance, model
reliability needs to be ensured. Here, we address this issue by concatenating three networks
where each would be able to extract distinct and significant features without leaving
any out.

This research presents a novel machine learning (ML) model for breast cancer classifi-
cation based on mammography scans using concatenated triple CNN models to ensure
that every significant feature responsible for classification decisions is considered. To
achieve this, a CNN model is developed from scratch in addition to the two models by
transfer learning (InceptionResNetV2 and Xception) techniques, and the performances
are compared individually in addition to the overall model performance. To analyze
the techniques that can improve prediction accuracy in classification applications, data
augmentation, and Bayesian optimization experiments will be conducted. The focus is
to develop a multi-classification framework that can classify the cancer state in addition
to binary classification as positive or negative cancer cases, and the proposed model is
capable of offering superior performance compared with alternative state-of-the-art models
developed using the same dataset.

The rest of this paper is arranged as follows. Section 2 presents a literature review
of related papers. Section 3 is about the materials and techniques used, and Section 4
presents the methodology that underpins the proposed approach. Section 5 discusses
the experiments, results, and performance evaluations. The conclusions are presented in
Section 6 along with an overview of the few limitations of the study and recommendations
for future studies.

2. Related Studies

The approaches that have been described in the extant literature are thoroughly exam-
ined in this section. Surveys on deep neural network (DNN) methods for analyzing breast
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cancer mammography images were conducted by the authors in [12,13]. The issue and
the most current developments in the field were first discussed. The authors subsequently
analyzed and compared the algorithms employed at each stage of image analysis using a
variety of criteria. They examined the use of DNN technology to analyze mammography
images for breast cancer and highlighted the difficulties of these models and potential
future study areas. While considering the studies on breast cancer classification models
using DL techniques, the majority of papers that offered superior performance were based
on transfer learning.

The CNN classification models used in medical applications were investigated by the
authors of [14] using the transfer learning technique. They performed tests to determine
the efficacy of the transfer learning approach depending on a variety of variables, such as
data size and the distance between the source data and train data. They drew the following
conclusions from their study: ImageNet is the best database to apply transfer learning
to image applications. Less inductive bias in the model and a smaller dataset size will
produce better results. Finally, they stated that although their study was focused on medical
applications, they anticipated that the outcomes would be the same for other applications.

The approach presented in [15] was based on transfer learning of a few well-known
CNN architectures (Inception, ResNet, and VGG) to find masses in mammograms. The
authors examined various architectures using a digitized dataset, i.e., the images in the
dataset were manually scanned from mammography scans. The superiority of the three
architectures was then tested using a second digital dataset of images that were directly
obtained from the scanning system. The authors achieved a true positive rate of 0.98 ± 0.02.
They did not classify the tumors, which was beyond the scope of their research. However,
another study [16] examined the prediction accuracy of four well-known CNN architec-
tures (AlexNet, VGG, GoogleNet, and ResNet) based on two scenarios with two different
datasets for each scenario. The initial scenario involved teaching each architecture from
scratch without using predetermined weights. In the second scenario, pre-trained weights
were used to fine-tune these structures. According to the findings, utilizing a fine-tuned
architecture produced superior results to training the architectures from scratch. The best
accuracy among all other architectures was achieved by ResNet50 and ResNet101. To
verify the differences between different CNN architectures, the authors recommended
supplementing the model with larger datasets.

The focus of the authors in [17] was on a hybrid transfer learning strategy for
mammography-based breast cancer diagnosis. The VGG 16 network was used, and the
final layers were adjusted. According to the findings, this model predicted breast tumors
more accurately than the models it was compared against. The authors also noted that the
model was only used for binary classifications in this research. However, they planned
to use a similar strategy for a categorical classification and to incorporate other variables,
such as tissue density, into the model. Another similar study [18] implemented transfer
learning with ResNet50 and Nasnet-Mobile networks.

An automated DL-based BC diagnostic method [19] utilized the pre-trained ResNet34
for feature extraction and chimp optimization algorithm to optimize its parameters. They
employed a wavelet neural network for classification. To enhance BC categorization, the
transferable texture CNN was introduced in [20]. Eight DCNN models that were combined
yielded deep features and robust features selected to differentiate breast tumors. In [21],
the YOLOX model separated breast tissue to pinpoint regions of interest (ROI) that might
contain lesions. The data are then run through the EfficientNet or ConvNeXt model to
determine whether any ROIs are benign or malignant.

