
Citation: Romanov, A. The Dataset

for Optimal Circulant Topologies. Big

Data Cogn. Comput. 2023, 7, 80.

https://doi.org/10.3390/bdcc7020080

Academic Editors: Eric M. Lui,

Antonio Concilio and Salvador

García López

Received: 15 March 2023

Revised: 13 April 2023

Accepted: 18 April 2023

Published: 20 April 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

The Dataset for Optimal Circulant Topologies
Aleksandr Romanov

HSE University, Moscow 101000, Russia; a.romanov@hse.ru; Tel.: +7-495-772-95-90 (ext. 15140)

Abstract: This article presents software for the synthesis of circulant graphs and the dataset obtained.
An algorithm and new methods, which increase the speed of finding optimal circulant topologies,
are proposed. The results obtained confirm an increase in performance and a decrease in memory
consumption compared to the previous implementation of the circulant topologies synthesis method.
The developed software is designed to generate circulant topologies for the construction of networks-
on-chip (NoCs) and multi-core systems reaching thousands of computing nodes. The developed
software makes it possible to achieve high performance on an ordinary research workstation com-
mensurate with similar solutions created for a supercomputer. The use cases of application of the
created software for the analysis of routing algorithms in circulants and the regression analysis of the
generated dataset of graph signatures to predict the characteristics of graphs of any size are described.

Keywords: circulant graph; circulant topologies dataset; routing algorithm; network-on-chip;
supercomputing

1. Introduction

The development of computing systems suggests making solutions based on multi-
core processors. In this area, on-chip networks have been used as a replacement of sys-
tem buses, the previous way of communication between IP cores. The main disadvan-
tage of system buses is their inability to meet the bandwidth requirements of multicore
systems-on-chip due to a decrease in operating speed at a high load when increasing
the number of cores is needed [1]. This scalability problem is solved by communicating
simultaneously over multiple connections between routers, which implement an NoC
communication subsystem.

Thus, an important problem in the development of NoCs is the search for optimal
topologies of the communication subsystem, since regular topologies, such as mesh,
torus [2], and others [3] do not meet modern requirements for NoCs. An attempt to
improve the basic characteristics of such topologies leads to large resource costs. Circulant
topologies have better characteristics than classical regular topologies and better structural
survivability, reliability, and connectivity; they also require fewer inter-processor exchanges
when solving computational and system control problems. These features allow using
them in networks with a large number of nodes.

A number of works are devoted to the use of circulant topologies for building commu-
nication networks. For example, a subset of circulant topologies known as Midimew [4] has
been proposed for use in communication networks in high-performance supercomputers.
In [5,6], circulants are also considered as a topology for supercomputing. In [7,8], it is
argued that this allows an increase in network performance and a reduction in the mean
path length (MPL) of packet transmission in comparison with a torus topology. Also, [9]
proposed to use circulants in coding theory. Thus, circulants have potentially wide areas of
application, and finding families of optimal circulants with a large number of nodes is an
important task.

Circulants are regular topologies based on the Cayley graphs of a cyclic group. This
type of topologies can be described as C(N; s1, . . . , sk), where N—number of nodes,
k—number of generators si (graph dimension), and k < N (Figure 1). It is this type

Big Data Cogn. Comput. 2023, 7, 80. https://doi.org/10.3390/bdcc7020080 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7020080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-9410-9431
https://doi.org/10.3390/bdcc7020080
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7020080?type=check_update&version=1


Big Data Cogn. Comput. 2023, 7, 80 2 of 14

of description of circulant topologies (signature of the circulant) that is used in this article.
Circulant topologies are also mentioned in the context of double fixed-step loop net-
works [10], fixed-step graphs [11], Chordal Rings [12], Mobius ladder [13,14], Midimew [4],
low-dimensional regular lattice [15], double-loop networks [16], multi/multiple-loop net-
works [17,18], etc. The features of circulants are considered in detail in [19,20]. For practical
tasks, it is necessary to develop regular descriptions of families of circulants with the desired
properties using their signatures calculated by a formula from N. Thus, there are descrip-
tions for two-dimensional optimal circulants [19,21], recursive [22,23] and multiplicative
circulants [24], extremal circulants [25], etc. But potentially there are yet undiscovered or
not formalized families of circulants that are waiting in the wings.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 2 of 15 
 

 

Circulants are regular topologies based on the Cayley graphs of a cyclic group. This 
type of topologies can be described as C(𝑁; 𝑠 , … , 𝑠 ), where 𝑁—number of nodes, 𝑘—
number of generators 𝑠  (graph dimension), and 𝑘 < 𝑁  (Figure 1). It is this type of 
description of circulant topologies (signature of the circulant) that is used in this article. 
Circulant topologies are also mentioned in the context of double fixed-step loop networks 
[10], fixed-step graphs [11], Chordal Rings [12], Mobius ladder [13,14], Midimew [4], low-
dimensional regular lattice [15], double-loop networks [16], multi/multiple-loop networks 
[17,18], etc. The features of circulants are considered in detail in [19,20]. For practical tasks, 
it is necessary to develop regular descriptions of families of circulants with the desired 
properties using their signatures calculated by a formula from 𝑁 . Thus, there are 
descriptions for two-dimensional optimal circulants [19,21], recursive [22,23] and 
multiplicative circulants [24], extremal circulants [25], etc. But potentially there are yet 
undiscovered or not formalized families of circulants that are waiting in the wings. 

