
Citation: Etchiali, A.; Hadjila, F.;

Bekkouche, A. An Intelligent Bat

Algorithm for Web Service Selection

with QoS Uncertainty. Big Data Cogn.

Comput. 2023, 7, 140. https://doi.org/

10.3390/bdcc7030140

Academic Editor: Min Chen

Received: 25 May 2023

Revised: 18 June 2023

Accepted: 28 July 2023

Published: 10 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

An Intelligent Bat Algorithm for Web Service Selection
with QoS Uncertainty
Abdelhak Etchiali *, Fethallah Hadjila and Amina Bekkouche

Computer Science Department, University of Tlemcen, Tlemcen 13000, Algeria;
fethallah.hadjila@univ-tlemcen.dz (F.H.); amina.bekkouche@univ-tlemcen.dz (A.B.)
* Correspondence: abdelhak.etchiali@univ-tlemcen.dz

Abstract: Currently, the selection of web services with an uncertain quality of service (QoS) is gaining
much attention in the service-oriented computing paradigm (SOC). In fact, searching for a service
composition that fulfills a complex user’s request is known to be NP-complete. The search time is
mainly dependent on the number of requested tasks, the size of the available services, and the size of
the QoS realizations (i.e., sample size). To handle this problem, we propose a two-stage approach
that reduces the search space using heuristics for ranking the task services and a bat algorithm
metaheuristic for selecting the final near-optimal compositions. The fitness used by the metaheuristic
aims to fulfil all the global constraints of the user. The experimental study showed that the ranking
heuristics, termed “fuzzy Pareto dominance” and “Zero-order stochastic dominance”, are highly
effective compared to the other heuristics and most of the existing state-of-the-art methods.

Keywords: web service selection; QoS uncertainty; bat algorithm; service-oriented computing

1. Introduction

With the advent of cloud computing and specifically online services (SaaS), it be-
comes more challenging to discover and select the best services with respect to the user’s
requirements [1,2]. Broadly speaking, we observe that a given functionality can be fulfilled
by numerous SaaS with a variety of QoS levels. For complex user’s requests (in terms of
workflow), the task of selecting the best composition of services that satisfies the user’s
global constraints (e.g., the maximum cost of the composition of services is less than a given
budget) is time consuming and far from meeting the user’s expectations. It is worth noting
that the selection of service compositions is NP-complete and exponentially depends on
the number of tasks of the workflow. In general, the concepts related to the QoS, quality of
experience (QoE), and end-to-end constraints are thoroughly defined in recommendation
documents specified by the International Telecommunication Union (ITU) organization (see
the recommendation identified by ITU-T Supp. 9 of the E.800 Series for more details about
the regulatory facets of QoS). In practice, we observe that the QoS of SaaS applications is
inherently uncertain and always changing; for instance, the cost of booking a hotel room or
an airline ticket is uncertain and depends on the period (such as the season or month), social
events, and other contextual aspects. To compare the services of the same functionality
class while considering the different realizations of the QoS criteria, one can use statistical
measures such as the mean QoS value or the median value to derive the best alternatives.

Unfortunately, these measures may not be effective and can yield misleading or
unsatisfactory results. For instance, in the ensemble learning area, and more specifically
the Adaboost method [3], it is known that the weighted average of different predictions
(which is a special case of the mean value) can largely deviate from the true prediction if
noise is present in the training set [4,5], and this means that the average value of a sample
may not be the correct representative of a series if the noise is largely present in the data.
In addition, according to the central limit theorem, the sample mean will approximately
follow the normal distribution and will converge to the distribution expectation (for an

Big Data Cogn. Comput. 2023, 7, 140. https://doi.org/10.3390/bdcc7030140 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7030140
https://doi.org/10.3390/bdcc7030140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://doi.org/10.3390/bdcc7030140
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7030140?type=check_update&version=1

Big Data Cogn. Comput. 2023, 7, 140 2 of 23

infinite size of the sample) if a given number of conditions are satisfied; otherwise, the
sample mean will not be the best representative of the series (or the QoS attribute). These
conditions involve, among others, the finiteness of the distribution variance, the sampling
from the same distribution, the independence of the samples (which is hard to achieve in
most scenarios), and the sufficiency of the number of samples. In summary, the sample
mean is not the best representative of a series (excluding some exceptional cases).

In the same line of thought, we point out that the pertinence of service compositions
with respect to the user’s request is no longer a deterministic score, but it is rather specified
as a probability of satisfying the global QoS constraints; this score is termed the global QoS
conformance (GQC) [6]. As a result, the complexity of the selection issue is dependent on
the number of tasks and also is impacted by both the size of each task and the size of the
QoS sample (i.e., the number of realizations per QoS attribute).

The GQC can be also seen as the expected value of a random variable termed Z, where
Z provides an outcome equal to 1 if the aggregated QoS satisfies the global constraint bound;
moreover, it is highly desirable to obtain service compositions that satisfy a maximum
number of global constraints in terms of the median QoS (this means that 50% of the
solution realizations—of a single QoS attribute—will ensure the end-to-end bounds). This
criterion is denoted as the percentage of satisfied global constraints (PSGC). This latter
measure can be considered (sometimes) an alternative to the GQC objective function, since
it ensures a high gain of computational cost.

For instance, according to Table 1 (where the global constraint (GC) is specified in the
first line), we observe that only (S1, S10) and (S2, S10) will be retained as feasible solutions
since the PSGC = 100% (the example comprises a single QoS attribute; in addition, the sum
of 20 and 26 is greater than 45 for both pairs); however, the remaining compositions are not
feasible, and therefore, the PSGC = 0 (in fact, the sum of the median QoS exceeds the global
constraint bound).

Table 1. Motivating example.

G.C: AggregatedQoS(Sx, Sy) ≥ 45

Task T1 Task T2

S1 : S9 :

QoS(S1) =< 5, 15, 20, 30, 70 > QoS(S9) =< 10, 11, 15, 20, 22 >

S2 : S10 :

QoS(S2) =< 6, 18, 20, 40, 90 > QoS(S10) =< 15, 18, 26, 30, 40 >

S3 : S13 :

QoS(S3) =< 4, 15, 18, 25, 250 > QoS(S13) =< 3, 8, 10, 20, 30 >

To summarize, our selection issue needs effective ranking heuristics for the workflow
tasks, as well as time-efficient approaches for exploring the service compositions. To
address these difficulties, we propose a two-stage approach that ensures high fitness service
compositions and acceptable responsiveness delay.

In the first step, we reduce the search space in each task by only retaining the Top-K
pertinent services in terms of a given heuristic Hi. Consequently, the total search space
is reduced from mn candidate solutions to kn candidate solutions, where n stands for
the number of tasks and m stands for the number of services per task (see Table 2 for
more details).

In the second step, we perform a heuristic global search (this means that our solution
will be a vector of n services) and retain the Top-K compositions in terms of the GQC.

Our contributions can be summarized as follows:

Big Data Cogn. Comput. 2023, 7, 140 3 of 23

• We downsized our search space from mn to kn by retaining the most-pertinent elements
of each task. To this end, we propose four ranking heuristics of the items of each task.
All these heuristics perform pairwise comparisons of the services and select the Top-K
elements having the maximum number of wins:

– H1 is an efficient implementation of the fuzzy Pareto dominance; it was inspired
by [7].

– H2 (zero-order stochastic dominance) is a stochastic dominance relationship
that uses the zero-order terms of the QoS sample [8]. It directly uses the QoS
realizations during the comparisons.

– H3 (first-order stochastic dominance) is a stochastic dominance relationship that
uses the first-order terms of the QoS sample [8]; this means that H3 uses the
cumulative distribution of the sample to perform comparisons.

– H4 (the majority interval heuristic) was inspired by [9]. In this ranking, we
compute the median interval of each service and perform pairwise comparisons
of the services using Equation (27). The services having the highest number of
wins are retained in Top-K elements.

• In the second step, we performed a global search on the retained Top-K services using
a swarm-intelligence-based algorithm termed the “discrete bat algorithm (DBA)”.
This metaheuristic was chosen because of its ability to leverage both global search
operators and local search operators during the exploration of candidate solutions
(in contrast to metaheuristics, which only use one operator, such as particle swarm
optimization or ant colony optimization). The coordinated use of these operators can
achieve promising results on NP-complete problems.