To explore DL features using supervised classification algorithms, the authors in [22]
employed CNN technique coupled with support vector machine (SVM). This model in-
volved image preprocessing and contrast enhancement utilizing the contrast-limited adap-
tive histogram equalization (CLAHE) technique. Later, images were manually segmented
using ROI and automatically segmented using a region-based/threshold approach. During
the feature extraction/selection and classification phases, the authors used an AlexNet-
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based CNN architecture that was refined with an SVM classification algorithm connected
to the last layer and pretrained the architecture with the ImageNet dataset. Additionally,
they created a confusion matrix based on the forecasts made on two distinct datasets for
evaluation before computing accuracy, precision, and F1-Score.

Another recent paper [23] employed three different DL CNN models as feature extrac-
tors: Inception-V3, ResNet50, and AlexNet. This approach makes use of the term variance
(TV) feature selection technique to extract meaningful features, features are combined, and
then another selection is applied and fed into a multi-class SVM classifier. The proposed
method was tested using the image database of the Mammographic Image Analysis Society
(MIAS). However, along with CNN features, handcrafted features, such as histogram of
oriented gradients (HOG)-based, local binary pattern (LBP)-based, and shape features were
fused and given to ML classifiers in another study [24].

In [25], a new CNN architecture that created a new O-net architecture by fusing two U-
net architectures was offered. Finding features of various sizes and contrast levels required
the suggested architecture to go through several convolutional and deconvolutional layers.
Additionally, the authors demonstrated that the proposed design achieved an accuracy
that exceeded that of comparable studies. They recommend that future research focus on
improving its architecture.

The authors presented their dual CNN architecture solution in [26] for the simulta-
neous segmentation and classification of masses simultaneously. The foundation of their
strategy was the use of two routes, the first of which is known as the locality-preserving
learner and handles the large-scale regions of interest. The second route, dubbed condi-
tional graph learner, oversees addressing ROIs of a small size. The authors concluded
that their proposed system performed better than cutting-edge methods for the related
application they utilized their model for.

A model with two phases was suggested in [27] as a method of diagnosing breast
tumors. In the first phase, the model examined the entire image using a low-capacity
memory efficient network to identify any potential benign or malignant features. The first
phase’s findings were employed in the second phase’s greater capacity network, where the
data from the two phases were combined to determine the categorization. The suggested
solution performed better in terms of accuracy, speed, and memory utilization.

The abovementioned strategies were integrated by the authors [28], who conducted
four experiments. The first employed a fully trained CNN model. The second method
used CNN for feature extraction and SVM with various kernels for classification. The
third involved the implementation of feature fusion to assess whether it enhanced or
degraded the SVM’s classification accuracy. Fourth, principal component analysis (PCA)
was performed to condense a vast feature vector, which minimizes the number of variables
that are targeted while barely altering the overall importance of the information seen.
According to their research, among the four studies, the third approach, which used
merged characteristics, had the highest accuracy.

In the evaluated studies, the transfer learning principle was used to create the majority
of the high-performance models. While other efforts concentrated on creating CNN models
from scratch, they failed to attain higher accuracy. Some models were made specifically for
the detection of lumps, while others classified breast cancer as benign or malignant. No
precise models were discovered that could conduct multiple classifications. The strategies
that increase classification prediction accuracy were not examined in any of the publications
we reviewed here. This study examines a model that is formed of both built-from-scratch
and pre-trained architectures. A Bayesian optimization approach is used to determine the
optimal hyperparameters in each structure, including those that are generated from scratch
and additional layers that are added on top of pre-trained layers. These hyperparameters’
effects are examined in depth. Additionally, three models are trained, and their outputs
are combined to predict the outcome. This analysis of predictions is performed for each
model evaluated. Finally, we conduct data augmentation [29] on the training dataset to
balance out all the classes such that they have roughly the same percentage of the dataset.
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After that, we compare how the model performs when trained on the dataset before and
after augmentation. Since three CNNs together make the prediction decisions, the final
model performance could be enhanced along with sufficient reliability, which are the key
requirements when applying ML techniques in the medical field.

3. Materials and Methods

In this section, an overview of existing techniques that are used and the way they
operate will be discussed and elaborated. A workflow outline of the proposed model is
given in Figure 1.
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3.1. CNN Models

A CNN model [30] is an artificial neural network (ANN) algorithm that consists of
input and output layers, with a variable number of hidden layers in between, depending on
how the model is built. The hidden layers of a CNN model are blocks of numerous types of
default and custom-made layers, some of which are used for feature extraction and others
of which are used to map the features extracted into final outputs, which are mostly either
raw features or classification predictions. These blocks of layers build a hierarchical model
that has neurons in each level after feature extraction to simulate the way the human brain’s
neural network works. Each connection between 2 neurons in the model gets assigned a
weight and bias values where the weight is a presentation of the importance of the feature
that this neuron represents, and it is multiplied by the value that enters the neuron through
its connection, and the bias is a value that is added to it to shift the activation function to
the left or to the right.

