
Citation: Mastria, E.; Pacenza, F.;

Zangari, J.; Calimeri, F.; Perri, S.;

Terracina G. EnviroStream: A Stream

Reasoning Benchmark for

Environmental and Climate

Monitoring. Big Data Cogn. Comput.

2023, 7, 135. https://doi.org/

10.3390/bdcc7030135

Academic Editor: Nik Bessis

Received: 2 May 2023

Revised: 20 July 2023

Accepted: 25 July 2023

Published: 31 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

EnviroStream: A Stream Reasoning Benchmark for
Environmental and Climate Monitoring
Elena Mastria 1,† , Francesco Pacenza 1,† , Jessica Zangari 1,† , Francesco Calimeri 1,2,‡ , Simona Perri 1,‡

and Giorgio Terracina 1,*,‡

1 Department of Mathematics and Computer Science, University of Calabria, 87036 Rende, Italy;
elena.mastria@unical.it (E.M.); francesco.pacenza@unical.it (F.P.); jessica.zangari@unical.it (J.Z.);
francesco.calimeri@unical.it (F.C.); simona.perri@unical.it (S.P.)

2 DLVSystem Ltd., Via della Resistenza 19/C, 87036 Rende, Italy
* Correspondence: giorgio.terracina@unical.it
† These authors contributed equally to this work.
‡ These authors contributed equally to this work.

Abstract: Stream Reasoning (SR) focuses on developing advanced approaches for applying inference
to dynamic data streams; it has become increasingly relevant in various application scenarios such
as IoT, Smart Cities, Emergency Management, and Healthcare, despite being a relatively new field
of research. The current lack of standardized formalisms and benchmarks has been hindering the
comparison between different SR approaches. We proposed a new benchmark, called EnviroStream,
for evaluating SR systems on weather and environmental data. The benchmark includes queries and
datasets of different sizes. We adopted I-DLV-sr, a recently released SR system based on Answer Set
Programming, as a baseline for query modelling and experimentation. We also showcased continuous
online reasoning via a web application.

Keywords: big data; stream reasoning; knowledge representation and reasoning

1. Introduction

Stream Reasoning (SR) [1,2] is a relatively new field of research that has evolved from
Stream Processing (SP). It focuses on studying and developing advanced approaches and
techniques for continuously applying inference to highly dynamic data streams. These
theoretically infinite streams of data change over time, generated by sources such as sensors,
devices, and social networks that monitor physical or virtual environments and report on
their status and changes. While SP aims to quickly process data streams and answer contin-
uous queries on their elements, SR tackles the challenge of inferring new information based
on both the elements in the data streams and background knowledge on the application
domain. Recently, SR has been studied in depth, far beyond the academic context, and has
therefore become increasingly relevant in various application scenarios, such as IoT, smart
cities, emergency management, and healthcare. In such contexts, practical applications
require the response to complex queries in very short time frames, defined according to
the application domain in hand and typically in real or near real-time. Therefore, an SR
system (i.e., a stream reasoner) must be able to efficiently perform continuous complex
reasoning tasks while processing heterogeneous data streams together, and according to
large background knowledge bases.

Over the past few years, different approaches to SR have been proposed, based
on Complex Event Processing (CEP), Semantic Web or Knowledge Representation and
Reasoning (KRR) [3–6]. However, to date, there are no standardized formalisms nor
techniques for SR; this complicates the comparison between different approaches that are
based on different languages, semantics and technologies. Indeed, even SR competitions
are currently more oriented towards “model and solve” challenges rather than performance

Big Data Cogn. Comput. 2023, 7, 135. https://doi.org/10.3390/bdcc7030135 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7030135
https://doi.org/10.3390/bdcc7030135
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0003-0681-776X
https://orcid.org/0000-0001-6632-3492
https://orcid.org/0000-0002-6418-7711
https://orcid.org/0000-0002-0866-0834
https://orcid.org/0000-0002-8036-5709
https://orcid.org/0000-0002-3090-7223
https://doi.org/10.3390/bdcc7030135
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7030135?type=check_update&version=1

Big Data Cogn. Comput. 2023, 7, 135 2 of 18

assessment [7]. Another crucial aspect for the advancement of the state-of-the-art is the
availability of suitable benchmarks. Some first proposals can be found in the literature,
concerning, e.g., social networks [8], an extended LUBM version [9], smart cities [10],
social media [11], maritime traffic monitoring [12], and automobile traffic and autonomous
driving [7]. However, only a few datasets include real data extracted from real-world
domains. Moreover, there is an evident lack of benchmarks for logic-programming-based
Stream Reasoning systems, as emerged in the recent Hackathon event [7].

Summarizing, the main desiderata for improving the current SR benchmark scenario
can be outlined as follows: (i) provide proper means to simplify correctness checking;
(ii) improve variety of supported input data formats; (iii) allow for the generation and
customization of benchmark scenarios (scalability); (iv) increase availability of benchmarks
for logic-based SR approaches.

In particular, desiderata (i) and (ii) attack both diversification of technologies and
lack of standards. Desideratum (ii) fosters consumer agnosticism, whereas desideratum
(iii) aims to overcome the limitations of fixed benchmarks that do not fit certain specificities
of SR contexts, which require testing not only on the quantity of data but also on different
time frames and the frequency of incoming data. Finally, desideratum (iv) tries to support
the emerging area of research on logic-based SR systems.

The objective of the present work is to contribute precisely to the above desiderata. To
this aim, we proposed EnviroStream, a novel benchmark for evaluating Stream Reasoning
systems using weather and environmental data from European cities (names of the cities
are omitted for anonymity reasons) including queries of interest in typical smart cities
scenarios, such as monitoring air quality, noise pollution, heatwaves, rain intensity, and
wind force. The queries were developed based on recommendations from organizations
focused on human health and climate change.

In order to address desideratum (i), we provide both query definitions in textual
format and their implementation in a logic-based language we recently proposed, which is
supported by an actual system, namely I-DLV-sr [13], as a baseline; in this way, any user
of the benchmark can compare their results against the baseline. In order to improve data
variety (desideratum (ii)), the benchmark data are provided in different formats, namely
Datalog/ASP, plain JSON, and CSV. Moreover, we also intended to provide data in the
RDF format in the next releases. Desideratum (iii) is tackled from several perspectives:
besides providing different, ready to use, fixed datasets arranged in different sizes and
time frames, we also provided an ad-hoc data generator which arranges the available
data based on user-defined parameters allowing for arbitrary scaling and configuration
of streaming data [7,11]; in this way, different aspects of any SR system can be tested. It is
worth noting that benchmark data come from a real-world sensor network that is currently
in use and growing, and they are continuously ingested; this allows us to periodically
update the benchmark both with fresh data from existing sources and new data coming
from additional measuring stations that will be available over time. Finally, the availability
of data in the Datalog/ASP format along with a full-fledged logic-based SR system are
clearly geared towards desideratum (iv).

Three datasets of different sizes (composed as described in Section 2.3) are pub-
licly available on Zenodo (https://doi.org/10.5281/zenodo.8142369 (accessed on 1 May
2023)). In addition, the datasets, all queries modelled in the I-DLV-sr language along
with instructions to run them, and a generator allowing the filtering of data on the ba-
sis of time frame and frequency, are reported in a dedicated GitHub repository https:
//github.com/DeMaCS-UNICAL/EnviroStream (accessed on 1 May 2023).

As a further contribution, we released a publicly accessible web site showcasing the
online real-time reasoning performed by I-DLV-sr in the featured scenario; the application
is available at https://experiments.demacs.unical.it (accessed on 1 May 2023).

The remainder of the paper is structured as follows. Section 2 describes EnviroStream
data and queries. Section 3 illustrates how queries of EnviroStream can be modeled in the
Stream Reasoning language of I-DLV-sr. Section 4 reports on the performance of I-DLV-sr

https://doi.org/10.5281/zenodo.8142369
https://github.com/DeMaCS-UNICAL/EnviroStream
https://github.com/DeMaCS-UNICAL/EnviroStream
https://experiments.demacs.unical.it

Big Data Cogn. Comput. 2023, 7, 135 3 of 18

when tested on EnviroStream. The web application is introduced in Section 5. Finally,
Section 6 provides a final discussion and outlines future directions.