• At the end, we evaluated the effectiveness and efficiency of the approach using a
consolidated set of experiments.

The rest of this paper is organized as follows: Section 2 presents a literature overview
of the existing works. Section 3 specifies the problem statement. In Section 4, we introduce
the proposed approach, as well as the selection algorithms. In Section 5, we present a
set of experimental evaluations and compare our method with existing works. Section 6
concludes the paper and presents future perspectives.

2. State-of-the-Art

Selecting service compositions using QoS is a major topic in service-oriented com-
puting (SOC). We mainly distinguish two categories: service selection with a certain
(deterministic) QoS and service selection with an uncertain (nondeterministic) QoS. In what
follows, we will review the two parts.

2.1. Service Selection with a Certain QoS

In this category, we assumed that the QoS attributes are static and do not change over
time; therefore, the evaluation function of the compositions is also deterministic. Many
works and reviews have been proposed to address this kind of issue [1,10–12]. In what
follows, we will discuss the most-important ones.

The review presented in [13] specified two main categories for handling the QoS-
aware service-selection problem: the exact algorithms and the approximate algorithms
(heuristic/metaheuristic). In each category, the authors reviewed many tips and strategies
to simplify the problem resolution, including the cost function linearization, the local
QoS optimization, and the simple additive weighting. In [14], the authors proposed a
framework that first takes the skyline services of each task; then, a set of service clusters
(within each task) are hierarchically created using K-means to lower the size of the search
space. At the end, the solutions are explored using the combinations of cluster-heads. The
work by [15] decomposes global QoS constraints into local constraints using the culture
genetic algorithm, then the top items are selected to aggregate the final compositions.

In [10], the service selection issue was viewed as an optimization problem that takes
into account both functional (the function signature) and nonfunctional attributes (QoS,

Big Data Cogn. Comput. 2023, 7, 140 4 of 23

global constraints) to select the Top-K service compositions. The objective function involves
several parts, including a similarity function for the input/output matching, a utility
function for assessing the aggregated QoS, and a penalty function for evaluating the
satisfaction of global constraints. The authors leveraged the harmony search to derive the
compositions that best meet the complex requirements. In [16], a multi-criteria decision
method termed Topsis was proposed to handle the QoS-aware service selection. The overall
idea consists of computing a distance between each candidate service and a couple of
synthetic services termed the ideal positive item and the ideal negative item; the greater the
distance is, the better the rank of the candidate element. The approach was tested on a small
collection of six services, as well as three QoS attributes (cost, security, reliability). Despite
the effectiveness of the results, the proposition needs scalable benchmarks to confirm
its adequacy.

In [17], both local and global searches were leveraged for tackling the selection of
cloud services. The proposed approach involves three steps: First, the REMBRANDT
technique (which is a multi-criteria decision-making method) is applied to each task to
select a subset of n services that have the best scores. Second, a pass of compatibility check
is performed to further reduce the search space. Finally, a Dijkstra-based algorithm is
applied to derive the optimal compositions in terms of the aggregated QoS and the number
of cloud service providers.

The work by [18] tackled both the reliability assessment and the optimal selection
of web service compositions. To estimate the reliability of complex web services, the
authors adopted an extended version of PetriNet models and a mathematical model that
leverages different factors including the network availability, the hermit device availability,
the binding reliability, and the discovery reliability. To handle the second issue, a two-stage
method was proposed: first the local skylines of each task of the workflow were extracted,
then the global skylines were searched using R-tree structures and a multi-attribute decision-
making method.

In [12], the authors viewed the web service-selection problem as an optimization of
deterministic QoS attributes. More specifically, they designed an objective function that
involves both an assessment of the aggregated QoS of service workflows and a penalty
function for measuring the satisfaction degree of global constraints. In addition, a dis-
cretization of the continuous harmony search metaheuristic was proposed for performing
the exploration of near-optimal compositions.

In [11], the authors used an optimized artificial bee colony (OABC) method for service
composition. Mainly, the authors introduced three ideas into the initial bee algorithm:
the first one is the diversification of the initial population; the second one is the dynamic
adjustment of the neighborhood size of the local search; the third one is the addition of a
global movement operator that aims to get closer to the global solution. The work by [19]
leveraged fuzzy dominated scores to derive the Top-K services that have a more balanced
QoS (and which can be better than some skyline services with undesirable QoS values) in a
self-contained task. In [20], the authors considered the self-organizing migrating algorithm
(SOMA) and the fuzzy dominance relationship to aggregate service workflows. The fuzzy
dominance function was used in the SOMA metaheuristic to compute the QoS-aware
distances between services. A bio-inspired method termed enhanced flying ant colony
optimization (EFACO) was proposed in [21]. This approach constrains the flying activity
and handles the execution time problem by a modified local selection. Since this phase may
degrade the selection quality, a multi-pheromone approach was adopted to enhance the
exploration through the pheromone assignment to each QoS criterion.

In [22], the authors clustered the cloud services using a trust-oriented k-means, then
they created the composition of cloud services using honey bee mating. It is worth noting
that the proposed framework is not scalable for large datasets. The work by [23] tackled
the service-selection problem by handling multiple users’ requirements. The approach
is comprised of two steps: firstly, an approximate Pareto-optimal set is computed using

Big Data Cogn. Comput. 2023, 7, 140 5 of 23

approximate dominance; secondly, the near-optimal compositions are selected using the
artificial bee colony algorithm.

In [24], the authors proposed a hybrid recommendation method for predicting the
missing QoS. The main idea consists of using both matrix factorization methods and
the context of users and services to estimate the target QoS. The designed cost function
involves a part from the latent factor model and a collaborative prediction model that uses
the context-based neighbors. The results showed that the user context is more accurate
than the service context, but the weighted average of both sub-models (the service context
and the user context) is largely superior to the individual models.

In [25], the authors predicted the QoS of a web service (which can be involved in
a composition) using linear regression and correlation checking. More specifically, the
proposed approach uses two different QoS datasets: the first one contains nine quality
levels (such as response time, availability, and reliability), and the second one comprises a
set of source code metrics that cover the quantity metrics, complexity metrics, and quality
metrics (a total of fifteen metrics). This collection of metrics is also known as Sneed’s
catalog. The objective of the study was to learn a multivariate linear model that predicts
the level of a quality attribute from the variables of Sneed’s catalog.

The work by [26] proposed a multi-stage composition method based on local and
global optimization in addition to the handling of QoS flexibility. The proposition takes
into account several types of workflows (including sequential, parallel, iterative, and condi-
tional structures). The method first decomposes the global constraints into local constraints
using well-defined heuristics; second, it relaxes the obtained bounds by adding/subtract-
ing/multiplying flexibility terms and filters out the nonrelevant services. Third, the set
of local Pareto-optimal services is extracted from each set of relevant services; finally, the
Pareto-optimal compositions are computed using a progressive search. In [27], an auto-
mated planning algorithm called Graphplan was proposed to address the composition
of land cover services. The key idea of the proposed framework consists of creating an
ontology for describing the tasks, the input/output data, and the atomic services, then a
planning graph is created using the forward search of the planning algorithm. This graph
contains two types of layers, one for modeling the services and the second one for modeling
the input/output data (also termed facts). The building of the service composition is
performed during the backward search, which is guided with mutual exclusion constraints
over both facts and services.

2.2. Service Selection with Uncertain QoS

The framework of [28] was one of the earliest works that addressed the service selection
with uncertain QoS. The authors proposed an excellent heuristic, termed P-dominant
skyline, to derive the best QoS-aware services in a self-contained task. The P-dominant
skyline is considered to be resilient to QoS inconsistencies and noise. Moreover, this
heuristic is accelerated using R-trees. A set of probability distributions was proposed
in [29] to model the QoS uncertainty of service workflows. To select the best compositions,
the authors used both integer programming and global constraint penalty cost functions.

A majority interval-based heuristic was introduced in [9] in order to derive the perti-
nent services of a set of tasks. The main idea consists of computing the median interval
of each nondeterministic QoS attribute and comparing them using rectified linear unit
(ReLU) functions [30]. After that, an exhaustive search is applied to obtain the final com-
positions. In [31], the authors proposed a set of heuristics for ranking the services of the
workflow tasks. These propositions included probabilistic dominance relationships and
fuzzy dominance alternatives. Once the Top-K elements are retained from each task, a
constraint programming approach is applied to retain the Top-K optimal compositions of
the services. In [32], the authors addressed the service composition issue by handling the
QoS uncertainty and the location awareness. They proposed a sophisticated approach that
combines the Firefly metaheuristic with a fuzzy-logic-based web service aggregation.