The CNN model in this study is built using a convolutional layer to extract the essential
features, pooling layers to summarize the features, a fully connected layer to perform
classification, dropout layers to drop some of the features generated by previous layers
randomly based on a preset probability and activation function layers to add nonlinearity
to the process. The architecture built by arranging these layers will vary the performance
offered by the CNN model.

3.2. Transfer Learning Technique

The transfer learning technique [31] uses a preexisting model or a part of it as a
segment of another model. It can be retrained from scratch while preserving the layers,
and the hyperparameters that are set on them, or part of the layers of it can be set as
nontrainable to keep the features that the model trained on. Since transfer learning uses
a pre-trained model, it will require less data so that the model can be trained on another
dataset, which makes this technique efficient for use with small datasets. Additionally, it is
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simpler and easier than building new models from scratch, so it enhances the process of
building CNN models.

3.3. Bayesian Optimization

Bayesian optimization algorithm [32] is used to mathematically try to find the best set of
parameters that will obtain a black box function to achieve the best output results. This algorithm
is used when the function is a black box with no closed form and when it is expensive to evaluate
the function. The algorithm starts with several sample points and evaluates them to determine
their results. Then, using the previously acquired points, it computes a function called the
surrogate function to build a surrogate model, which approximates the true objective function.
Next, it iterates a loop where it adds an additional point using an acquisition function, which
is the selection function that selects the parameter where it is maximized, evaluates the newly
added points, and then re-evaluates the surrogate function. This process is repeated until the
preset number of iterations is reached, or there are no more max points that were not evaluated
after evaluating a surrogate function at an iteration.

3.4. Experimental Setup

The experiment was conducted using an Nvidia GeForce RTX 2070 Super GPU, AMD
Ryzen 9 3900X 12-core CPU, 32 GB RAM, and 8 GB VRAM with a Windows 10 Pro operating
system. In addition, the programming part was developed using Python 3.8, the Jupyter
notebook, Keras, TensorFlow, and GPy libraries.

3.5. Evaluation Criteria

The proposed solution is evaluated based on test data prediction results. The terms
used are: True Positive (TP), where the model predicts that there are cancerous cells and
the patient also has cancerous cells, True Negative (TN), where the model predicts that
there are no cancerous cells and the patient does not have cancerous cells, False Positive
(FP), where the model predicts that there are cancerous cells but the patient does not have
cancerous cells, and False Negative (FN), where the model predicts that the patient does not
have cancerous cells and the patient actually has cancerous cells. These data were collected
based on the predictions. Subsequently, the evaluation parameters were calculated and
compared with similar studies. The evaluation parameters were as follows:

Accuracy measures the percentage of accurate predictions out of the total predictions
(Equation (1)).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision measures the percentage of correct positive predictions out of the total
positive predictions (Equation (2)).

Precision =
TP

TP + FP
(2)

Specificity was defined as the percentage of correct negative predictions that were
correct out of the total negative predictions (Equation (3)).

Speci f icity =
TN

TN + FP
(3)

Recall is defined as the percentage of correct positive predictions out of the total
positive samples in the dataset (Equation (4)).

Recall =
TP

TP + FN
(4)
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The F1-score measures the balance between precision and recall in a model (Equation (5)).

F1score =
2× Precision× Recall

Precision + Recall
(5)

Different models may misclassify the inputs by focusing on incorrect features. While
concatenating these models, if any two of the three models predict the correct class, inte-
grating their predictions into a single model may result in more accurate predictions.

4. Proposed Methodology

Since CNN models have been shown to perform better than more traditional methods
in this field [12,15], they make up most of the models proposed in this paper. Although
numerous DL frameworks are available, the field is broad, and room for improvement
remains. Additionally, due to the widespread appearance of lesions and their varied
intensity distributions, which can cause benign diseases to be mistaken for malignant
abnormalities, the automatic detection and identification of breast cancer using DL models
from mammography scans is a difficult issue. As a result, we construct the complete
framework in two phases to increase the prediction accuracy.

One CNN model is created from scratch in the first phase, while two other models
(InceptionResNetV2 and Xception) are created using transfer learning principles [33]. The
feature extraction capability, classification performance, etc., of each CNN depend on
several parameters in the CNN architecture, including the number of layers, filter size,
number of filters, etc. Hence, each CNN model will be making classification decisions
based on the features that are extracted by them that are unique. They are adjusted
using hyperparameter optimization, and the dataset is balanced using augmentation. The
models are then concatenated to create a model that offers enhanced binary and multi-
classification accuracy performance. By following this strategy, we rely on one of three
different networks, where each network can extract unique features responsible for making
the diagnosis decisions, and the concatenated model offers prediction model reliability in
addition to improved diagnosis accuracy. Additionally, the proposed study performs multi-
classification of the cancer state with values ranging from 0 to 4. The overall framework,
divided into different steps, is detailed below.