  
(a) (b) 

Figure 1. Topologies C(15;  1, 4) (а) and C(15;  1, 2, 4) (b). 

The problem of searching for circulant topologies lies in its high computational 
complexity (it can be classified as an NP-hard problem), if solved by enumeration 
methods and breadth-first search methods [5,6,20]. At the same time, the rapid 
development of the theory of neural networks and machine learning methods [26] makes 
it possible to assume the prospect of using the signatures of already found topologies 
together with the methods of mathematical analysis for the problems of studying and 
predicting the characteristics of higher-order topologies, as well as for developing new 
families of circulant graphs that have useful properties for their application in practice. 
This requires large datasets and benchmarks, as well as software tools for their synthesis. 
This is the main contribution of this article. The example of the analysis of the obtained 
dataset using regression analysis methods given at the end of the article demonstrates the 
usefulness of this work and the prospects for applying the results obtained. 

A list of key notations is presented in Table 1 for ease of reference. 
  

Figure 1. Topologies C(15; 1, 4) (a) and C(15; 1, 2, 4) (b).

The problem of searching for circulant topologies lies in its high computational com-
plexity (it can be classified as an NP-hard problem), if solved by enumeration methods
and breadth-first search methods [5,6,20]. At the same time, the rapid development of the
theory of neural networks and machine learning methods [26] makes it possible to assume
the prospect of using the signatures of already found topologies together with the methods
of mathematical analysis for the problems of studying and predicting the characteristics
of higher-order topologies, as well as for developing new families of circulant graphs that
have useful properties for their application in practice. This requires large datasets and
benchmarks, as well as software tools for their synthesis. This is the main contribution of
this article. The example of the analysis of the obtained dataset using regression analysis
methods given at the end of the article demonstrates the usefulness of this work and the
prospects for applying the results obtained.

A list of key notations is presented in Table 1 for ease of reference.



Big Data Cogn. Comput. 2023, 7, 80 3 of 14

Table 1. List of key notations.

Notation Description

NoC Network-on-Chip
C(N; s1, . . . , sk) Circulant graph signature

N Number of nodes
k Circulant graph dimension

si, i = 1, . . . , k Circulant graph generator
MPL Mean Path Length
GCG Greedy Circulants Generator
MAE Mean Absolute Error

PPMCC Pearson Product-Moment Correlation Coefficient

The remainder of this manuscript is organized as follows. In Section 2, we describe
the problem of the synthesis of circulant topologies and its proposed solution. In Section 3,
a detailed description of the developed software and its features is presented. Section 4
contains the evaluation of the obtained results, a comparison with concurrent solutions
from other researchers, and the obtained dataset description. Section 5 consists of some
examples of use cases for the developed dataset and software showing how it speeds up
the search of new circulant topologies, how it can be used for routing algorithms analysis,
and some formulas by regression analysis on the dataset obtained are also presented. The
Section 6 finalizes this paper.

2. The Problem of the Synthesis of Circulant Topologies

The main problem that arises in the synthesis of optimal circulant topologies (as well
as for irregular topologies [27,28]) is the search for the optimal topology configuration
in accordance with the criteria for achieving a minimum diameter and MPL. The basic
procedure, which guarantees the check of all possible variants of topologies, is an exhaustive
search method. The basic ideas of the search procedure were first described in [20], but
during development, they were deeply reworked and improved. The main steps of the
proposed method are the steps of the search procedure implemented in the proposed
Greedy Circulants Generator (GCG) software; they are supplemented by other methods
and algorithmic solutions to speed up the search. Thus, at the macro level, the work of
GCG consists of the following steps:

1. Iterations in which the topologies, being formed and denoted by indices, are per-
formed (Figure 2).

2. For every received signature of the topology at every step of the iteration, the analysis
of the obtained topology is carried out (Figure 3).

3. The parameters of the topology are calculated (Figure 4).
4. The topology is evaluated according to the introduced optimality criterion defined by

objective function (Figure 4).

The main search procedure is improved by using the features of circulant topologies
discussed below. Circulant graphs have a number of unique features, which make it
possible to significantly improve and speed up the procedure of finding optimal topologies.
The applied acceleration methods could be divided into several categories:

• Reducing the number of variants for enumerating possible parametric descriptions
of topologies.

• Improving the speed of calculation of the diameter and MPL between the nodes.
• Reducing the forming time and memory cost of adjacency matrices, or abandoning

them as a whole.



Big Data Cogn. Comput. 2023, 7, 80 4 of 14Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 2. Generalized scheme of software for the synthesis of circulant topologies. 

 
Figure 3. General scheme of software execution in single thread. 

Figure 2. Generalized scheme of software for the synthesis of circulant topologies.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 2. Generalized scheme of software for the synthesis of circulant topologies. 