Big Data Cogn. Comput. 2023, 7, 140 6 of 23

The framework proposed in [33] sorted the services of each task using both the entropy
and the variance of the QoS attributes. The services that have larger values in terms of
entropy and variance are discarded since they are considered as noisy or inconsistent
services. Then, the items that have the lowest entropy/variance scores were retained to
compose the final solutions.

The framework proposed in [6] was one of the first works that handled the QoS
uncertainty and composition at the same time. Based on ideas defined in [34], the strategy
adopted by the authors consisted of decomposing the end-to-end constraints into local
constraints; the local edges (entrances) are calculated by dividing the end-to-end constraint
bounds in proportion to the aggregated median QoS of each class of the workflow. After
that, an initial service composition is built using a predefined utility function. If this latter
one is not optimal, the method searches for alternative solutions using simulated annealing.
In the same line of thought, the authors in [35] introduced a proposition for web service
selection with the presence of outliers. Contrary to the work of [6], this method leverages a
different heuristic to divide the end-to-end constraints into local constraints. The proposed
idea ensures a high resilience against outliers (services with a noisy or unusual QoS). The
work by [36] leveraged the stochastic dominance relationship to sort the services of each
task of the user’s workflow; after that, a backtracking search is applied to the filtered tasks
to derive optimal service compositions. In [37], the authors proposed an interval-based
multi-objective bee colony method to address the uncertain QoS-aware service-composition
problem. The authors proposed an interval-oriented dominance relationship for comparing
the services using intervals that represent the variation range of the QoS attributes. In
addition, an interval-valued utility function was introduced to assess the quality of a
composition with QoS uncertainty. Finally, an improved version of NSGA-II was used to
derive the non-dominated service compositions. The framework proposed in [38] involved
two steps: the first one retains the pertinent services of the local tasks using majority
grades, and the second step performs a constraint programming search to keep the optimal
compositions. In the same line of thought, the work by [39] proposed a heuristic for filtering
the desirable services of each local task using hesitant fuzzy sets and cross-entropy, then a
metaheuristic termed grey wolf optimization was applied to retain the Top-K near-optimal
service compositions. In [40], the authors proposed a framework based on intuitionistic
fuzzy logic to model the uncertainty of service compositions. It is worth noting that
intuitionistic fuzzy logic is an extension of fuzzy logic in which the imprecise sets are
modeled using three quantities: the membership degree, the non-membership degree,
and the uncertainty degree. The authors targeted both single service devices and a type
of device composition (with a parallel structure). Regarding device compositions, the
authors proposed two mathematical models for estimating the uncertainty of data traffic
quality. The first one uses the intuitionistic fuzzy information and internal parameters of
the service components, while the second one uses only the intuitionistic fuzzy values of
the component devices.

In what follows, Table 2 summarizes the most-important properties of some prominent
approaches; in addition, the abbreviation “nop” means near-optimal.

Table 2. Recapitulation of most-prominent methods.

Criterion / Method [38] [39] [31] [35] [6] [16] [20] [17] [18] [10] [12]

QoS Uncertainty yes yes yes yes yes no no no no no no
Local Search yes yes yes yes yes yes yes yes yes no no
Global Search yes yes yes no no no yes yes yes yes yes
Global Constraints yes yes yes yes yes no yes yes yes no no
Optimality yes nop yes no no yes no yes yes nop nop
Handling Semantics no no no no no no no no no yes no
Use of metaheuristics no yes no no yes no yes no no yes yes

Big Data Cogn. Comput. 2023, 7, 140 7 of 23

3. Problem Specification

In what follows, we introduce the formalism used in handling the selection of service
compositions with QoS uncertainty.

3.1. Parameter Notation

To tackle our problem, we used the notation shown in Table 3. We assumed that the
user’s workflow is composed of n sequential tasks cl1, cl2, . . . , cln, and each task is achieved
by a service si that has r QoS attributes. Each QoS criterion is materialized by a sample of l
realizations (see Table 3 and Figure 1).

Table 3. Notations.

Parameter Semantics

n The number of tasks (classes).

m The number of services per task.

r The number of QoS criteria.

l The number of QoS realizations (i.e., the
sample size).

cl1, cl2, . . . , cln
The set of tasks; each task involves atomic

SaaS with the same functionality and a
different QoS.

s1 (respectively s2, . . . , sm) Represents the id of the selected service
related to cl1 (respectively cl2, . . . , cln).

QoSpiju
The value of the pth QoS attribute related to

the uth instance of the service Si ∈ clj.

b1, b2, . . . , br

The user’s global constraints (i.e., the
bounds that need to be satisfied by the QoS

of the composition).

w1, . . . , wr
The weight of the QoS attributes; the default

value of each wp is 1
r .

k The size of the outcome list (of
compositions).

Task1 TasknInputs
Outputs

Dataflow

...

Functional Requirement

Figure 1. A general sequential workflow.

Big Data Cogn. Comput. 2023, 7, 140 8 of 23

3.2. QoS Model

In this work, we only considered positive QoS attributes (i.e., those that need to be
maximized). For negative attributes, we simply multiplied them by −1 and treated the
new versions as positive ones. We note that our workflow is composed of n sequential
tasks. The aggregated QoS of a workflow (having different patterns such as sequence,
loops, parallelism, and choice) was presented in [14,41].

3.3. Global QoS Conformance

The measure of the global QoS conformance (GQC) [6] was leveraged to rank the
Top-K compositions. The GQC is the probability that the composition of services satisfies
all global constraints (see Equation (1)). In particular, we say that a composition C is better
than another composition C

′
if the GQC of C is higher than that of C

′
with respect to

Equation (1). If C ties with C
′
, then we sort them according to the utility function (U(.))

that is shown in Equation (4); the larger the score of U(.), the better the rank is.
Our aim was to search the compositions C(sw1, . . . , swn) such that the GQC is maximized:

GQC((Sw1 , · · · , Swn), (b1, · · · , br)) =
r

∏
p=1

CC((Sw1 , · · · , Swn), bp)
(1)

Since we assumed that the QoS criteria are independent, the global QoS conformance
is defined as the product of the constraint conformance (CC for short).

The criterion CC is defined as:

CC((Sw1 , · · · , Swn), bp) =

1
ln

l
∑

u1=1
...

l
∑

un=1
step(aggregate(QoSpw1u1 , · · · , QoSpwnun), bp)

(2)

The function CC computes the satisfaction degree of a single global constraint. Finally,
the binary function “Step” is defined as:

Step(Aggregate(QoSpw1u1 , · · · , QoSpwnun), bp) ={
1 if Aggregate(spw1u1 , · · · , QoSpwnun) ≥ bp
0 otherwise

(3)

U(C) =
r

∑
p=1

wp ∗
(MedianQ

′
p(C)−Qmin

′
(p))

(Qmax′(p)−Qmin′(p))
(4)

Qmin
′
(p) =

n

∑
j=1

Qmin(j, p) (5)

Qmin
′
(p) is the minimal aggregated QoS of the pth attribute for all possible compositions.

Qmax
′
(p) =

n

∑
j=1

Qmax(j, p) (6)

Qmax
′
(p) is the maximal aggregated QoS of the pth attribute for all possible compositions.

Equations Qmin(j, p), Qmax(j, p) are defined as follows:

Qmin(j, p) = Minu∈{1,...,l},si∈clj
(QoSpiju) (7)

Big Data Cogn. Comput. 2023, 7, 140 9 of 23

Qmin(j, p) is the minimal QoS value of the pth attribute of all services related to the ith task.

Qmax(j, p) = Maxu∈{1,...,l},si∈clj
(QoSpiju) (8)

Qmax(j, p) is the maximal QoS value of the pth attribute of all services related to the ith task.

MedianQ
′
p(C) =

n

∑
j=1

Medianu∈{1,...,l}QoSpsj ju (9)

By assuming that the criterion p is positive, the global constraint with respect to the
median value is specified as:

MedianQ′p(C) ≥ bp; ∀p ∈ {1, . . . , l} (10)

By assuming that the pth attribute is aggregated with a sum function, MedianQ
′
p(C)

represents the aggregated QoS of C with respect to the median QoS value of each component
of C (of the pth attribute).