4.1. Preprocessing

The accuracy of the model’s classification of the images and the length of time needed to
train the model are both significantly improved by preprocessing the images. The input images
are first preprocessed by being resized to 100 × 100 and rendered in grayscale. The negative
cases are left untouched, while the images for the positive cases have ROIs extracted from them
using masks while still leaving a border around the ROIs. The original dataset is used to create
the augmented dataset, which is then processed with a 40-degree rotation, 20% width and
height shifts, 20% sheer and zoom, 20% random vertical-horizontal flipping, etc. Finally, during
these procedures, if pixel filling is necessary, it is set to use the closest available pixel.

The training dataset for the binary classification consists of 87% of images, which are
38,877 samples labeled with class 0, and 13% of images, which are 5831 samples labeled with
class 1. After performing data augmentation on images, each class consists of 38,877 samples
and 77,754 samples in total. The dataset for multi-classification consists of 87% of images,
which are 38,877 samples labeled with class 0, 3.8% of images, which are 1682 samples labeled
with class 1, 3.4% of images, which are 1529 samples labeled with class 2, 2.6% of images,
which are 1170 samples labeled with class 3, and 3.2% of images, which are 1450 samples
labeled with class 4. After performing data augmentation on images of classes 1, 2, 3, and 4,
the dataset became 20% of each class, where each class consisted of 38,877 samples, and the
total number of samples for the training dataset was 194,385.
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4.2. Single Built from Scratch CNN Model

By using the preprocessed images, the first CNN model is developed from scratch.
For that, we designed the CNN architecture where SeperableConv2d is utilized in this
model’s convolutional layers because it performs a depthwise spatial convolution on
distinct channels before performing a pointwise convolution to combine the output findings,
which makes it faster than the default convolutional layer. The kernel sizes utilized alternate
between 3× 3 and 2× 2. The number of filters, pool sizes, neurons, and dropout percentage
all need to be optimized. Figure 2 depicts the design of this model.
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The feature extraction procedure is carried out using the first three blocks, and the
classification process is carried out using the next two blocks. Starting with a flattened layer
in the fourth step, the 2 × 2 array of features is converted into a vector. The completely
linked layer of the fifth block has 2 neurons for binary classification of the inputs into solely
positive or negative situations and 5 neurons for multi-classification.

4.3. Transfer Learning Model Based on the InceptionResNetV2 Model

The second CNN model is built on InceptionResNetV2 [34,35] and uses a copy of this
architecture as its foundation before more layers are added. Hyperparameter optimization
is used to optimize three dropout rates and two numbers of neurons in fully linked layers.
Figure 3 depicts the model’s overall architecture design.
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4.4. Transfer Learning Model Based on the Xception Model

The third model takes the form of a CNN framework that is an adaptation of the
Xception model [36,37]. Five values in this model are optimized using the hyperparameter
method: Three dropout percentages and two numbers of neurons in fully linked layers.
The high-level architecture design for the model is shown in Figure 4.
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4.5. The Triple CNN Concatenated Model

This model essentially combines the three concepts that were previously discussed
into a single framework. The custom-constructed architectures, InceptionResNetV2, and
Xception transfer learning models are combined, and the results are combined, as illustrated
in Figure 5, by linking each model’s final layer to the final fully connected layer in the
primary model. During this process, a single completely linked layer is introduced without
any hyperparameter adjustment. To discover the ideal hyperparameters for the layers,
the Bayesian optimization [38] technique is applied to each network. In the convolutional
layers, the values 16, 32, 64, and 128 are assigned to the number of filters. Additionally,
the maximum pooling settings for filter sizes are 2 × 2, 3 × 3, or 4 × 4. Furthermore, fully
connected layers have 16, 32, 64, 128, 256, 512, or 1024 neurons. The dropout rates are
configured to be a float value between 0 and 0.5 or a percentage between 0% and 50%.
The motivation for developing this model is that different models extract information in
varying ways and quantities. Different models may, therefore, misclassify some inputs
because of focusing on the incorrect features. Therefore, combining the predictions of three
models into a single model may improve predictions when only two of the three models
predict the proper classification.
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Figure 5. High-level architecture of the triple CNN concatenated model.

5. Results and Discussion

The experimental findings for each phase of the proposed model are presented below,
along with tables, graphs, and statements.