2. The EnviroStream Benchmark

In this section, we introduce and describe EnviroStream, a novel resource for bench-
marking modern Stream Reasoning systems and applications that provides data and
(continuous) reasoning tasks, both coming from real-world scenarios. We first illustrate
the main features of EnviroStream, and discuss how it is placed in the context of related
benchmarks; we then provide a thorough description of the benchmark, by both presenting
the featured data and detailing all queries.

2.1. Main Features

As already mentioned, the benchmark features both data and reasoning tasks. The
main features of EnviroStream, to date, can be summarized as follows:
Reasoning tasks are described by 10 queries, that:

• require to manage time-based windows of varying size;
• require to explicitly reason over time;
• require to express various forms of aggregation across time slots and windows;
• are supposed to be continuously processed over streams;
• are both expressed in natural language and formally translated into a logic-based

language for stream reasoning;
• thanks to the translation and the availability of an actual system they come with

proper means for correctness checking and baseline comparison.

Currently, the available data are streamed from weather sensors installed in European
cities, and are such that:

• they are continuously injected in real-time;
• they are periodically incrementally updated and made available, thus fostering scala-

bility, variety and continuous maintenance of data;
• they are available in different formats, in order to foster the applicability of the

benchmark also to different contexts, and grant consumer agnosticism [7];
• besides static datasets, EnviroStream comes with a generator for tuning streams, thus

allowing custom testing scenarios.

2.2. EnviroStream in the Context of SR Benchmarks

In the following, we describe how EnviroStream is placed in the context of the current
related benchmarks. It is worth noting that, as a matter of fact, existing stream reasoning
benchmarks mainly focus on RDF Stream Processing (RSP) and are geared towards contin-
uous query answering under RDFS entailment regime [11]. Among these, one of the most
popular is CityBench [10], which is also the closest to EnviroStream in terms of domain,
being focused on smart cities. However, the two benchmarks significantly differ in the
nature of the queries: EnviroStream requires an intensive use of time-based windows, thus
explicitly stressing the evaluation capabilities of a tested SR system, whereas this aspect
is covered by CityBench only to a limited extent. Indeed, in EnviroStream, windows are
featured over all queries, with varying size spotlighting varying sections of the timeline.
Other differences concern the nature of the data; while EnviroStream focuses on real data
only, that are also continuously growing and updated, the CityBench dataset is static and
hybrid, i.e., it features partly synthetic and partly real data. As for the data formats, beside
those available in CityBench, EnviroStream also provides the Datalog/ASP one.

Coming to benchmark explicitly focused on SR based on logic programming, only
two significant contributions are currently available. The first is the Maritime Monitoring
benchmark [12]—it emerged from a real-world application and presents a relevant con-
tribution featuring a large amount of real data; nevertheless, data are provided only in
CSV format, with no means for scaling it. As already pointed out, in EnviroStream, not only
are the real data provided in a number of different formats (thus increasing the already

Big Data Cogn. Comput. 2023, 7, 135 4 of 18

mentioned consumer agnosticism), but it also complies with one of the main desiderata for
an SR benchmark: scalability. Indeed, thanks to an ad-hoc data generator, it allows for the
arbitrary scaling and configuration of streaming data to be used [7,11]; this allows different
aspects of the chosen system(s) to be tested.

The second contribution in the LP field, namely the Stream Reasoning Playground [7], has
been released on the occasion of the Stream Reasoning Hackathon 2021 (https://streamre
asoning.org/events/stream-reasoning-hackathon-2021/ (accessed on 1 May 2023)). The
contribution is significant, as it incorporates the experience and the discussions from the
hackaton. However, it is not conceived as a benchmark; rather, it is actually an extensible
platform for data stream generation and pluggable data formatters. Notably, the platform
features two scenarios, namely Traffic Monitoring and Autonomous Driving, that can be
considered as the most relevant benchmarks for the logic-programming targets to date.
EnviroStream is aimed at contributing to increasing the availability of resources for Stream
Reasoning approaches and solutions based on logic-programming; it is worth noting that it
shares with these benchmarks several points that make them both grant some desirable
features in terms of widening targeted systems and data formats; in this respect, this
testifies to the relevance of our proposal. In addition, EnviroStream further enriches the set
of available data formats and introduces data that are continuously updated over time.

2.3. Data

The data include weather and environmental data from two European cities, whose
names are omitted for anonymity reasons. Data are collected through weather stations
scattered in each city. Each city has a station, which provides, approximately every 5 min,
the following measures:

• wind speed in m/s (meters per second);
• wind direction in degrees;
• relative humidity percentage;
• external temperature in ◦C (Celsius degrees);
• noise in dB(A) (A—weighted decibels);
• PM2.5, i.e., concentration of particulate matter of diameter 2.5 in µg/m3 (micro-grams

per cubic meter of air);
• PM10, i.e., concentration of particulate matter of diameter 10 in µg/m3;
• atmospheric pressure in Kpa (Kilo-pascal);
• optical rainfall in mm (millimeters).

Each station transmits the measures along with the associated measuring timestamps
to a MongoDB (https://www.mongodb.com (accessed on 1 May 2023)) database, in charge
of storing all of them. It is worth noting that stations send data separately, thus their
measuring timestamps are not synchronized. Approximately, the database receives a
bunch of data every 2 min. We provide three datasets of different sizes, freely available at
https://doi.org/10.5281/zenodo.8142369 (accessed on 1 May 2023): day, night and large.
day is a three hour dataset on a Wednesday afternoon (15 March 2023 from 12:00 p.m. to
03:00 p.m.), night is a three hour dataset on a Saturday night (from 11 March 2023 10:00 p.m.
to 12 March 2023 01:00 a.m.) and large is a bigger dataset featuring detections from 1 January
2023 12:00 a.m. to 28 March 2023 11:59 p.m. Besides these static datasets, we provide a
flexible generator allowing the filtering of data, configuring both data frequency and time
frame and specifying the start and end points. Filtered data can be used to populate a
MongoDB database or can be outputted via a TCP socket or standard output.

2.4. Queries

The queries focus on some crucial ambient topics: air quality, noise pollution, heat-
wave, rain intensity, and wind force. Studying the recommendations of major organiza-
tions promoting human health and monitoring climate change, we designed 2 queries for
each topic.

https://streamreasoning.org/events/stream-reasoning-hackathon-2021/
https://streamreasoning.org/events/stream-reasoning-hackathon-2021/
https://www.mongodb.com
https://doi.org/10.5281/zenodo.8142369

Big Data Cogn. Comput. 2023, 7, 135 5 of 18

2.4.1. Air Quality

The concentration of particulate matter has a high influence on human health as well
as on the environment. Queries 1 and 2 focus on monitoring the concentration of PM10
and PM2.5.

Query 1 Determination of the average of PM10 and PM2.5 measurements in the last 10
min and raise an alert if the PM10 average is greater than or equal to 50 and/or
the PM2.5 average is greater than or equal to 25. The thresholds refer to the
current European recommendation (https://environment.ec.europa.eu/topic
s/air/air-quality/eu-air-quality-standards_en (accessed on 1 May 2023)). The
more the concentration of particulate matter in the air exceed these thresholds,
the greater the health risks.

Query 2 Determination of the cities in which the PM10 and PM2.5 averages are maximum.

2.4.2. Noise Pollution

Noise pollution has been proven to have a crucial impact on human health, e.g., it
contributes to cardiovascular effects and increases the incidence of coronary artery disease.
Queries 3 and 4 focus on monitoring the noise exposure.

Query 3 Determination of the number of noise measurements exceeding the threshold
recommended by the World Health Organisation (WHO) in the last hour. The
WHO generally defines 65 dB(A) as the threshold during the day (from 6 a.m. to
10 p.m.) and 55 dB(A) at night (from 10 p.m. to 6 p.m.) (https://www.who.int/
europe/news-room/fact-sheets/item/noise (accessed on 1 May 2023)).