Equation (10) is used to determine whether the global constraints are respected or not
by the composition C. The PSGC is the ratio of constraints (in the form of Equation (10))
that are satisfied by a given composition.

To clarify the computation of the previous equations, we continue with the example
cited in Table 1:

• MedianQ′p(C =< s1, s10 >) = 20 + 26 = 46 ≥ 45.
• GQC(C) = 16/25 = 0.64. If Qmin(1, 1) = Qmin(2, 1) = 0 and Qmax(1, 1) =

Qmax(2, 1) = 300, then:
• U(C) = 46−0

(600−0) = 0.075. The composition C is feasible. However, if the components
of C′ are < s3, s13 >, then:

• MedianQ′p(C′ =< s3, s13 >) = 18 + 10 = 28 ≤ 45.
• GQC(C′) = 9/25 = 0.36.
• U(C′) = 28−0

(600−0) = 0.046.
The composition C′ is not feasible because it violates the global constraint.

4. Proposed Approach

In what follows, we present the architecture of the proposed solution, as well as the
different implemented algorithms (see Figure 2).

4.1. Overall Architecture

Our proposed framework involves three principal parts:

• The workflow building and update module: Its goal is to assign the new services to
their corresponding tasks (a task is a functionality available on the Internet, e.g., hotel
booking). This component also updates the tasks by changing/removing the services.

• The QoS update and management module: It stores all the QoS realizations of all
services in a data warehouse; the QoS information may stem from different sources
such as social networks (e.g., ratings, fidelity), third parties (e.g., throughput, latency),
and service providers (e.g., cost).

• The QoS-aware service-selection engine: Given a user’s workflow and the set of
global constraints, the selection module allows searching the Top-K pertinent service
compositions. As mentioned in the sequel, this engine achieves two steps: a local
optimization (or sorting) and a global optimization. The first phase (local optimization)
uses a set of heuristics (see Equations (15), (20), (24), and (28)) to rank the services of
each task. The primarygoal is to downsize the search space by only keeping the first k
services in the next phases.

The second phase of the engine performs a global optimization on the previous results.
This step is realized using a discrete bat algorithm.

Big Data Cogn. Comput. 2023, 7, 140 10 of 23

Storage of
QoS Data

Service Selection Engine

Workflow Building & Update

QoS Update & Management

Independent Monitors
Social Networks
Sensors
.....

User's Need:
Workflow
Structure

Selection Framework

Figure 2. Service-selection architecture.

4.2. Local Optimization

In the following, we introduce four heuristics (H1, H2, H3, and H4) that retain a subset
(of size k) of each task. These services are the most-promising items in terms of each Hi. In
this work, we assumed that the higher the value of a QoS level, the better the service.

4.2.1. Fuzzy Pareto Dominance Heuristic (H1)

Many alternatives are available for implementing the fuzzy version of Pareto domi-
nance [7,31,42,43]. To compare 02 r-dimensional vectors ud and vd, we used the implemen-
tation specified in [7] since it is slightly more effective than the remaining alternatives and
has zero hyper-parameters (in contrast to the others). Its definition is given in (12). The
elementary fuzzy dominance (EFD) compares two scalar QoS values using Equation (11).

EFD(ud(j), vd(j)) =

{
1 if ud(j) ≥ vd(j)

MIN(ud(j),vd(j))
vd(j) otherwise

(11)

FD(ud, vd) =
l

∏
i=1

EFD(ud(i), vd(i)) (12)

We assumed that ud and vd represent the values of the dth QoS attribute of two existing
services S and S′ (respectively). To compare S and S′ with respect to all QoS attributes, we
use Equation (13) (aggregated fuzzy dominance (AFD)).

AFD(u, v) =
r

∏
d=1

EFD(ud, vd) (13)

Big Data Cogn. Comput. 2023, 7, 140 11 of 23

The fuzzy contest (FC) function shown in Equation (14) inspects the fuzzy dominance
power of a service w with respect to another service q.

FC(Sw, Sq) =

{
1 if AFD(Sw, Sq) ≥ AFD(Sq, Sw)
0 otherwise

(14)

Equation (15) computes the sorting score of a service Sw by achieving a comparison
with the rest of the candidate services of the current task (the larger the score, the better
the rank).

FD_SCORE(Sw) =
1

m− 1 ∑
w 6=q

FC(Sw, Sq) (15)

In the experimental study, we sorted the services of each task according to the decreas-
ing order of Equation (15) and took the first k elements.

We illustrate the principle of H1 by comparing the services S1 and S2 of Table 1:
If we apply Equation (13), we obtain
AFD(QoS(S1), QoS(S2)) = FD(QoS(S1), QoS(S2)) =

5
6 ×

15
18 ×

30
40 ×

70
90 = 0.40.

On the other hand:
AFD(QoS(S2), QoS(S1)) = 1 Consequently, FC(S1, S2) = 0, FC(S2, S1) = 1, FC(S2, S3) = 1, FD_SCORE(S2) = 1.

4.2.2. Zero-Order Stochastic Dominance (H2)

This heuristic compares the services using the raw QoS values [8] (see Equation (16)).

ZSD(ud, vd) =
1
l

l

∑
i=1

Step(ud(i), vd(i)) (16)

Step(ud(i), vd(i)) =
{

1 if ud(i) ≥ vd(i)
0 otherwise

(17)

To compare two S and S′ with respect to all QoS attributes, we use Equation (18)
(aggregated zero-order stochastic dominance (AZSD)).

AZSD(u, v) =
r

∏
d=1

ZSD(ud, vd) (18)

To perform the majority vote (within a task), we need to compare each pair of services.
To do so, we leveraged the contest function shown in Equation (19); it is termed the
aggregated zero-order stochastic dominance contest (AZSDC) The AZSDC returns 1 if Sw
dominates Sq (in the sense of AZSD); otherwise, it returns 0.

AZSDC(Sw, Sq) =

{
1 if AZSD(Sw, Sq) ≥ AZSD(Sq, Sw)
0 otherwise

(19)

Equation (20) calculates the sorting score of a service Sw by achieving a comparison
with the rest of the candidate services of a given task (the larger the score, the better
the rank).

ZSD_SCORE(Sw) =
1

m− 1 ∑
w 6=q

AZSDC(Sw, Sq) (20)

In the experiments, we sorted the services of each task according to the decreasing
order of Equation (20) and took the first k elements.

4.2.3. First-Order Stochastic Dominance (H3)

Like H2, the first-order stochastic dominance (H3) [8] performs the same steps, except
that it processes the cumulative distribution (CumulDistr) of the sample instead of the raw
QoS. This heuristic is specified in Equation (21). If we assume that ud is the QoS sample of

Big Data Cogn. Comput. 2023, 7, 140 12 of 23

the dth attribute of a given service S, then the cumulative distribution of ud is approximated
as follows:

u′d(i) = CumulDistri(ud) = ∑i
t=1

1
l .

In addition, we increased the resolution (size) of u′d and set it to 2× l; the added entries

(i′) will have a score equal to u′d(i−1)+u′d(i)
2 ,∧i′ ∈ [i− 1, i].

FSD(u′d, v′d) =ZSD(CumulDistr(ud), CumulDistr(vd))

=
1

2× l

2×l

∑
i=1

Step(u′d(i), v′d(i))
(21)

We have the same expressions mentioned in H2 for the rest of the equations.

AFSD(u′, v′) =
r

∏
d=1

FSD(u′d, v′d) (22)

AFSDC(Sw, Sq) =

{
1 if AFSD(Sw, Sq) ≥ AFSD(Sq, Sw)
0 otherwise

(23)

FSD_SCORE(Sw) =
1

m− 1 ∑
w 6=q

AFSDC(Sw, Sq) (24)

In the experiments, we sorted the services of each task according to the decreasing
order of Equation (24) and took the first k elements.

4.2.4. Majority Interval Dominance (H4)

In this heuristic, we first computed the median interval for each QoS attribute of each
service (this means that the dof each service Sx is represented by an interval [lbx,d, ubx,d]).
Then, we ranked the services by comparing these representative intervals. To elucidate
this idea, we considered the services S1 and S2 of Table 1. The median interval of S1 is
[5, 30], and the corresponding one of S2 is [18, 40]. To compare the median intervals, we
used the function presented in [9]; this function is defined in Equation (25), and it is termed
majority interval dominance (MID). (We assumed that the compared services Sx and Sy
belong to the task j, and the current QoS attribute is d; Sx is represented by [a1, a2], and Sy
is represented by [b1, b2].)