5.1. Dataset

Using the Digital Database for Screening Mammography (DDSM) dataset, the archi-
tecture is trained and tested [39]. There are 55,890 images in total, 13% of which are positive
instances, while 87% are negative cases. The DDSM [40] and Curated Breast Imaging
Subset of DDSM (CBIS-DDSM) [41] datasets are used to build this dataset. To make dataset
reuse with classification models simpler, the images in this dataset are increased to 3 RGB
channels from 299 × 299 and grayscaled. Each image in this dataset has two different types
of labels, one of which is either 0 or 1, with 0 being a negative case and 1 a positive case.
The second is an integer between 0 and 4, with 0 denoting a negative case, 1 denoting a
benign calcification, 2 denoting a benign mass, 3 denoting a malignant calcification, and
4 denoting a malignant mass. Figure 6 displays a sample of the dataset with the labels
placed on top of each image. The dataset was split into two parts: 20% for model testing
and 80% for training, of which 30% was used for validation after each epoch.
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During the process of training DL models, the training parameters are set as 50 epochs,
early stopping callback, verbose 1, and a split ratio of 30%.
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5.2. CNN Model Development and Training

Three models, one built from scratch and the other two (InceptionResNetV2, Xception)
by transfer learning techniques, are developed and refined.

5.2.1. Results and Analysis of Single Built-from-Scratch CNN Model

Before data augmentation, this model runs a binary classification test where it predicts
the class of test datasets with an accuracy of 93.03% in the first iteration and the best
accuracy result of 95% in the twenty-fourth iteration. Following data augmentation, it
predicts with an accuracy of 94.53%. In the fifth iteration, as shown in Figure 7, it achieves
the highest accuracy of 95.86%. Over the course of 25 iterations, the optimizer discovers
hyperparameters with prediction accuracy improvements of 2% over the first iteration and
8.4% over iteration #6, which exhibits the lowest accuracy among the iterations performed
prior to data augmentation. Additionally, it has a prediction accuracy that is 1.33 percent
greater than the initial iteration and 1.86 percent better than iteration #23′s accuracy, which
is the lowest among the iterations following data augmentation.
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Before data augmentation, this model executes a multi-classification run where it
predicts the class of testing datasets with an accuracy of 89.8% in the first iteration and an
accuracy of 90.74% in the fourteenth iteration. After data augmentation, it forecasts with
the best accuracy being 93.33% in the twenty-first iteration, as shown in Figure 8. It has an
accuracy of 92.17% in the first iteration. The optimizer discovers hyperparameters after
25 iterations that improve prediction accuracy by 0.94% compared to the first iteration and
1.6% compared to iteration #22, which has the lowest accuracy from the iterations prior to
data augmentation. Additionally, it outperforms earlier iterations in terms of prediction
accuracy, outperforming iteration #1 by 1.16% and iteration #18 by 3.45%, which exhibits
the worst accuracy among iterations following data augmentation.

Before data augmentation, the model with the best hyperparameters for binary classi-
fication contains 26,736 total parameters, 25,904 of these are trainable, and the remaining
832 cannot be trained. Additionally, it has 102,461 total parameters after data augmen-
tation. Of those, 101,373 can be trained, while the remaining 1088 cannot. In contrast,
multi-classification has 44,928 parameters before data augmentation, of which 44,096 are
trainable and the remaining 832 are not. In contrast, it has 42,144 parameters after data
augmentation, of which 41,440 are trainable and 704 are not. Table 1 provides information
on the optimum hyperparameters of the CNN model.
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Table 1. Optimized hyperparameters for the CNN model built from scratch.

Layer # Hyperparameter

Binary Classification Multi-Classification

Value before Data
Augmentation

Value after Data
Augmentation

Value before Data
Augmentation

Value after Data
Augmentation

1 Number of filters 128 128 64 64
4 Pool size 2 × 2 2 × 2 2 × 2 3 × 3
5 Dropout rate 8% 18% 16% 42%
6 Number of filters 64 128 128 32
9 Number of filters 32 32 64 32
12 Pool size 3 × 3 3 × 3 3 × 3 3 × 3
13 Dropout rate 19% 19% 43% 36%
14 Number of filters 32 64 64 128
17 Number of filters 128 64 32 32
20 Number of filters 16 64 32 32
23 Pool size 4 × 4 4 × 4 4 × 4 2 × 2
24 Dropout rate 22% 26% 7% 12%
26 Number of Neurons 16 64 32 32
29 Dropout rate 39% 7% 49% 39%

5.2.2. Results and Analysis of the Transfer Learning Model Based on the
InceptionResNetV2 Model

Before data augmentation, when this model is used for binary classification, it com-
mences by correctly predicting the class of test datasets in the first iteration with 95.65%
accuracy and ultimately produces the best accuracy result in the twenty-second iteration
with an accuracy of 96.1%. As shown in Figure 9, the best model is trained in the third
iteration with an accuracy of 96.4% compared to the initial accuracy of 94.64% before
data augmentation. The optimizer discovers hyperparameters after 25 iterations that have
a prediction accuracy of 0.45% higher than the first iteration and 0.54% higher than it-
eration #6, which has the lowest accuracy among the iterations conducted prior to the
addition of additional data. Additionally, it exhibits a 1.76% improvement in accuracy
over the initial iteration, which has the worst accuracy among the subsequent rounds of
data augmentation.