Query 4 Determination of the cities in which a noise above 85 dB(A) was observed
continuously for one hour. In fact, the WHO recommends that noise exposure
should not exceed 85 dB(A) within an hour to avoid hearing impairment (https:
//apps.who.int/iris/bitstream/handle/10665/39458/9241540729-eng.pdf (ac-
cessed on 1 May 2023)).

2.4.3. Heat

Extreme heat can pose a health risk to the population. For instance, heat waves can oc-
cur when there are very high temperatures, often associated with high humidity, strong so-
lar radiation and lack of ventilation. Humidex is one of the indices used to evaluate human
climatic well-being in relation to humidity and temperature (https://www.canada.ca/en/e
nvironment-climate-change/services/seasonal-weather-hazards/warm-season-weather-ha
zards.html#toc7 (accessed on 1 May 2023)). It can be computed on the basis the temperature
T and the relative humidity R (https://www.canada.ca/en/environment-climate-change/
services/climate-change/canadian-centre-climate-services/display-download/technical-
documentation-climate-normals.html (accessed on 1 May 2023)) as

humidex = T + h, (1)

where:

h = 0.5555× (e− 10.0)

e = 6.11× exp5417.7530×(1
273.15−

1
d)

d = T − 100− R
5

and ranges from 1 (little discomfort) to 4 (dangerous, possible heat stroke). Queries 5 and 6
monitor the Humidex to intercept extreme heat conditions.

Query 5 Alert when the Humidex is currently greater than 2 and has been above 2 at
least 3 times in the last 30 min.

https://environment.ec.europa.eu/topics/air/air-quality/eu-air-quality-standards_en
https://environment.ec.europa.eu/topics/air/air-quality/eu-air-quality-standards_en
https://www.who.int/europe/news-room/fact-sheets/item/noise
https://www.who.int/europe/news-room/fact-sheets/item/noise
https://apps.who.int/iris/bitstream/handle/10665/39458/9241540729-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/39458/9241540729-eng.pdf
https://www.canada.ca/en/environment-climate-change/services/seasonal-weather-hazards/warm-season-weather-hazards.html#toc7
https://www.canada.ca/en/environment-climate-change/services/seasonal-weather-hazards/warm-season-weather-hazards.html#toc7
https://www.canada.ca/en/environment-climate-change/services/seasonal-weather-hazards/warm-season-weather-hazards.html#toc7
https://www.canada.ca/en/environment-climate-change/services/climate-change/canadian-centre-climate-services/display-download/technical-documentation-climate-normals.html
https://www.canada.ca/en/environment-climate-change/services/climate-change/canadian-centre-climate-services/display-download/technical-documentation-climate-normals.html
https://www.canada.ca/en/environment-climate-change/services/climate-change/canadian-centre-climate-services/display-download/technical-documentation-climate-normals.html

Big Data Cogn. Comput. 2023, 7, 135 6 of 18

Query 6 Determination of the cities in which the Humidex results are always above 2 in
the last 30 min.

2.4.4. Rain Intensity

Queries 7 and 8 regard rain monitoring, crucial to assess hydro-geological risks
and droughts.

Query 7 Monitoring of the total millimeters of rain in the last hour and the classification
of the rain intensity as light, moderate, or heavy. Rain is considered light
if less than 25 mm fell in one hour, moderate if more than 25 mm and less
than 76 mm fell in one hour, heavy if more than 76 mm fell in one hour
(https://glossary.ametsoc.org/wiki/Rain (accessed on 1 May 2023)).

Query 8 Identification of the least rainy cities, i.e., those in which less millimeters of rain
fell in the last hour.

2.4.5. Wind Force

Similar to rain, wind represents an atmospheric agent whose monitoring is essential
for several aspects, including, e.g., wind energy, maritime conditions, or storm forecasts.
The Beaufort scale is one of the most widely adopted systems for classifying wind force
into 12 levels, ranging from calm wind to hurricane [14]. Queries 9 and 10 monitor the
wind force, both using the Beaufort scale.

Query 9 Alert when the Beaufort level computed over the average wind speed in the
last 10 min is above 6.

Query 10 Suppose L represents the current Beaufort level, this query determines, for each
city, the duration in minutes for which the level has remained at L.

3. Modelling EnviroStream via the I-DLV-sr Language

In this section, we show how queries of EnviroStream can be modeled in an SR lan-
guage.

As previously pointed out, in order to provide a formal baseline for the correctness
checking of queries, we next provide the implementation of the 10 benchmark queries in a
logic-based language we recently proposed, which is also supported by an actual system,
namely I-DLV-sr [13]. This formalization, along with their execution with I-DLV-sr, can be
exploited by benchmark users to compare their results against the baseline.

The choice of I-DLV-sr is motivated by the fact that it has been designed to leverage
state-of-the-art Stream Processing and Answer Set Programming (ASP) [15–17] technologies;
I-DLV-sr is based on the integration of a custom Apache Flink application, ensuring a
distributed processing of data streams, and the incremental version of the ASP system
DLV2 [18], granting a continuous and incremental reasoning over time [19].

Before illustrating how EnviroStream queries have been modelled, we briefly recall
I-DLV-sr input language via a high-level overview of its features. We suppose the reader to
be familiar with basic concepts of ASP; for a comprehensive formal description of syntax,
semantics, and properties of I-DLV-sr, we refer to [13].

3.1. The I-DLV-sr Language

The language of I-DLV-sr consists in the ASP fragment of normal and stratified with
respect to negation programs, extended with streaming literals and time-based constructs
for enabling continuous online reasoning over data streams. In particular, the language
includes different types of streaming literals based on four different operators: always, at least,
at most and count. Their semantics is evaluated according to a stream Σ, which is basically a
sequence of sets of atoms Σ = 〈S0, . . . , Sn〉. Each set is associated with a time point, i.e., a
specific moment in time. An example of stream is depicted in Figure 1 in which, e.g., the
atom b(5) is true in the time points 12 and 15.

https://glossary.ametsoc.org/wiki/Rain

Big Data Cogn. Comput. 2023, 7, 135 7 of 18

Time
(seconds)

12 13 14 15

a(3)
b(5)

b(5)
a(2)

a(3)
c(7)

a(3)

Figure 1. Σ1: an example of a (partial) stream.

Let us consider the stream Σ1 as reported in Figure 1, and let us assume it to be at the
15-th time point (i.e., the current time point is 15). Table 1 reports some examples of ground
(i.e., variable-free) streaming literals and specifies whether each of them holds according to
Σ1 at the current time point. The expression [2 sec] encompasses the last 2 seconds, i.e.,
it refers to the window consisting of the time points 13, 14 and 15. The expression {0,2},
instead, refers to the specific time points 15 and 13 (i.e., 0 and 2 seconds before the current
time point, respectively). Note that the expression {0,1,2} is equivalent to [2 sec].

Table 1. Examples of entailment of ground streaming literals.

Positive Literal Holds Negative Literal Holds

b(5) always in [2 sec] No not b(5) always in [2 sec] Yes
a(3) always in [2 sec] Yes not a(3) always in [2 sec] No
a(3) always in {0,2,3} No not a(3) always in {0,2,3} Yes
b(5) count 2 in [2 sec] No not b(5) count 2 in [2 sec] Yes
b(5) count 1 in [2 sec] Yes not b(5) count 1 in [2 sec] No
b(5) count 1 in {1,3} No not b(5) count 1 in {1,3} Yes
b(5) at least 2 in [2 sec] No not b(5) at least 2 in [2 sec] Yes
b(5) at least 1 in [2 sec] Yes not b(5) at least 1 in [2 sec] No
b(5) at least 2 in {1,3} Yes not b(5) at least 1 in {1,3} No
a(3) at most 2 in [2 sec] No not a(3) at most 2 in [2 sec] Yes
b(5) at most 1 in [2 sec] Yes not b(5) at most 1 in [2 sec] No
b(5) at most 1 in {0,2} Yes not b(5) at most 1 in {0,2} No

The always operator can be used to check that an atom holds in all considered time
points: for instance, a(3) is always true in the window of the last two seconds. The count
operator checks the occurrences of an atom in all the specified time points: e.g., b(5) occurs
only once in the window of the last two seconds. Similarly, at least (resp., at most) checks
that the number of occurrences is equal to or greater than (resp., less than) a given number.
For instance, in the window consisting of the last two seconds, b(5) is true once: thus, we
have both at least 1 and at most 1 occurrences of b(5).