MID([a1, a2], [b1, b2]) =
ReLU(a1 − b1) + ReLU(a2 − b2)

2× (Qmax(j, d)−Qmin(j, d))
(25)

where ReLU [30] is the activation function used in deep learning.
For instance, if we assume that Qmax(j, d) = 300, Qmin(j, d) = 0, then
MID(S1, S2) = MID([5, 30], [18, 40]) = 0 and MID(S2, S1) = MID([18, 40], [5, 30]) =

13+10
2×300 = 0.038.

The aggregated majority interval dominance is shown in Equation (26).

AMID(u, v) =
r

∏
d=1

MID(ud, vd) (26)

ud, vd represent the median intervals of the compared QoS attributes (having the dth rank).
Like H1, H2, and H3, the contest function is defined in Equation (27):

AMIDC(Sw, Sq) =

{
1 if AMID(Sw, Sq) ≥ AMID(Sq, Sw)
0 otherwise

(27)

MID_SCORE(Sw) =
1

m− 1 ∑
w 6=q

AMIDC(Sw, Sq) (28)

Big Data Cogn. Comput. 2023, 7, 140 13 of 23

In the experiments, we sorted the services of each task according to the decreasing
order of Equation (28) and took the first k elements (Algorithm 1).

Algorithm 1: Discrete bat algorithm (DBA).
Input:
< TopKList1, . . . , TopKListn >: the input lists given by the local optimization
heuristics.
GC: the global constraints’ bounds.
k: the size of the result list
Output:
TopKCompositions: the Top-K compositions that best meet tall global constraints
in terms of the GQC (it is initially empty).

1 A← ones(PopSize)
R← random(PopSize)
Alpha← 0.8
Gamma← 0.8
for i← 1 to PopSize do

Bati ← RandomPosition(TopKList1, . . . , TopKListn)
Freqi ← random()

2 end
3 Bat∗ ← ArgMaxi∈{1,...,PopSize}(GQC(Bati))

4 while (it ≤ MaxIt) do
5 for i← 1 to PopSize do
6 Bati ← GlobalMovement(Bati, Freqi, Bat∗)

Freqi ← random()
if (random() ≥ Ri) then

7 neighborhoodSize← round(k ∗meani∈{1,...,PopSize}(Ai)
NewPosition← neighbor(Bat∗, neighborhoodSize)

8 end
9 if (random() ≤ Ai and GQC(NewPosition) ≥ GQC(Bati)) then

10 Bati ← NewPosition
Ai ← Alpha× Ai /*decrease the loudness rate*/ ;

11 Ri ← 0.1× (1− exp(−Gamma× it) /*increase the pulse emission
rate*/ ;

12 end
13 if GQC(Bati) ≥ GQC(Bat∗) then
14 Bat∗ ← Bati;
15 end
16 end
17 it← it + 1
18 end
19 TopKCompositions← update(TopKCompositions, {Bat∗, Bat1, Bat2, . . . , Batn})

return TopKCompositions

4.3. Global Optimization

Once the n lists are given by the first step of the method, it is now time to perform a
global search by composing and assessing the service compositions. To do so, we leveraged
a swarm-intelligence-based metaheuristic that adapts the bat algorithm to our discrete
context. This discrete optimization algorithm was chosen because of its ability to combine
local search and global search in a harmonious way. The bat algorithm [44] is a promising
metaheuristic for continuous optimization. Its metaphor is based on the echolocation
behavior of micro-bats, which can vary the frequencies, loudness, and pulse-emission rates
to capture prey (see Figure 3).

Big Data Cogn. Comput. 2023, 7, 140 14 of 23

Figure 3. Bat metaphor.

Before detailing the pseudo-code of the discrete bat algorithm (see Algorithm 1), we
explain all its technical parameters:

• Pop: This is a matrix of PopSize*n dimensions; it represents all the virtual bats.
Pop = {Bat1, . . . , BatPopSize}.

• Bat∗: The position of the best bat.
• A: This stands for the loudness of the chirp; it is a vector of Popsize random numbers

in [0, 1]l it controls the neighborhood size of the local search. It is decreased along the
execution of the metaheuristic.

• Freq: This stands for the frequencies of the bats. It is a matrix of PopSize*n dimensions;
it controls the size of the moving step during the global search phase. It is initialized
with random values between 0 and 1.

• R: This stands for the pulse-emission rate of each bat. Technically, it is an n-dimensional
vector of random numbers (in [0, 1]) that controls the execution of the local search.

• Alpha: The decreasing factor of A.
• Gamma: This is a factor that controls the increasing of the pulse-emission rate R.
• MaxIt: The maximum number of iterations of the DBA.

The pseudo-code of the DBA can be explained as follows:

• Line 1: For each bat, we initialized its loudness and pulse-emission rate. Furthermore
the updating rates Alpha and Gamma were initialized.

• Line 2: For each bat, we randomly initialized its position and its frequency, which is
used as a step displacement in the GlobalMovement (of Line 6). Freqi is a real value
belonging to [0, 1].

• Line 3: We computed the best bat position of the swarm in terms of the GQC. We
updated the best bat position of the swarm.

• Lines 4–18: This is the principal loop of the metaheuristic; it is constituted of the MaxIt.
• Lines 5–16: This is the loop that explores all the bats.
• Line 6: This function creates a new composition by moving toward the best solution

with a random step. More specifically, for each component (task) j of a given bat i, we
replaced it with the corresponding value in bat∗ with a probability equal to Freqi(j)
(Bati(j) = Bat∗(j), with a probability= Freqi(j)). The frequency of each bat is changed
after that.

• Lines 7–8: with a probability 1− Ri, we created a neighborhood centered on the best
bat Bat∗.

• The width of this neighborhood is equal to k times the average of all the possible
loudness Ai (this width is termed spread); then, we created a new composition
NewPosition = (component1, . . . , componentn) as follows:

Big Data Cogn. Comput. 2023, 7, 140 15 of 23

For each j ∈ {1, . . . , n} componentj = successorTaskj
(Bat∗(j)) with a probability =

Gaussianmean,σ(|Rank(Bat∗(j))− Rank(successorTaskj
(Bat∗(j)))|), knowing that Mean

= Rank(Bat∗(j)) and σ = spread/2.
• For instance, if a task j is constituted of the following ranked services< S9, S15, S4, S20, S2 >,

and we assumed that Bat∗(j) = S4, mean = Rank(Bat∗(j)) = 3 (it is ranked third in
the list), and σ = spread/2 = 1, then the neighborhood of S4, according to Line 7,
is equal to {S15, S4, S20}. The probability of obtaining each of them as a value for
componentj is 25%, 50%, 25%, respectively (since we approximated the Gaussian func-
tion for these three observations).

• In Line 9, we accepted the aforementioned solution NewPosition (i.e., we updated
Bati), with a probability Ai. In addition, NewPosition must have a fitness better than
that of Bati.

• In Line 10, we decreased the loudness Ai.
• In Line 11, we increased the pulse-emission rate Ri to reduce the chances of performing

the local search in the future (i.e., Line 7).
• In Lines 13–15, we updated the best solution if the actual bat had a better fitness.

Finally, we note that DBA has a time complexity of O(PopSize × (1 + n + r × ln +
Maxit× (n + n× k + r× ln)). We note that the complexity of the fitness function GQC is
O(r× ln).

5. Experimental Study

Inspired by [6,35], we generated the QoS dataset using a random Gaussian distribution.
In particular, we used the following setting: mean = 0 and standard deviation = 1. The
domain of each parameter is given in Table 4.

Table 4. Parameters’ range.

Parameter Meaning Domain Default Value

n The number of tasks {2, 5, 8} 2

m The number of
services per class {500, . . . , 1200} 500

r The number of QoS
attributes {4, . . . , 11} 4

l

The number of
realizations of a given
QoS attribute (i.e., the
number of instances)

{15, . . . , 350} 21

k The size of the
returned list {2, 5, 10} 5

bi
The ith global

constraint bound Positive real

For attributes
aggregated with:

an additive function:
n × 0.6.

a multiplicative
function: 0.6n.