Before data augmentation, the multi-classification run of this model starts by accu-
rately predicting the class of testing datasets in the first iteration with 92.2% accuracy. It
produces the highest accuracy results in the ninth iteration, with 92.42% accuracy. After
augmentation, it begins forecasting with 95.31% accuracy, and in the twentieth iteration, as
shown in Figure 10, it achieves the highest accuracy of 98.68%. The optimizer discovers
hyperparameters after 25 iterations that improve prediction accuracy by 0.22% compared



Big Data Cogn. Comput. 2023, 7, 142 14 of 21

to the first iteration and 1.6% compared to iteration #22, which has the lowest accuracy
from the iterations prior to data augmentation. However, following data augmentation, it
outperforms the first iteration, which has the lowest prediction accuracy across all iterations,
with a prediction accuracy of 3.37%.
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Figure 10. Hyperparameter optimization chart of the transfer learning model based on the Inception-
ResNetV2 model on multi-classification after data augmentation.

Before data augmentation, the model with the best hyperparameters for binary clas-
sification has 54,368,274 total parameters, 54,304,562 of which are trainable, while the
remaining 63,712 are not. After data augmentation, it has a total of 54,678,370 parameters,
of which 54,612,450 are trainable and 65,920 are not. In contrast, multi-classification has a
total of 56,185,573 parameters before data augmentation, of which 56,119,397 are trainable
and the remaining 66,176 are not. Following data augmentation, it has 54,442,693 parame-
ters, of which 54,378,917 are trainable and 63,776 are not. Table 2 provides information on
the CNN model’s optimized hyperparameters based on the InceptionResNetV2 network.

Table 2. Optimized hyperparameters for the transfer learning model based on the InceptionResNetV2 model.

Layer # Hyperparameter

Binary Classification Multi-Classification

Value before Data
Augmentation

Value after Data
Augmentation

Value before Data
Augmentation

Value after Data
Augmentation

1 Dropout rate 25% 26% 38% 28%
4 Number of Neurons 16 128 1024 64
7 Dropout rate 43% 1% 11% 41%
8 Number of Neurons 32 1024 256 16
11 Dropout rate 31% 17% 42% 25%
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5.2.3. Results and Analysis of the Transfer Learning Model Based on the Xception Model

Prior to the addition of the augmentation data, this framework’s binary classification
run accurately identifies the class of test datasets in the first iteration with 96.53% accuracy,
and it achieves its highest accuracy in the seventeenth iteration with 96.64%. The best
model, as shown in Figure 11, starts with 96.19% accuracy after data augmentation and
finishes with 96.68% accuracy in the second iteration. After 25 iterations, the optimizer
finds hyperparameters with predictions that were 0.11 percent more accurate than the first
iteration and 0.51 percent more accurate than iteration 24, which has the lowest accuracy of
the iterations prior to data augmentation. The model also finds hyperparameters with a
0.68% greater accuracy than iteration #4, which has the lowest accuracy of the iterations
and is 0.49% higher than the first iteration following data augmentation.
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Figure 11. Hyperparameter optimization chart of the transfer learning model based on the Xception
model on binary classification after data augmentation.

This model starts predicting the class of testing datasets prior to data augmentation
in the multi-classification run with an accuracy of 93.09%, which is the highest across all
iterations. Furthermore, following data augmentation, it begins to predict with an accuracy
of 97.82% in the first iteration and achieves its best outcomes in the twentieth iteration with
an accuracy of 99.08%, as shown in Figure 12. After 25 iterations, the optimizer identifies
the hyperparameters that have the highest prediction accuracy in the first iteration, as well
as an accuracy that is 1.27% greater than that of iteration #14—the iteration with the lowest
accuracy prior to data augmentation. After data augmentation, the prediction accuracy is
1.27% greater than iteration #9, which has the lowest accuracy of all the iterations and is
1.26% higher than the first iteration.
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Before data augmentation, the binary classification model with the best hyperparam-
eters has 21,236,090 parameters in total. There are 91,936 untrainable parameters and
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21,144,154 trainable parameters. Additionally, after data augmentation, it has a total of
21,254,162 parameters, of which 21,452,682 are trainable and 92,480 are not. Furthermore, it
has a total of 21,243,517 parameters in the multi-classification before data augmentation,
of which 21,151,069 are trainable and 92,448 are not. After data augmentation, it also has
21,243,517 parameters, of which 21,151,069 are trainable and 92,448 are not. Table 3 provides
information on the CNN model’s optimal hyperparameters based on the Xception network.