A rule can have a predicate atom (defined as in the ASP-Core-2 standard) in the head
and a conjunction of literals in the body. The body may contain streaming literals, all types
of literals defined in the ASP-Core-2 standard such as aggregates, as well as external literals
whose semantics can be defined externally via custom Python3 functions. A program is a
finite set of rules, and has to be stratified according to the definition given in [13].

As an example, the following is an I-DLV-sr program:

c(Z) :− b(X), a(X), &sum(X,Y;Z). d(X) :− c(X) at least 1 in [1 sec].

where c(Z), b(X), a(X), and d(X) are predicate atoms, c(X) at least 1 in [1 sec] is a
streaming literal, and &sum(X,Y;Z) is an external literal, whose meaning could be, for
instance, defined via the following Python function:

def sum(a , b) :
return a+b

Furthermore, the language features a dedicated construct for explicitly dealing with
time, namely the @now construct; it is a special form of term that, at each time point t, is
automatically assigned with the value of t. @now can be either (1) numeric, i.e., an integer
number representing t in seconds, minutes or hours or (2) textual, i.e., a string in the datetime

Big Data Cogn. Comput. 2023, 7, 135 8 of 18

format: yyyy-MM-ddTHH:mm:ss.SSS. In case (2), one can also access a specific field via the “dot
notation” (e.g., @now.hour). For instance, let us refer to the example stream Σ1 introduced
above, and let us assume (again) to be at time point 15; then, the rule:

occurring_time_a(X,Y) :− a(X,@now).

allows one to infer occurring_time_a(3,15).
Finally, it is worth pointing out that, as far as incomplete data are concerned, I-DLV-

sr relies on the closed world assumption (in line with Answer Set Programming), i.e.,
everything not explicitly declared as true is considered to be false. This is useful when
dealing with incomplete information, as it allows for deducing that what is not known
or declared as true is false. Moreover, data that arrived with some delay are ignored by
I-DLV-sr, e.g., any data associated with a timestamp before the last processed timestamp
will be ignored.

3.2. Design of EnviroStream Queries

Table 2 lists input atoms illustrating their meaning. Static atoms represent background
information, not changing over time; dynamic ones correspond to the input provided by
stations at each time point, i.e., at each measuring time.

Table 2. Input atoms.

Type Atom Meaning

St
at

ic

station(C) Weather station of city C
maximum_allowed_pm10(X) X is the maximum PM10 allowed

maximum_allowed_pm2_5(X) X is the maximum PM2.5 allowed
day_threshold(X) X is the noise limit during day

night_threshold(X) X is the noise limit during night
threshold_1_hour(X) X is the noise exposure limit over a hour

light_rain_threshold(X) X is the light rain threshold over a hour
heavy_rain_threshold(X) X is the heavy rain threshold over a hour

D
yn

am
ic

pm10(C,V) V is the current PM10 level in city C
pm2_5(C,V) V is the current PM2.5 level in city C
noise(C,V) V is the current noise in city C

temperature(C,V) V is the current temperature in city C
humidity(C,V) V is the current humidity in city C

rain(C,V) V is the current rain in city C
wind_speed(C,V) V is the current wind speed in city C

3.2.1. Query 1

The following program PQ1 determines the average of PM10 and PM2.5 measurements
in the last 10 min and checks if the maximum allowed level has been exceeded, as required
by Query 1.

r1: last_pm10(C,X) :− pm10(C,X) in [10 min].
r2: tot_pm10(C,Tot) :− station(C), #sum{X,C: last_pm10(C,X)} = Tot.
r3: count_pm10(C,Count) :− station(C), #count{X,C: last_pm10(C,X)} = Count.
r4: avg_pm10(C,Avg) :− tot_pm10(C,Tot), count_pm10(C,Count), Avg = Tot/Count
r5: too_high_pm10(C) :− avg_pm10(C,A), A>=X, maximum_allowed_pm10(X).

r6: last_pm2_5(C,X) :− pm2_5(C,X) in [10 min].
r7: tot_pm2_5(C,Tot) :− station(C), #sum{X,C: last_pm2_5(C,X)} = Tot.
r8: count_pm2_5(C,Count) :− station(C), #count{X,C: last_pm2_5(C,X)} = Count.
r9: avg_pm2_5(C,Avg) :− tot_pm2_5(C,Tot), count_pm2_5(C,Count), Avg = Tot/Count
r10: too_high_pm2_5(C) :− avg_pm2_5(C,A), A>=X, maximum_allowed_pm2_5(X).

Rule r1 filters the detections of PM10 occurred in the last 10 min. Rules r2 and r3
compute, for each station, the total amount of particulate matter in the air and the total
number of occurred measurements in the last 10 min, respectively. Rule r4 is in charge of
evaluating the average quantity of particulate matter in the last 10 min. If the computed

Big Data Cogn. Comput. 2023, 7, 135 9 of 18

average exceeds the threshold, an alert is raised via rule r5. Similarly, rules r6–r10 compute
the average quantity of PM2.5 and raise an alert if the average is greater than or equal to
the corresponding threshold.

3.2.2. Query 2

Rules r1–r4 and r6–r9 of PQ1 along with rules r11–r14 reported below compose the
program PQ2, which determines the city with the highest average of PM10 and PM2.5
measured in the last 10 min, as in Query 2.

r11: max_avg_pm10(MAX) :− MAX = #max{X: avg_pm10(C,X)}.
r12: most_polluted_area_pm10(C) :− avg_pm10(C,MAX), max_avg_pm10(MAX).

r13: max_avg_pm2_5(MAX) :− MAX = #max{X: avg_pm2_5(C,X)}.
r14: most_polluted_area_pm2_5(C) :− avg_pm2_5(C,MAX), max_avg_pm2_5(MAX).

In particular, rule r11 determines the maximum measured average value, and, accord-
ingly, r12 identifies the most polluted city (or cities, in case more than one city has the same
maximum average). Similarly, rules r13–r14 compute the city/cities in which the average
PM2.5 level is the highest.

3.2.3. Query 3

The program PQ3 below answers Query 3.

r15: day :− @now.hour>=6, @now.hour<22.
r16: night :− not day.
r17: above_threshold(C) :− noise(C,N), day_threshold(T), day, &geq(N,T;).
r18: above_threshold(C) :− noise(C,N), night_threshold(T), night, &geq(N,T;).
r19: number_of_high_detections(C,X) :− above_threshold(C) count X in [60 min].

Rules r15 and r16 determine whether it is day (6 a.m.-10 p.m.) or night (10 p.m.–6
a.m.). Note that, in order to infer day, we use the special term @now.hour, which allows us to
obtain the current hour as an integer between 0–23. Rules r17 and r18 are intended to record
the city station where the measured noise is above the recommended threshold. Rule r19
counts, for every city, how many times the noise has been above the threshold in the last
hour. In both rules, the external atom >(N,T;) is true if N≥ T, false otherwise; this check
is externally delegated, since noise measures are non-integer numbers and in line with ASP
systems, I-DLV-sr does not support non-integer arithmetic.

3.2.4. Query 4

The program PQ4 below concerns Query 4, in charge of evaluating whether citizens are
exposed for a period of one hour to a level of noise pollution above a recommended threshold.

r20: above_threshold_1_h(C) :− noise(C,N), threshold_1_hour(T), &geq(N,T;).
r21: noise(C) :− noise(C,N).
r22: above_threshold_1_h(C) :− above_threshold_1_h(C) in {1}, not noise(C).
r23: noise_pollution(C) :− above_threshold_1_h(C) always in [60 min].