MAX/MIN functions:
0.6.

wi
The weight of the ith

QoS attribute [0, 1] 1/r

The experiments were implemented using a Windows10 64-bit OS with an Intel Core
i3-6006U CPU @ 2.0 GHz processor and 32 GB of RAM. The algorithms were developed
with Netbeans IDE 12.0.

Big Data Cogn. Comput. 2023, 7, 140 16 of 23

Before introducing the experimental results, we describe the theoretical complexity
of the proposed heuristics. The heuristic H1 (Equation (15)) compares each candidate
service with the remaining components, and each comparison step (Equation (13)) is
O(r.l); therefore, the time complexity of H1 is O(m.r.l). Like H1, the complexity of H2
(Equation (20)) is O(m.r.l). In the same line of thought, the complexity of Equation (24)
(H3) is O(m.r.l), and the complexity of Equation (28) (H4) is O(l.logl + m.r).

In the experiments, we only varied one parameter and kept the remaining set to their
default values (see Table 4). As regards the fuzzy dominance implementation of [31], we
preserved the same setting chosen by the authors for the parameter ε (which is equal to
0.1). For the sake of concise presentation, we only show the Top-2 pertinent compositions
(in terms of the GQC) for all the remaining experiments.

As shown in Figure 4, we observed that the behaviors (time) of H1, H3, and the
heuristic of (21) were comparable. Additionally, we observed a slight rise of time for H3
since the curve slope is proportional to 2× l instead of l. In the end, we note that H2 and
H4 were the most-efficient heuristics since the slope of their curves was lower than that of
the first ones.

Figure 5 shows that the CPU times of H1, H3, and the heuristic of [31] are comparable,
but the slopes of their respective curves were different. Additionally, we observed a slight
rise of time for the heuristic of [31] since its complexity is quadratic with respect to l. We
note that H4 was the most-efficient one since the comparison of median intervals does not
depend on l (we assumed that the sorting of QoS vectors is performed in an offline way).

Like the previous experiments, Figure 6 shows that the fuzzy dominance implemen-
tations of (21), H1, and H3 had closer CPU times. On the other hand, the majority grade
heuristic (28) and H4 had a lower CPU time since their theoretical slope is not dependent
on l. We also note that the curve of H2 had an almost flat slope, and this was mainly due
to the low overhead of Equation (16). It is worth noting that the majority grade principle
was initially presented by [45] for ranking the candidates of an election. After that, it was
adapted by [38] to web service selection.

Average execution time Vs. m

CP
U

 t
im

e
(S

ec
)

0

20

40

60

80

100

Number of services (m)
400 600 800 1000 1200

Heuristic of [31]
 H1
 H2
 H3
 H4

Figure 4. Average CPU time vs. m [31].

Big Data Cogn. Comput. 2023, 7, 140 17 of 23

Average execution time Vs.l

CP
U

 T
im

e
(S

ec
)

0

1000

2000

3000

4000

5000

Number of realizations (l)
0 50 100 150 200 250 300 350 400

Heuristic of [31]
 H1
 H2
 H3
 H4
Heuristic of [38]

Figure 5. Average CPU time vs. l [31,38].

Average execution time Vs. r

CP
U

 t
im

e
(S

ec
)

0

10

20

30

40

50

60

70

Number of QoS criteria (r)
3 4 5 6 7 8 9 10 11 12

H1
H2
H3
H4
Heuristic of [38]
Heuristic of [6]
Heuristic of [31]

Figure 6. Average CPU time vs. r [6,31,38].

According to Figure 7, we observed that all methods had almost the same CPU time
up to n = 5. Beyond this threshold, the time rose with different scales (according to each
alternative). We noticed that the exhaustive search was the most-prohibitive one since
there was an exponential number of candidate solutions; however, the DBA (with all
configurations) only explores a polynomial number of candidate compositions (but the
GQC is still exponential). As a result, the increasing rate of time was less drastic for the
three configurations of the DBA. In summary, we can state that a selection problem with less
than eight tasks can be efficiently handled by the DBA while using less than 100 bats. It is
worth noting that the majority of real-world workflows have less than 10 abstract tasks, and
this fact highlights the suitability of the DBA for the QoS-aware service-selection problem.

Big Data Cogn. Comput. 2023, 7, 140 18 of 23

DBA Vs. Exhaustive search

CP
U

 t
im

e
(S

ec
)

0

5×105

106

2×106

2×106

2×106

Number of tasks (n)
1 2 3 4 5 6 7 8 9

Exhaustive search
DBA 50 particles
DBA 100 particles

Figure 7. Average CPU time for DBA and exhaustive search.

Table 5 demonstrates the behavior of the heuristics with respect to the number of QoS
attributes r. We noticed a general deterioration of GQC and PSGC (for all heuristics) when
r grew. This deterioration can be expected since GQC is a product of r probabilities that are
related to the r attributes. Moreover, we observe that H2 is the most performing heuristic
for all values of r and for all methods.

Table 5. GQC and global constraint satisfiability vs. r.

r = 4 r = 8 r = 10

Model GQC PSGC GQC PSGC GQC PSGC

H1 0.673 75% 0.484 50% 0.500 40%
0.646 75% 0.480 62.5% 0.480 20%

H2 0.721 100% 0.515 37.5% 0.570 30%
0.664 100% 0.515 37.5% 0.463 30%

H3 0.302 0% 0.393 0% 0.388 0%
0.253 0% 0.343 0% 0.356 0%

H4 0.562 50% 0.6628 12.5% 0.408 10%
0.486 50% 0.524 25% 0.388 20%

Fuzzy
dominance
heuristic of

[31]

0.673 75% 0.5155 37.5% 0.500 50%

0.633 50% 0.515 50% 0.441 10%

Table 6 shows the behavior of the heuristics with respect to the QoS sample size l.
Broadly speaking, we noticed that both the GQC and PSGC degraded as l grew. This
degradation is logical since the satisfaction of tight global constraints will be rare as l
increases. We observed that H1 and H2 were more effective than the remaining heuristics;
more specifically, H2 performed better than H1 for low values of l (we can even obtain a
100% PSGC); however, H1 performed better for medium and large values of l. In contrast to
the heuristics H2, H3, and H4, we observed that H1 had a stable and consistent performance
for all values of l.

Big Data Cogn. Comput. 2023, 7, 140 19 of 23

Table 6. GQC and global constraint satisfiability vs. l.

l = 15 l = 21 l = 100

Model GQC PSGC GQC PSGC GQC PSGC

H1 0.673 75% 0.655 100% 0.420 0%
0.646 75% 0.544 50% 0.414 0%

H2 0.721 100% 0.704 50% 0.408 0%
0.664 100% 0.655 100% 0.402 0%

H3 0.302 0% 0.343 0% 0.346 0%
0.253 0% 0.311 0% 0.324 0%

H4 0.562 50% 0.538 25% 0.392 0%
0.486 50% 0.467 25% 0.390 0%

Fuzzy
dominance
heuristic of

[31]

0.673 75% 0.665 75% 0.415 0%

0.633 50% 0.588 75% 0.411 0%

Table 7 presents the performance of the heuristics with respect to m (the cardinal of the
task). We observed a slight degradation for both the GQC and PSGC when the number of
services m increased (for almost all heuristics). This observation may be due to the fact that
the new extended dataset has less-promising QoS levels. We also noticed that the heuristics
H1 and H2 were more effective than the rest of the alternatives (for all values of m).

Table 7. GQC and global constraint satisfiability vs. m.

m = 500 m = 800 m = 1000

Model GQC PSGC GQC PSGC GQC PSGC

H1 0.673 75% 0.645 75% 0.549 50%
0.646 75% 0.626 75% 0.491 25%

H2 0.721 100% 0.604 50% 0.552 50%
0.664 100% 0.583 75% 0.486 75%

H3 0.302 0% 0.358 0% 0.379 0%
0.253 0% 0.311 0% 0.299 0%

H4 0.562 50% 0.638 50% 0.506 25%
0.486 50% 0.620 25% 0.474 25%

Fuzzy
dominance
heuristic of

[31]

0.673 75% 0.590 75% 0.551 50%

0.633 50% 0.583 75% 0.551 50%

Table 8 demonstrates the performance of the heuristics with respect to the number
of tasks n. It is clearly shown that the scores given by all heuristics degraded with the
increasing of n, since it is more difficult to satisfy a constraint comprised of a larger sum
of random variables (according to the central limit theorem, this sum will follow—under
some conditions—a Gaussian probability distribution with a narrower standard deviation).
Like the precedent experiments, we noticed that H1 performed better than the rest of the
heuristics for all values of n. Additionally, we note that H2 had a better GQC and PSGC for
low values of n, but these scores drastically degraded when n increased.