Table 3. Optimized hyperparameters for the transfer learning model based on the Xception model.

Layer # Hyperparameter

Binary Classification Multi-Classification

Value before Data
Augmentation

Value after Data
Augmentation

Value before Data
Augmentation

Value after Data
Augmentation

1 Dropout rate 28% 5% 34% 29%
4 Number of Neurons 16 32 16 16
7 Dropout rate 28% 25% 3% 45%
8 Number of Neurons 256 512 512 512
11 Dropout rate 23% 35% 40% 28%

5.3. Triple CNN Concatenated Model

Before data augmentation, the model accurately predicted the outcomes for binary clas-
sification (96.74%) and multi-classification (93.9%). After data augmentation, an accuracy
of 97.26% in binary classification and 99.13% in multi-classification is achieved. According
to [42], Tables 4 and 5 contain the performance requirements for each model for binary
and multicategorization both before and after augmentation. The results demonstrate that,
both before and after data augmentation, the concatenated model outperforms the three
models that were utilized to individually develop this triple CNN model. Before data
augmentation, the binary classification model takes 2 h and 27 min to train and evaluate,
and the multi-classification model takes 2 h and 34 min. Additionally, following data
augmentation, the binary classification takes 4 h and 50 min to train and evaluate, while
the multi-classification model needs 2 h and 8 min.

Table 4. Comparison between the binary classification evaluation performances of the studied models.

Model Augmentation Class Precision Specificity Recall F1-Score Accuracy
(%)

Single Built from Scratch CNN
model

Without
0 96.1 73.7 98.2 97.1

951 86 98.2 73.7 79.4

With
0 97 80 98.2 97.6

95.861 87 98.2 80 83

Transfer learning model
based on

InceptionResNetV2 model

Without
0 96.8 78 98.7 97.8

96.11 90 98.7 78 84

With
0 97.3 82 98.6 97.9

96.41 90 98.6 82 86

Transfer learning model
based on

Xception model

Without
0 97.38 82 98.8 98.08

96.641 91 98.8 82 86

With
0 98 86 98.2 98.09

96.681 88 98.2 86 87

Triple CNN
concatenated model

Without
0 97.2 81 99.08 98.15

96.741 93 99.08 81 87

With
0 97.88 85.73 99 98.43

97.261 92.73 99 85.73 89.1
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Table 5. Comparison between the multi-classification evaluation performances of the studied models.

Model Augmentation Class Precision Recall F1-Score Accuracy
(%)

Single Built from Scratch
CNN model

Without

0 95 99 97

90.74
1 50 37 42
2 52 33 40
3 42 29 37
4 52 48 50

With

0 97 98 98

93.33
1 62 54 57
2 70 65 67
3 54 55 54
4 70 73 71

Transfer learning model
based on

InceptionResNetV2 model

Without

0 96 99 97

92.42
1 66 33 43
2 68 60 64
3 41 39 40
4 70 60 65

With

0 99 100 99

98.68
1 95 87 91
2 98 95 96
3 97 92 95
4 97 98 98

Transfer learning model
based on Xception

Without

0 96 99 98

93.09
1 64 43 51
2 72 58 64
3 45 43 44
4 74 62 67

With

0 99 100 99

99.08
1 93 93 93
2 97 97 97
3 99 95 97
4 99 99 99

Triple CNN
concatenated model

Without

0 96 100 98

93.09
1 68 38 49
2 72 62 67
3 47 39 43
4 73 60 66

With

0 99 100 100

99.13
1 96 91 94
2 98 97 98
3 99 95 97
4 99 99 99

5.4. Final Results and Comparisons

With an accuracy of 97.26%, the study’s final model correctly predicts the testing
dataset for binary classification based on a dataset of 77,754 samples. Additionally, it
accurately predicts the testing dataset in the multi-classification, which has a dataset size
of 194,385 samples, with 99.13% accuracy. The binary dataset and the multi-class dataset
are identical. The samples labeled as 1 in the binary dataset are split into classes 1 to 4 in
the multi-class dataset, the only variation being the labels. By treating predictions from
classes 1–4 as positive cases and predictions from class 0 as negative cases, the framework
trained on the multi-class model may be used for binary classification with at least the
same accuracy. Table 6 shows that the suggested model outperforms all other models that
have been researched and trained using the same dataset.
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Table 6. Comparison between the accuracy of the proposed model with studied models.