Rule r20 keeps track of cities where noise emissions are above the specified threshold.
Given that we have a new measure every 5 min, for precautionary purposes, we assume
that, between two high measures, the noise remains high, preferring to raise alerts even
if the noise between two measuring times may decrease. Rules r21 and r22 are used to
model such assumption until a new measure is transmitted. Finally, rule r23 checks that the
threshold has been continuously exceeded in the last one-hour period.

3.2.5. Query 5

The following program PQ5 is about Query 5, i.e., heat monitoring.

Big Data Cogn. Comput. 2023, 7, 135 10 of 18

r24: humidex(C,Hi) :− temperature(C,T), humidity(C,H), &compute_humidex(T,H;Hi).
r25: humidex_level(C,1) :− humidex(C,Hi), Hi>=20, Hi<30.
r26: humidex_level(C,2) :− humidex(C,Hi), Hi>=30, Hi<40.
r27: humidex_level(C,3) :− humidex(C,Hi), Hi>=40, Hi<45.
r28: humidex_level(C,4) :− humidex(C,Hi), Hi>=45.
r29: disconfort(C,L) :− humidex_level(C,L), L>2,

humidex_level(C,L) at least 3 in [30 min].

Rule r24 computes the current Humidex via &compute_humidex. Given the temperature
and the humidity, the external atom &compute_humidex returns a numeric value computed
according to Equation (1). Rules r25–r28 classifies the Humidex between 1 and 4. Finally,
rule r29 raises an alert when the Humidex is currently greater than 2 and has been above 2
at least 3 times in the last 30 min.

3.2.6. Query 6

Rules r24–r28 of PQ5 and r30–r32 shown below encode the program PQ6 modeling Query 6.

r30: temperature(C) :− temperature(C,T).
r31: humidex_level(C,L) :− humidex_level(C,L) in {1}, not temperature(C).
r32: always_high_humidex(C,L) :− humidex_level(C,L), L>2,

humidex_level(C,L) always in [30 min].

Similarly to Query 4, since new data arrive every 5 min, we assume that the tempera-
ture and humidity do not change significantly enough to cause the Humidex to fluctuate.
Again, we prefer to send alerts even if, in principle, the Humidex may vary between
two measuring times. Rules r30 and r31 model this assumption. Rule r32 checks that the
Humidex is currently above 2 and has always been greater than 2 in the last 30 min.

3.2.7. Query 7

The following program PQ7 concerns rain intensity and encodes Query 7.

r34: rain_now(Sensor,Rain,@now) :− rain(Sensor, Rain).
r35: rain_1_hour(Sensor, Rain, X) :− rain_now(Sensor, Rain, X) in [60 min].

r36: precedes(C,T1,T2) :− rain_1_hour(C,R1,T1), rain_1_hour(C,R2,T2), T1<T2.
r37: successor(C,T1,T2) :− precedes(C,T1,T2), not inBetween(C,T1,T2).
r38: inBetween(C,T1,T2) :− precedes(C,T1,T3), precedes(C,T3,T2).
r39: first(C,T) :− rain_1_hour(C,R,T), not hasPredecessor(C,T).
r40: last(C,T) :− rain_1_hour(C,R,T), not hasSuccessor(C,T).
r41: hasPredecessor(C,T2) :− successor(C,T1,T2).
r42: hasSuccessor(C,T1) :− successor(C,T1,T2).
r43: partialSum(C,T,R) :− first(C,T), rain_1_hour(C,R,T).
r44: partialSum(C,T2,R3) :− successor(C,T1,T2), rain_1_hour(C,R2,T2),

partialSum(C,T1,PS), &sum(PS,R2;R3).
r45: mm_rain_1_hour(C,R) :− last(C,T), partialSum(C,T,R).

r46: light_rain(C) :− mm_rain_1_hour(C,R), >(R,0;), light_rain_threshold(LTh),
&leq(R,LTh;).

r47: moderate_rain(C) :− mm_rain_1_hour(C,R), ligh_rain_threshold(LTh),
heavy_rain_threshold(HTh), >(R,LTh;), &leq(R,HTh;).

r48: heavy_rain(C) :− mm_rain_1_hour(C,R), heavy_rain_threshold(HTh),
>(R,HTh;).

Rule r34 maps each rain measure to its associated time point, by means of the @now

term. Rule r35 collects all rain measures that occurred in the last hour. The total millimeters
of rain fallen in the last hour is computed via rules r36–r45. Since rain measures are
non-integer numbers, we cannot use an aggregate literal (such as #sum); rather, we have
to sort measures in chronological order according to their associated time points (rules
r36–r42) and recursively determine the total by updating a partial total via the external
atom &sum(PS,R2;R3) returning R3=PS+R2 (rules r42–r45). Eventually, rules r46–r48 identify
whether the rain intensity in the last hour is light, moderate, or heavy, respectively, on the
basis of the corresponding thresholds.

Big Data Cogn. Comput. 2023, 7, 135 11 of 18

3.2.8. Query 8

Rules r34–r45 of PQ7 paired with the following rules r49–r53 compose the program PQ8
solving Query 8.

r49: precedes_rain(M1,M2) :− mm_rain_1_hour(S1,M1), mm_rain_1_hour(S2,M2),
S1!=S2, <(M1,M2;).

r50: successor_rain(X,Y) :− precedes_rain(X,Y), not inBetween_rain(X,Y).
r51: inBetween_rain(X,Y) :− precedes_rain(X,Z), precedes_rain(Z,Y).
r52: min_mm_rain_1_hour(M) :− mm_rain_1_hour(S,M), not hasPredecessor_rain(M).
r53: least_rainy_city(C) :− mm_rain_1_hour(C,M), min_mm_rain_1_hour(M).

The minimum of the total amount of rain is calculated through the rules r49–r52, once
again leveraging on an external atom to properly handle non-integer values. Rules r53
determines the least rainy city, i.e., the one in which the least millimeters of rain fell in the
last hour. If more than one city has the same minimum amount of rainfall, more cities will
be returned.

3.2.9. Query 9

The following program PQ9 is about Query 9, i.e., wind alert according to the
Beaufort scale.

r55: wind_now(C,W,@now) :− wind_speed(C,W).
r56: wind_10_min(C,W,T) :− wind_now(C,W,T) in [10 min].

r57: precedes(C,T1,T2) :− wind_10_min(C,W1,T1), wind_10_min(C,W2,T2), T1<T2.
r58: successor(C,T1,T2) :− precedes(C,T1,T2), not inBetween(C,T1,T2).
r59: inBetween(C,T1,T2) :− precedes(C,T1,T3), precedes(C,T3,T2).
r60: first(C,T) :− wind_10_min(C,W,T), not hasPredecessor(C,T).
r61: last(C,T) :− wind_10_min(C,W,T), not hasSuccessor(C,T).
r62: hasPredecessor(C,T1) :− successor(S,T2,T1).
r63: hasSuccessor(C,T2) :− successor(C,T2,T1).
r64: partialSum(C,T,W) :− first(C,T), wind_10_min(C,W,T).
r65: partialSum(C,T2,W3) :− successor(C,T1,T2), wind_10_min(C,W2,T2),

partialSum(C,T1,PS), &sum(PS,W2;W3).
r66: tot_wind_speed(C,W) :− last(C,T), partialSum(C,T,W).
r67: count_wind_speed(C,Count) :− #count{T: wind_10_min(C,W,T)} = Count,

station(C).
r68: avg_wind_speed(C,Avg) :− &div(Tot,Count;Avg), tot_wind_speed(C,Tot),

count_wind_speed(C,Count).

r69: beaufort_level(C,L) :− avg_wind_speed(C,A), &beaufort_scale(A;L).
r70: wind_alert(C) :− beaufort_level(C,L), L>6.