Big Data Cogn. Comput. 2023, 7, 140 20 of 23

Table 8. GQC and global constraint satisfiability vs. n.

n = 2 n = 5 n = 8

Model GQC PSGC GQC PSGC GQC PSGC

H1 0.673 75% 0.665 50% 0.609 50%
0.646 75% 0.656 50% 0.592 75%

H2 0.721 100% 0.647 75% 0.224 0%
0.664 100% 0.640 50% 0.219 0%

H3 0.302 0% 0.163 0% 0.132 0%
0.253 0% 0.161 0% 0.126 0%

H4 0.562 50% 0.557 25% 0.512 25%
0.486 50% 0.541 25% 0.511 25%

Fuzzy
dominance
heuristic of

[31]

0.673 75% 0.563 50% 0.590 50%

0.633 50% 0.557 50% 0.580 50%

Table 9 presents a comparison between our contributions (the DBA with H1 and H2)
and some existing state-of-the-art approaches. It is clearly shown that the GQC and PSGC
of H1 and H2 were more effective than the works of the literature. We also observed that
the work of [6] gave the lowest values for the GQC, and this means that the methods based
on local threshold selection have low performances on practical datasets. We also observed
that the fuzzy implementation of the Pareto dominance using [7] was better than that
of [31], since the experiments shown in Tables 5–8 confirmed the slight superiority of our
proposed formula.

Table 9. Utility score, global constraint satisfiability, and GQC for all methods (default configuration).

Heuristic GQC US PSGC

H1 0.655 0.531 75%
0.544 0.482 100%

H2 0.704 0.511 50%
0.655 0.531 100%

H3 0.342 0.387 0%
0.311 0.374 0%

H4 0.538 0.451 25%
0.467 0.427 25%

Majority grade with
constraint

programming [38]
0.703 0.519 75%

0.631 0.527 75%
Fuzzy dominance

heuristic of [31] 0.665 0.516 75%

0.588 0.514 75%
First assignment of [6] 0.302 0.398 0%

6. Conclusions

We presented in this paper a set of ranking heuristics coupled with a bat algorithm
metaheuristic for selecting service compositions with an uncertain QoS. The main idea of the
proposition consists of lowering the space size by first retaining the most-pertinent services
in each class (task) using well-defined heuristics. In the second phase, we performed a
global search to obtain the best compositions in terms of global QOS conformance. The
results confirmed the ability of both the fuzzy Pareto dominance relationship and stochastic
dominance (of order zero) to outperform the remaining heuristics.

Big Data Cogn. Comput. 2023, 7, 140 21 of 23

In future works, we plan to test the framework on other types of workflows and
compare our bat algorithm method with recent metaheuristics such as spider monkey
optimization and the whale optimization algorithm. Moreover, we will also consider
other alternatives for modeling uncertainty such as intuitionistic fuzzy logic and possibilis-
tic logic.

Author Contributions: Conceptualization: A.E., F.H. and A.B.; data curation: A.E.; formal analysis:
A.E. and F.H.; investigation: M.F. and M.K.; methodology: M.F. and S.K.; project administration: F.H.;
software: A.E.; supervision: F.H. and A.B.; validation: A.E., F.H. and A.B.; writing—original draft:
A.E. and F.H.; writing—review and editing: A.E., F.H. and A.B. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is generated using probability distributions with well known
parameters (see Table 4).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hayyolalam, V.; Kazem, A.A. A systematic literature review on QoS-aware service composition and selection in cloud environment.

J. Netw. Comput. Appl. 2018, 110, 52–74. [CrossRef]
2. Merzoug, M.; Etchiali, A.; Hadjila, F.; Bekkouche, A. Effective Service Discovery based on Pertinence Probabilities Learning. Int. J.

Adv. Comput. Sci. Appl. 2021, 12. [CrossRef]
3. Schapire, R.E. Explaining adaboost. Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2013; pp. 37–52.
4. Cao, J.; Kwong, S.; Wang, R. A noise-detection based AdaBoost algorithm for mislabeled data. Pattern Recognit. 2012, 45,

4451–4465. [CrossRef]
5. Dietterich, T. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and

randomization. Mach. Learn. 2000, 40, 139–157. [CrossRef]
6. Hwang, S.Y.; Hsu, C.C.; Lee, C.H. Service selection for web services with probabilistic QoS. IEEE Trans. Serv. Comput. 2015, 8,

467–480. [CrossRef]
7. Köppen, M.; Vicente-Garcia, R.; Nickolay, B. Fuzzy-pareto-dominance and its application in evolutionary multi-objective

optimization. In Proceedings of the Evolutionary Multi-Criterion Optimization: Third International Conference, EMO 2005,
Guanajuato, Mexico, 9–11 March 2005; Proceedings 3; Springer: Berlin/Heidelberg, Germany, 2005; pp. 399-412.

8. Bruni, R.; Cesarone, F.; Scozzari, A.; Tardella, F. On exact and approximate stochastic dominance strategies for portfolio selection.
Eur. J. Oper. Res. 2017, 259, 322–329. [CrossRef]

9. Abdelhak, E.; Feth-Allah, H.; Mohammed, M. QoS uncertainty handling for an efficient web service selection. In Proceedings of
the 9th International Conference on Information Systems and Technologies, Cairo, Egypt, 24–26 March 2019; pp. 1–7.

10. Bekkouche, A.; Benslimane, S.M.; Huchard, M.; Tibermacine, C.; Hadjila, F.; Merzoug, M. QoS-aware optimal and automated
semantic web service composition with user’s constraints. Serv. Oriented Comput. Appl. 2017, 11, 183–201. [CrossRef]

11. Zhang, S.; Shao, Y.; Zhou, L. Optimized artificial bee colony algorithm for web service composition problem. Int. J. Mach. Learn.
Comput. 2021, 11, 327–332. [CrossRef]

12. Mohammed, M.; Chikh, M.A.; Fethallah, H. QoS-aware web service selection based on harmony search. In Proceedings of the
IEEE ISKO-Maghreb: Concepts and Tools for knowledge Management (ISKO-Maghreb), 4th International Symposium, Algiers,
Algeria, 9–10 November 2014; pp. 1–6.

13. Strunk A. QoS-aware service composition: A survey. In Proceedings of the 2010 Eighth IEEE European Conference on Web
Services 2010, Ayia Napa, Cyprus, 1–3 December 2010; pp. 67–74.

14. Alrifai, M., Risse, T., and Nejdl, W. A hybrid approach for efficient Web service composition with end-to-end QoS constraints.
ACM Trans. Web (TWEB) 2012, 6, 7.

15. Liu, Z.Z.; Jia, Z.P.; Xue, X.; An J.Y. Reliable Web service composition based on QoS dynamic prediction. Soft Comput. 2015, 19,
1409–1425. [CrossRef]

16. Belouaar, H.; Kazar, O.; Rezeg, K. Web service selection based on TOPSIS algorithm. In Proceedings of the 2017 IEEE International
Conference on Mathematics and Information Technology (ICMIT), Adrar, Algeria, 4–5 December 2017; pp. 177–182.

http://doi.org/10.1016/j.jnca.2018.03.003
http://dx.doi.org/10.14569/IJACSA.2021.0120989
http://dx.doi.org/10.1016/j.patcog.2012.05.002
http://dx.doi.org/10.1023/A:1007607513941
http://dx.doi.org/10.1109/TSC.2014.2338851
http://dx.doi.org/10.1016/j.ejor.2016.10.006
http://dx.doi.org/10.1007/s11761-017-0205-1
http://dx.doi.org/10.18178/ijmlc.2021.11.5.1056
http://dx.doi.org/10.1007/s00500-014-1351-4

Big Data Cogn. Comput. 2023, 7, 140 22 of 23

17. Shetty, J.; D’Mello, D.A. Global and local optimization-based hybrid approach for cloud service composition. Int. J. Comput. Sci.
Eng. 2018, 17, 1–14.