Model Accuracy

CNN model for detection of architectural distortion [43] 87.50%
lightweight end-to-end improved CNN [44] 97.20%

VGG16 [44] 95.04%
SVM [44] 92.23%

PCA + SVM [44] 90.59%
Deep Vision supervised learning [45] 97%

CNN Model with Transfer learning in binary classification [46] 92%
CNN Model with Transfer learning in multi-class classification [46] 85%

Haze-reduced local-global + EfficientNet-b0 [47] 95.4%
Stacked ensemble of residual neural networks [48] 85.39%

CNN with less learnable parameters [49] 90.68%
Case-based reasoning system [50] 86.71%

DL feature fusion + satin bowerbird optimization-controlled Newton Raphson feature selection [51] 94.5%
Proposed model in binary classification 97.26%
Proposed model in multi-classification 99.13%

6. Discussion

Automatic breast cancer diagnosis from mammography scans becomes challenging,
especially because of the difficulty in identifying malignancy from the lesion appearance,
which results in confusing intensity distributions and leads to the misidentification of
malignant abnormalities as benign. Hence, a reliable model with improved performance
for disease-detection stage identification is employed here. Binary classification performs
disease detection, and multi-classification provides stage identification. Because accuracy is
the most important metric when applying an ML technique for medical image classification
applications, techniques for improving prediction accuracy were also investigated.

Because Xception-based CNN models are more efficient in BC classification, as shown
in Table 5, we designed a CNN based on its architecture. To improve the prediction accuracy,
we concatenated these three models (Xception from transfer learning, InceptionResNetV2
from transfer learning with a similar architecture, and CNN built based on Xception
architecture). Concatenating the three models in this manner is the main innovation of the
network structure. In addition, we showed in the manuscript how this network structure
with Bayesian optimization and augmentation improves performance.

One of the main issues regarding ML model development is the limited availability
of labeled data. Hence, data balancing was performed through augmentation. Usually,
transfer learning networks perform better even with less data, but for a built-from-scratch
CNN, we need sufficient data to perform better. With transfer learning, InceptionResNetv2
and Xception achieved an accuracy of 96.4% and 96.68%. However, with data augmentation,
our CNN from scratch also obtained a comparable accuracy of 95.86%, and its parameters
were fine-tuned by Bayesian optimization. The concatenated model performed better, with
97.26% accuracy for disease prediction.

The data augmentation effect was more effectively visible with the transfer learning
networks when considering multi-classification because of the large variation in the number
of data belonging to each class. Here, InceptionResNetV2 and Xception showed accuracy
improvements of 6.26% and 5.99%, respectively, with augmentation. The CNN from scratch
could provide only 93.33% accuracy. However, concatenating it with transfer learning
models enhanced the accuracy of disease stage identification by 99.13%.

From these results, it is clear that different models extract information in different
ways and to different extents. Hence, the model performance of each network varied.
Because a CNN model may concentrate on the wrong features, it may misclassify some
inputs. Therefore, when only two of the three models predicted the correct categorization,
integrating the predictions of the three models into one enhanced the predictions. Therefore,
the final model can provide diagnostic prediction reliability, in addition to improved
accuracy, which makes the model appropriate in the medical field.
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Limitations and Future Work:

This study had some limitations, including data paucity and hardware constraints.
Massive amounts of memory and computing power are required for ML algorithms. ML
is a probabilistic mathematical model that involves numerous computations. Millions of
parameters may need to be calculated and updated during the runtime for the model. The
task requiring the most computer power is to train the ML model. A higher processing
power translates to more rapid framework training and evaluation. The more data there
are, the more accurate these frameworks are. Creating synthetic data samples from those
that are already accessible is one approach to circumvent this problem. To further enhance
the results, future research could use the methodology described in this paper on larger
datasets with more real samples and machines with more memory and processing power.
Moreover, the possibility of combining single models made using recent techniques with
higher accuracy levels than those used here will be investigated.

7. Conclusions

The purpose of this study was to develop a precise and reliable model for breast
cancer classification as well as to examine the possibility of improving CNN classification
accuracy by combining multiple models while optimizing the hyperparameters in each
model and balancing and enriching the datasets that the models are trained with. The
findings reveal that the combined models perform better than any one model working in
isolation. Additionally, for each model, we can observe how varying the hyperparameters
leads to varying degrees of accuracy and how an optimization approach such as Bayesian
optimization can be beneficial. The proposed triple-concatenated framework is able to
improve the accuracy from 96.74% to 97.26% in binary classification and from 93.09% to
99.13% in multi-classification. In addition to the improvement in prediction accuracy, the
misclassifications can be reduced, and reliability can be ensured since we are relying on
multiple model networks for the final decision. These characteristics make the suggested
work appropriate for medical field applications.

These results can be further enhanced by combining single models that have higher
accuracy levels than those employed here and by boosting the dataset’s size with additional
actual or augmented samples. To create better models for various types of datasets, these
strategies can also be applied to other applications. The proposed technique would be
applicable to any image classification problem, especially in medical image classification
for disease diagnosis and stage identification applications where classification accuracy,
reduced misclassification, and decision reliability matter.
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