The modeling is similar with respect to Query 8. Intuitively, rule r55 associates each
wind speed measure with its corresponding time point, again using the @now term. Rule
r56 gathers all wind speed measures in the last 10 min. Since wind speed values are non-
integers, the average wind speed in the last 10 min is determined via rules r57–r68. In
particular, rules r57–r66 compute the sum of all the filtered wind speed measures in the
last 10 min, using the same “pattern” of Query 8. Rule r68 computes the average as the
ratio of such sum with the number of filtered measures. Once the average is computed, the
Beaufort level is inferred via rule r69 using the external atom &beaufort_scale(A;L) which,
given the average wind speed A, returns the corresponding level L according to the Beaufort
scale (see Section 2). Finally, rule r70 raises an alert when this level is greater than 6.

3.2.10. Query 10

Rules r55–r69 of program PQ9 together with rules r71–r75 below form the program PQ10
relative to Query 10, about the duration of the current Beaufort level.

Big Data Cogn. Comput. 2023, 7, 135 12 of 18

r71: duration(C,XNext,DNext,@now,L) :− duration(C,X1,D1,T1,L) in {1}, D=@now-T1,
DNext=D1+D, XNext=X1+1,
beaufort_level(C,L),
beaufort_level(C,L) in {1}.

r72: duration(C,1,1,@now,L1) :− beaufort_level(C,L1),
beaufort_level(C,L2) in {1}, L1!=L2.

r73: computed_beaufort_level(C) :− beaufort_level(C,_) in {1}.
r74: duration(C,1,1,@now,X) :− beaufort_level(C,X),

not computed_beaufort_level(C).
r75: duration(C,D,L) :− duration(C,_,D,_,L), beaufort_level(C,L).

In more detail, rule r71 recursively updates the duration in minutes of the current
Beaufort level L if, in the previous time point, the Beaufort level was still L. Rule r72 is
needed to reset the duration to 1 minute when the Beaufort levels in the current and in the
previous time points differ. Similarly, rule r74 also initializes the duration to 1 minute, but
only in the very first time point, as checked via rule r73. Rule r75 is a projection rule, getting
rid of variables used to properly compute the actual duration and stating that the current
Beaufort level L in a city C is lasting for D minutes.

3.2.11. Query 4 in LARS

Eventually, as an additional proof-of-concept and with the only purpose of showing
how the proposed benchmark can be tested on other SR systems, we report below how
Query 4 can be modelled in the language supported by the Ticker system [20,21]. Ticker is
an ASP-based Stream Reasoning system supporting a tractable and practical fragment of
LARS [22], a logic-based language extending ASP towards Stream Reasoning.

s1: above_threshold_1_h(C) at T1 :− city(C), number(N), threshold_1_hour(T),
noise(C,N) at T1 in [1 min], N>=T.

s2: noise_copy(C) at T :− city(C), number(N), noise(C,N) at T in [1 min].
s3: above_threshold_1_h(C) at T1 :− city(C),

above_threshold_1_h(C) at T in [1 min],
not noise_copy(C) at T1 in [1 min], T=T1-1.

s4: noise_pollution(C) :− city(C), above_threshold_1_h(C) always [60 min].

Rule s1 detects the cities where noise emissions are higher than the given threshold by
analyzing the latest data arrived. This rule makes use of the so-called @-atoms (i.e., atoms
featuring at T1) allowing us to link information with the time point, similarly to I-DLV-sr
@now construct. This allows us to reason about the inferred information within the scope
of time windows in rules s2-s4. We assume that cities maintain the same level of noise
emissions between two consecutive measurements. Therefore, rules s2 and s3 are used to
remember if noise emissions above the threshold have been observed in a city. Finally, rule
s4 derives all the cities where the threshold has been exceeded continuously in the last hour.

4. Baseline Experiments

In this section, we discuss the performance of I-DLV-srVersion 2.0.0 available at http
s://github.com/DeMaCS-UNICAL/I-DLV-sr/releases (accessed on 1 May 2023) when
tested over EnviroStream on the day and night datasets (as introduced in Section 2). The two
datasets have been selected based on parameters that cause queries to be triggered: e.g., the
night has been chosen in the weekend to check environmental and noise pollution, and the
day has been extracted from a midweek rainy day during a rush hour. Besides testing each
query, we also tested the program resulting from the union of all queries, namely Q_ALL.
In the following, we first describe the experimental setting focusing on reproducibility, then
we discuss the obtained results.

4.1. Experimental Setting

The experiments have been performed on a DELL XPS machine equipped with a
2.2GHz Intel® Xeon® E5-2650 CPU, with 12 cores and 64GB of RAM. The tested query
modellings are those described in Section 3. All modellings along with instructions
for properly reproducing experiments are reported at the dedicated GitHub repository

https://github.com/DeMaCS-UNICAL/I-DLV-sr/releases
https://github.com/DeMaCS-UNICAL/I-DLV-sr/releases

Big Data Cogn. Comput. 2023, 7, 135 13 of 18

https://github.com/DeMaCS-UNICAL/EnviroStream (accessed on 1 May 2023). As a
performance measure, we took into account the processing-time latency (latency for short):
for each time point, we measured the delay between the time at which the input relative to
such time point is received and the time at which the system produces the corresponding
output. In other words, latency measures the period of time the system takes to reason on
a given input.

To fairly test all queries in the same setting, we emulated a real environment in which
I-DLV-sr consumes the dataset at hand from a MongoDB source. Intuitively, testing all
queries over data extracted in different time periods could result in an unfair comparison,
since environmental and climate data vary over time. Therefore, we cannot use the original
MongoDB source, which continuously receives new data.

To show I-DLV-sr reactivity in practice, we simulated real-time data arrival via the
MongoDB “Change Streams” functionality, allowing a client to subscribe to all data changes
on a database and immediately react to them. Figure 2 exemplifies the adopted pipeline.
In more detail, to run each query, we populated an initially empty MongoDB database
(MongoDB Middle Source in Figure 2) according to the dataset at hand, and I-DLV-sr
continuously retrieved data from this database. Specifically, data are ingested into the
MongoDB database in real-time, at the same frequency they arrived to the original source,
i.e., approximately every 2 min, as specified in Section 2.

City 1

City 2

Change
Streams

Data
Extraction

I-DLV-srI-DLV-sr

Output time
point 0

Output time
point 1

…

Output time
point n

Output time
point 0

Output time
point 1

…

Output time
point n

Mongo DB
Middle Source

Mongo DB
Middle Source

Mongo DB
Original Source

Mongo DB
Original Source

Figure 2. Experimental set-up.

In this setting, in order to run the queries allowing I-DLV-sr to read new data from a
MongoDB source and obtain the expected output, users should execute the following command:
java − j a r I −DLV−s r . j a r \

−−program=path/to/query/encoding \
−−py− s c r i p t =path/to/ e x t e r n a l . py \
−−mongodb \
−−mongodb−conf ig=path/to/mongodb/conf ig . yaml \
−−t −uni t=min −−windows−uni t=min −−now−format=min ,

where the option --program is used to specify the query encoding; --py-script is used
to provide a path to a script containing Python functions which define the behaviour of
external atoms (if any); --mongodb and --mongodb-config are used to enable I-DLV-sr to
read data stream from a MongoDB source as specified in the given configuration file in the
YAML format; the remaining options are used to set the reasoning time unit in minutes.

In more detail, in order to run, e.g., query 4 over I-DLV-sr, the following parameters
must be specified:

java − j a r I −DLV−s r . j a r \
−−program=EnviroStream/quer ies/program/q4 . i d l v s r \
−−py− s c r i p t =EnviroStream/quer ies/ s c r i p t / e x t e r n a l . py \
−−mongodb \
−−mongodb−conf ig=EnviroStream/quer ies/conf ig/q4 . yaml \
−−t −uni t=min −−windows−uni t=min −−now−format=min .

https://github.com/DeMaCS-UNICAL/EnviroStream

Big Data Cogn. Comput. 2023, 7, 135 14 of 18

Note that, in this setting, the time required to execute a single query is at least equal to
the time interval represented by the dataset, i.e., given a dataset of three hours (like day or
night), the execution of each query takes at least 3 h. We remark that, in order to simulate
the arrival of data to the MongoDB source across the whole observed period of 3 months,
the execution of each query would require at least 3 months. Indeed, Stream Reasoning
systems are conceived to process data in real-time, and in case the time spent to reason
on a bunch of data is less than the arrival time of the next bunch, systems have to wait
because there are no new inputs to reason on. For this reason, testing all the 11 queries
(including Q_ALL), in a fair sequential mode, on the whole 3 months data would require
about 33 months, which would be unfeasible. Moreover, to evaluate the real-time reasoning
capabilities of I-DLV-sr in practice, we implemented a web application as discussed in
Section 5.