18. Chen, L.; Ha, W. Reliability prediction and QoS selection for web service composition. Int. J. Comput. Sci. Eng. 2018, 16, 202–211.
19. Halfaoui, A.; Hadjila, F.; Didi, F. QoS-aware web services selection based on fuzzy dominance. In Proceedings of the Computer

Science and Its Applications: 5th IFIP TC 5 International Conference, CIIA 2015, Saida, Algeria, 20–21 May 2015; Proceedings 5;
Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 291–300.

20. Halfaoui, A.; Hadjila, F.; et Didi, F. QoS-aware web service selection based on self-organizing migrating algorithm and fuzzy
dominance. Int. J. Comput. Sci. Eng. 2018, 17, 377–389.

21. Dahan, F.; El Hindi, K.; Ghoneim, A.; Alsalman, H. An enhanced ant colony optimization based algorithm to solve QoS-aware
web service composition. IEEE Access 2021, 9, 34098–34111. [CrossRef]

22. Zanbouri, K.; Jafari Navimipour, N. A cloud service composition method using a trust-based clustering algorithm and honeybee
mating optimization algorithm. Int. J. Commun. Syst. 2020, 33, e4259. [CrossRef]

23. Zhu, W.; Yin, B.; Gong, S.; Cai, K.Y. An Approach to Web Services Selection for Multiple Users. IEEE Access 2017, 5, 15093–15104.
[CrossRef]

24. Xu, Y.; Yin, J.; Deng, S.; Xiong, N.N.; Huang, J. Context-aware QoS prediction for web service recommendation and selection.
Expert Syst. Appl. 2016, 53, 75–86. [CrossRef]

25. Rodríguez, G.; Mateos, C.; Misra, S. Exploring web service QoS estimation for web service composition. In Proceedings of the
Information and Software Technologies: 26th International Conference, ICIST 2020, Kaunas, Lithuania, 15–17 October 2020;
Proceedings 26; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 171–184.

26. Khanouche, M.E.; Gadouche, H.; Farah, Z.; Tari, A. Flexible QoS-aware services composition for service computing environments.
Comput. Netw. 2020, 166, 106982. [CrossRef]

27. Xing, H.; Liu, C.; Li, R.; Wang, H.; Zhang, J.; Wu, H. Domain Constraints-Driven Automatic Service Composition for Online Land
Cover Geoprocessing. ISPRS Int. J. Geo-Inf. 2022, 11, 629. [CrossRef]

28. Yu, Q.; Bouguettaya, A. Computing service skyline from uncertain qows. IEEE Trans. Serv. Comput. 2010, 3, 16–29. [CrossRef]
29. Schuller, D.; Lampe, U.; Eckert, J.; Steinmetz, R.; Schulte, S. Cost-driven optimization of complex service-based workflows for

stochastic QoS parameters. In Proceedings of the 2012 IEEE 19th International Conference on Web Services (ICWS), Honolulu, HI,
USA, 24–29 June 2012; pp. 66–73.

30. Brownlee, J. A gentle introduction to the rectified linear unit (ReLU). Mach. Learn. Mastery 2019, 6.
31. Hadjila, F.; Belabed, A.; Merzoug, M. Efficient web service selection with uncertain QoS. Int. J. Comput. Sci. Eng. 2020, 21, 470–482.

[CrossRef]
32. Rajeswari, P.; Jayashree, K. Hybrid Metaheuristics Web Service Composition Model for QoS Aware Services. Comput. Syst. Sci.

Eng. 2022, 41, 511–524. [CrossRef]
33. Sun, L.; Wang, S.; Li, J.; Sun, Q.; Yang, F. QoS uncertainty filtering for fast and reliable web service selection. In Proceedings of the

2014 IEEE International Conference on Web Services, Anchorage, AK, USA, 27 June–2 July 2014; pp. 550–557.
34. Sun, S.X.; Zhao, J. A decomposition-based approach for service composition with global QoS guarantees. Inf. Sci. 2012, 199,

138–153. [CrossRef]
35. Kim, M.; Oh, B.; Jung, J.; Lee, K.H. Outlier-robust web service selection based on a probabilistic QoS model. Int. J. Web Grid Serv.

2016, 12, 162–181. [CrossRef]
36. Yasmina, R.Z.; Fethallah, H.; Fedoua, D. Selecting web service compositions under uncertain QoS. In Proceedings of the

Computational Intelligence and Its Applications: 6th IFIP TC 5 International Conference, CIIA 2018, Oran, Algeria, 8–10 May
2018; Proceedings 6; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 622–634.

37. Seghir, F.; Khababa, A.; Semchedine, F. An interval-based multi-objective artificial bee colony algorithm for solving the web
service composition under uncertain QoS. J. Supercomput. 2019, 75, 5622–5666. [CrossRef]

38. Zeyneb Yasmina, R.; Fethallah, H.; Fadoua, L. Web service selection and composition based on uncertain quality of service.
Concurr. Comput. Pract. Exp. 2022, 34, e6531. [CrossRef]

39. Yasmina, R.Z.; Fethallah, H. Uncertain service selection using hesitant fuzzy sets and grey wolf optimization. Int. J. Web Eng.
Technol. 2022, 17, 250–277. [CrossRef]

40. Poryazov, S.; Andonov, V.; Saranova, E.; Atanassov, K. Two Approaches to the Traffic Quality Intuitionistic Fuzzy Estimation of
Service Compositions. Mathematics 2022, 10, 4439. [CrossRef]

41. Zheng, H.; Zhao, W.; Yang, J.; Bouguettaya, A. QoS Analysis for Web Service Compositions with Complex Structures. IEEE Trans.
Serv. Comput. 2013, 6, 373–386. [CrossRef]

42. Benouaret, K.; Benslimane, D.; Hadjali, A. On the use of fuzzy dominance for computing service skyline based on qos. In
Proceedings of the 2011 IEEE International Conference on Web Services (ICWS), Washington, DC, USA, 4–9 July 2011; pp. 540–547.

43. Wang, G.; Jiang, H. Fuzzy-dominance and its application in evolutionary many objective optimization. In Proceedings of the
IEEE 2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007), Harbin, China, 15–19
December 2007; pp. 195–198.

http://dx.doi.org/10.1109/ACCESS.2021.3061738
http://dx.doi.org/10.1002/dac.4259
http://dx.doi.org/10.1109/ACCESS.2017.2722228
http://dx.doi.org/10.1016/j.eswa.2016.01.010
http://dx.doi.org/10.1016/j.comnet.2019.106982
http://dx.doi.org/10.3390/ijgi11120629
http://dx.doi.org/10.1109/TSC.2010.7
http://dx.doi.org/10.1504/IJCSE.2020.106069
http://dx.doi.org/10.32604/csse.2022.020352
http://dx.doi.org/10.1016/j.ins.2012.02.061
http://dx.doi.org/10.1504/IJWGS.2016.076619
http://dx.doi.org/10.1007/s11227-019-02814-9
http://dx.doi.org/10.1002/cpe.6531
http://dx.doi.org/10.1504/IJWET.2022.127870
http://dx.doi.org/10.3390/math10234439
http://dx.doi.org/10.1109/TSC.2012.7

Big Data Cogn. Comput. 2023, 7, 140 23 of 23

44. Yang, X.S. A new metaheuristic bat-inspired algorithm. In Proceedings of the Nature Inspired Cooperative Strategies for
Optimization (NICSO 2010), Granada, Spain, 12–14 May 2010; pp. 65–74.

45. Balinski, M.; Laraki, R. A theory of measuring, electing, and ranking. Proc. Natl. Acad. Sci. USA 2007, 104, 8720–8725. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1073/pnas.0702634104
http://www.ncbi.nlm.nih.gov/pubmed/17496140

	Introduction
	State-of-the-Art
	Service Selection with a Certain QoS
	Service Selection with Uncertain QoS

	Problem Specification
	Parameter Notation
	QoS Model
	Global QoS Conformance

	Proposed Approach
	Overall Architecture
	Local Optimization
	Fuzzy Pareto Dominance Heuristic (H1)
	Zero-Order Stochastic Dominance (H2)
	First-Order Stochastic Dominance (H3)
	Majority Interval Dominance (H4)

	Global Optimization

	Experimental Study
	Conclusions
	References