4.2. Results

Figure 3 reports the latency. In further detail, Figure 3a,b show how the latency
(y-axis) varies over the time points (x-axis) per each query over the day and the night,
respectively; the red line indicates the average time between the arrival of a bunch of data
and the next one. Furthermore, Figure 3c reports the average latency computed over all
time points on both datasets. Note that a time point corresponds to a measuring time, i.e., a
timestamp at which a bunch of data has been produced by a station.

The results show that the latency is far below the red line in all time points for each
query, including Q_ALL, which is, as expected, the one requiring more computational
effort. On average, performance over day and night datasets are quite similar, as evidenced
in Figure 3c. Taking a closer look, we observe that in Q1 and Q2 the latency is always
less than 0.7 seconds since they require to reason over smaller windows w.r.t. the other
queries. Slightly higher latency times are registered for Q3, Q4, Q5, Q6, Q7, Q8, and Q9
whose trends vary between 0.5 and 1.1 seconds; indeed, these queries have been designed
to be computationally more expensive and to involve larger windows. The highest latency
times are obtained on Q10 and Q_ALL: the former ranges between 0.8 and 1.5 seconds,
whereas the latter between 1.1 and 1.7 seconds. The reason behind this behaviour is the
modelling of Q10, in which streaming literals are recursively evaluated over past time
points. In turn, the trend of Q_ALL, which consists of the union of all queries, is influenced
by Q10. Finally, it is worth noting that the performance on Q_ALL is not given by the
sum of latencies over the 10 queries because several queries share portions of programs, as
reported in Section 3.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
ro

ce
ss

in
g

Ti
m

e
La

te
n

cy
 (

s)

Time point

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q_ALL

150

(a)

Figure 3. Cont.

Big Data Cogn. Comput. 2023, 7, 135 15 of 18

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Pr
oc

es
sin

g
Ti

m
e

La
te

nc
y

(s
)

Time point

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q_ALL

150

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q_ALL

A
ve

ra
ge

 T
im

e
P

ro
ce

ss
in

g
La

te
n

cy
 (

s)

Query

DAY NIGHT

(c)

Figure 3. Performance of I-DLV-sr over the day dataset (a), the night dataset (b), and average latency
per time point over both datasets (c).

5. Online Reasoning over EnviroStream via the I-DLV-sr System

In order to practically assess online reasoning of I-DLV-sr on the herein presented
EnviroStream benchmark, we deployed a web application available at https://experiment
s.demacs.unical.it/ (accessed on 1 May 2023). The web app features some plots showing
aggregated information, used within the queries of EnviroStream, over real-time data
collected by the weather stations of both cities, namely:

• average PM10 emissions in the last 10 min;
• average PM2.5 emissions in the last 10 min;
• number of noise measures above the recommended WHO thresholds (i.e., 65 during

day and 55 during night);
• current Humidex level;
• total millimeters of rain fallen in the last hour;
• current Beaufort level on the basis of the average wind speed in the last 10 min.

The plots are generated on the basis of data produced by I-DLV-sr, which runs in
the back-end, continuously receiving new data from the MongoDB source storing mea-
sures from both weather stations. Note that, differently from the experimental setting of
Section 4, in the web app, I-DLV-sr directly retrieves data from the real MongoDB source
communicating with the stations.

https://experiments.demacs.unical.it/
https://experiments.demacs.unical.it/

Big Data Cogn. Comput. 2023, 7, 135 16 of 18

6. Conclusions

EnviroStream is a benchmark for evaluating Stream Reasoning systems in real dynamic
settings over weather and environmental data; it currently provides data from weather
stations in two European cities, but we plan to extend the deployment of base stations to
other cities in the near future. To date, it consists of 10 queries for monitoring some crucial
ambient topics: air quality, noise pollution, heatwave, rain intensity, and wind force. The
queries have been conceived by studying the recommendations of major organizations
promoting human health and monitoring climate change, and they have been designed in
such a way as to cope with the most commonly needed expressive capabilities in Stream
Reasoning systems. As a baseline, we also discussed in detail how I-DLV-sr, a recent Stream
Reasoning system, can be adopted to model the queries and reason over EnviroStream
datasets, and we outlined with a proof-of-concept example how queries in EnviroStream can
be expressed in a different language. Moreover, we released a publicly accessible web site
showcasing the online real-time reasoning performed by I-DLV-sr in the featured scenario.

As pointed out in Section 1, this work aimed at overcoming the current difficulties
in evaluating Stream Reasoning systems, with a special focus on logic-based ones. The
present work contributes to increasing the availability of Stream Reasoning benchmarks
for both the logic-programming and the RSP settings; its applicability to different kinds
of systems is granted by the wide range of available data formats. Furthermore, data are
continuously injected in real-time from the available sensors, thus producing over time an
incrementally growing amount of data that are periodically released. To the best of our
knowledge, this is a unique feature of the herein presented benchmark.

In conclusion, this work provides a foundation for future studies, offering a baseline
for comparing Stream Reasoning systems functionalities, capabilities and performance.
Concerning functionalities, EnviroStream is challenging as it requires to deal with real-
time data stream processing and incompleteness, caused, e.g., when stations delay data
transmission because of network issues. Moreover, the queries pose a modeling challenge
for comparing the expressive capabilities of the system at hand. Eventually, EnviroStream
can be adopted to test performance as systems are required to reason over data coming at a
non-fixed rate without losing responsiveness. We believe that it is particularly interesting
to evaluate systems on large-scale datasets. We thus provided the large dataset featuring
all data we gathered since the stations became operational, i.e., about three months. For
the same reason, we developed the aforementioned web application, proving the I-DLV-sr
resilience over real-time and long-term reasoning.

We plan to enrich EnviroStream in both datasets and queries through the installation
of further stations so that for each city, we can combine data coming from more than one
station and begin to consider some form of weather forecasting. This way, it will be possible
to have a more comprehensive and accurate view of the weather conditions in each city.

Author Contributions: Conceptualization, F.P. and J.Z.; methodology, F.P. and J.Z.; software, E.M.,
F.P and J.Z.; validation, E.M., F.P. and J.Z.; formal analysis, F.P. and J.Z.; investigation, F.P. and J.Z.;
resources, F.C., S.P. and G.T.; data curation, E.M., F.P. and J.Z.; writing—original draft preparation, F.P.
and J.Z.; writing—review and editing, F.C., E.M., F.P., S.P., G.T. and J.Z.; visualization, F.P. and J.Z.;
supervision, F.C., F.P., S.P., G.T. and J.Z.; project administration, F.C., S.P. and G.T.; funding acquisition,
F.C., S.P. and G.T. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the PNRR project FAIR - Future AI Research (PE00000013),
Spoke 9 - Green-aware AI, under the NRRP MUR program funded by the NextGenerationEU”, and
by the project PRIN PE6, Title: “Declarative Reasoning over Streams”, funded by the Italian Ministero
dell’Università, dell’Istruzione e della Ricerca (MIUR), CUP:H24I17000080001, and by the project
“Smart Cities Lab” (CUP J89J21009750007) funded on POR FESR-FSE Calabria 2014-2020 .

Data Availability Statement: We provide three datasets of different sizes in CSV and JSON format,
freely available at https://doi.org/10.5281/zenodo.8142369 (accessed on 1 May 2023): day, night and
large. day is a three hour dataset on a Wednesday afternoon (15 March 2023 from 12:00 p.m. to 03:00
p.m.), night is a three hour dataset on a Saturday night (from 11 March 2023 10:00 p.m. to 12 March

https://doi.org/10.5281/zenodo.8142369

Big Data Cogn. Comput. 2023, 7, 135 17 of 18

2023 01:00 a.m.) and large is a bigger dataset featuring detections from 1 January 2023 12:00 a.m. to
28 March 2023 11:59 p.m. All dataset concern weather and environmental data of two European
cities, whose names are omitted for anonymity reasons. Data are collected through weather stations
scattered in each city.

Acknowledgments: The authors would like to thank the DLVSystem Srl Company (https://ww
w.dlvsystem.com (accessed on 1 May 2023)) for providing access to valuable data and the fruitful
collaboration; furthermore, they want to thank Giovanni Laboccetta for the fruitful discussions about
the application domains.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ASP Answer Set Programming
SR Stream Reasoning
SP Stream Processing
CEP Complex Event Processing
KRR Knowledge Representation and Reasoning
PM Particulate Matter

References
1. Dell’Aglio, D.; Valle, E.D.; van Harmelen, F.; Bernstein, A. Stream reasoning: A survey and outlook. Data Sci. 2017, 1, 59–83.

[CrossRef]
2. Mileo, A.; Dao-Tran, M.; Eiter, T.; Fink, M. Stream Reasoning. In Encyclopedia of Database Systems, 2nd ed.; Springer: Berlin/Hei-

delberg, Germany, 2018.
3. Barbieri, D.F.; Braga, D.; Ceri, S.; Valle, E.D.; Grossniklaus, M. C-SPARQL: A Continuous Query Language for RDF Data Streams.

Int. J. Semantic Comput. 2010, 4, 3–25. [CrossRef]
4. Phuoc, D.L.; Dao-Tran, M.; Parreira, J.X.; Hauswirth, M. A Native and Adaptive Approach for Unified Processing of Linked

Streams and Linked Data. In International Semantic Web Conference; Lecture Notes in Computer Science; Springer: Berlin/Heidel-
berg, Germany, 2011; Volume 7031, pp. 370–388.

5. Hoeksema, J.; Kotoulas, S. High-performance distributed stream reasoning using s4. In Ordring Workshop at ISWC; 2011. Available
online: http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Workshops/OrdRing/paper_8.pdf (accessed on 1 May 2023).

6. Pham, T.; Ali, M.I.; Mileo, A. C-ASP: Continuous ASP-Based Reasoning over RDF Streams. In Logic Programming and Nonmonotonic
Reasoning; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11481, pp. 45–50.

7. Schneider, P.; Alvarez-Coello, D.; Le-Tuan, A.; Duc, M.N.; Phuoc, D.L. Stream Reasoning Playground. In Proceedings of the 19th
European Semantic Web Conference, Hersonissos, Greece, 29 May–2 June 2022; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2022; Volume 13261, pp. 406–424.

8. Phuoc, D.L.; Dao-Tran, M.; Pham, M.; Boncz, P.A.; Eiter, T.; Fink, M. Linked Stream Data Processing Engines: Facts and Figures.
In Proceedings of the 11th International Semantic Web Conference, Hangzhou, China, 23–27 October 2022; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7650, pp. 300–312.

9. Nguyen, T.N.; Siberski, W. SLUBM: An Extended LUBM Benchmark for Stream Reasoning. In Proceedings of the 2nd International
Workshop on Ordering and Reasoning, OrdRing 2013, Co-located with the 12th International Semantic Web Conference (ISWC
2013), Sydney, Australia, 22 October 2013 ; Volume 1059, pp. 43–54.

10. Ali, M.I.; Gao, F.; Mileo, A. CityBench: A Configurable Benchmark to Evaluate RSP Engines Using Smart City Datasets. In
International Semantic Web Conference; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume
9367, pp. 374–389.

11. Tommasini, R.; Balduini, M.; Valle, E.D. Towards a Benchmark for Expressive Stream Reasoning. In Proceedings of the 2nd RDF
Stream Processing (RSP 2017) and the Querying the Web of Data (QuWeDa 2017) Workshops Co-Located with 14th ESWC 2017 (ESWC
2017), Portoroz, Slovenia, 28–29 May 2017 ; Volume 1870, pp. 26–36.

12. Pitsikalis, M.; Artikis, A.; Dreo, R.; Ray, C.; Camossi, E.; Jousselme, A. Composite Event Recognition for Maritime Monitoring. In
Proceedings of the 13th ACM International Conference on Distributed and Event-Based Systems, Darmstadt, Germany, 24–28
June 2019 ; ACM: Boston, MA, USA, 2019; pp. 163–174.

13. Calimeri, F.; Manna, M.; Mastria, E.; Morelli, M.C.; Perri, S.; Zangari, J. I-DLV-sr: A Stream Reasoning System based on I-DLV.
Theory Pract. Log. Program. 2021, 21, 610–628. [CrossRef]

14. Huler, S. Defining the Wind: The Beaufort Scale and How a 19th-Century Admiral Turned Science into Poetry; Crown: New York, NY,
USA, 2007.

https://www.dlvsystem.com
https://www.dlvsystem.com
http://doi.org/10.3233/DS-170006
http://dx.doi.org/10.1142/S1793351X10000936
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Workshops/OrdRing/paper_8.pdf
http://dx.doi.org/10.1017/S147106842100034X

Big Data Cogn. Comput. 2023, 7, 135 18 of 18

15. Gelfond, M.; Lifschitz, V. Classical Negation in Logic Programs and Disjunctive Databases. New Gener. Comput. 1991, 9, 365–386.
[CrossRef]

16. Brewka, G.; Eiter, T.; Truszczynski, M. Answer set programming at a glance. Commun. ACM 2011, 54, 92–103. [CrossRef]
17. Lifschitz, V. Answer Set Programming; Springer: Berlin/Heidelberg, Germany, 2019.
18. Calimeri, F.; Ianni, G.; Pacenza, F.; Perri, S.; Zangari, J. ASP-based Multi-shot Reasoning via DLV2 with Incremental Grounding.

In Proceedings of the 24th International Symposium on Principles and Practice of Declarative Programming, Tbilisi, Georgia,
20–22 September 2022 ; ACM: Boston, MA, USA, 2022; pp. 2:1–2:9.

19. Ianni, G.; Pacenza, F.; Zangari, J. Incremental maintenance of overgrounded logic programs with tailored simplifications. Theory
Pract. Log. Program. 2020, 20, 719–734. [CrossRef]

20. Beck, H.; Eiter, T.; Folie, C. Ticker: A system for incremental ASP-based stream reasoning. Theory Pract. Log. Program. 2017,
17, 744–763. [CrossRef]

21. Eiter, T.; Ogris, P.; Schekotihin, K. A Distributed Approach to LARS Stream Reasoning (System paper). Theory Pract. Log. Program.
2019, 19, 974–989. [CrossRef]

22. Beck, H.; Dao-Tran, M.; Eiter, T. LARS: A Logic-based framework for Analytic Reasoning over Streams. Artif. Intell. 2018,
261, 16–70. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF03037169
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1017/S147106842000040X
http://dx.doi.org/10.1017/S1471068417000370
http://dx.doi.org/10.1017/S1471068419000309
http://dx.doi.org/10.1016/j.artint.2018.04.003

	Introduction
	The EnviroStream Benchmark
	Main Features
	EnviroStream in the Context of SR Benchmarks
	Data
	Queries
	Air Quality
	Noise Pollution
	Heat
	Rain Intensity
	Wind Force

	Modelling EnviroStream via the I-DLV-sr Language
	The I-DLV-sr Language
	Design of EnviroStream Queries
	Query 1
	Query 2
	Query 3
	Query 4
	Query 5
	Query 6
	Query 7
	Query 8
	Query 9
	Query 10
	Query 4 in LARS

	Baseline Experiments
	Experimental Setting
	Results

	Online Reasoning over EnviroStream via the I-DLV-sr System
	Conclusions
	References