 
Figure 3. General scheme of software execution in single thread. Figure 3. General scheme of software execution in single thread.



Big Data Cogn. Comput. 2023, 7, 80 5 of 14Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 4. Description of software in multithread mode. 

The main search procedure is improved by using the features of circulant topologies 
discussed below. Circulant graphs have a number of unique features, which make it pos-
sible to significantly improve and speed up the procedure of finding optimal topologies. 
The applied acceleration methods could be divided into several categories: 
• Reducing the number of variants for enumerating possible parametric descriptions 

of topologies. 
• Improving the speed of calculation of the diameter and MPL between the nodes. 
• Reducing the forming time and memory cost of adjacency matrices, or abandoning 

them as a whole. 

Considering Features of Circulant Graphs to Reduce the Number of Variants in an Exhaustive 
Search Algorithm 

Let us consider the methods of search procedure acceleration applied. Denote the 
forming topologies as (1 ≤ 𝑠 < 𝑁) ∈ 𝑆 [29], where 𝑁—number of nodes, 𝑘—number of 
generators, 𝑖  =  1, … , 𝑘. If the value of the generator is greater than 𝑁, then the obtained 
parametric descriptions of the topology will be isomorphic to the descriptions C(𝑁; s1%N,s2%N,…,sk%N), where 𝑠 ≥ 𝑁. By discarding isomorphic graph descriptions, (𝑁 −1) · 𝑘 variants of possible topologies remain. 

Another feature of circulant graphs is that circulant topologies with different signa-
tures (for example, C(15;  3, 2) and C(15;  2, 3)) are the same [19]. To eliminate such iso-
morphism, condition  1 ≤ 𝑠 <  𝑠 <. . . <  𝑠 < 𝑁  is used (values of generators are ar-
ranged in ascending order; moreover, values of generators cannot be the same), which 
leads to a reduction in unnecessary repeated checks of topologies. 

Figure 4. Description of software in multithread mode.

Considering Features of Circulant Graphs to Reduce the Number of Variants in an Exhaustive
Search Algorithm

Let us consider the methods of search procedure acceleration applied. Denote the
forming topologies as (1 ≤ si < N) ∈ S [29], where N—number of nodes, k—number
of generators, i = 1, . . . , k. If the value of the generator is greater than N, then the ob-
tained parametric descriptions of the topology will be isomorphic to the descriptions
C(N; s1%N, s2%N, . . . , sk%N), where si ≥ N. By discarding isomorphic graph descrip-
tions, (N − 1)·k variants of possible topologies remain.

Another feature of circulant graphs is that circulant topologies with different sig-
natures (for example, C(15; 3, 2) and C(15; 2, 3)) are the same [19]. To eliminate such
isomorphism, condition 1 ≤ s1 < s2 < . . . < sk < N is used (values of generators are
arranged in ascending order; moreover, values of generators cannot be the same), which
leads to a reduction in unnecessary repeated checks of topologies.

Another way towards reducing the number of searches is to use an isomorphism of
circulant topologies of type C(N; s1, . . . , si, . . . , sk) and C(N; s1, . . . , N − si, . . . , sk) [19].
This feature allows us to bound iterating procedure over the values of generators
sk < N/2 + N%2 (Figure 4).

Using the features of circulant topologies, it is possible to significantly reduce the
number of iterations in an exhaustive search algorithm; the number of iterations in general
≈ (N/4 + 1/2)k, which leads to a reduction in the time for topologies of up to 10,000 times.



Big Data Cogn. Comput. 2023, 7, 80 6 of 14

For most regular topologies, such as mesh, hypercube [30], and torus, the diameter
and MPL can be calculated using formulas which depend on the number of nodes [3].
Circulant topologies are defined by graph order and generators; therefore, there are no
universal formulas for the direct calculation of the diameter and MPL. In most cases, we can
only estimate the maximum lower and upper boundaries of these parameters [19], which
do not allow calculating metric data for specific instances of graphs. For only some classes
of circulants, such as two-dimensional circulants, there are some formulas for finding the
optimal topologies [10,21]. In a general case, the only way to find the diameter and MPL for
the most generated topologies is the same as for those usual irregular topologies (Figure 4).
For some families of circulants, there are fast algorithms for calculating some characteristics
(for example, for ring two-dimensional circulants [16–18,31]) which can be used in the
developed software. But for a general case, one can use Dijkstra’s algorithm [32], the A*
algorithm [33], and others. It is enough to find all the paths from only one random vertex
to other vertices because circulant topologies can be described as circulant matrices of the
Toeplitz matrix subspecies [34]. The diameter of the graph can be found as the largest path
between the vertices, and the MPL as the arithmetic average of all paths [35].

3. Software Description

The developed software (placed along with the dataset [36]) finds the features of
circulant topologies, such as diameter, MPL, and number of connections, and (on the
ground of the data obtained) selects the optimal features by the criterion of minimizing
the diameter and MPL. The software solution is a console application with the ability to
configure input parameters by changing the configuration XML file.

The result is saved as files with parametric descriptions of the optimal topologies in
the .csv and .bin formats, which contain extended information on the synthesis results
(including the total calculation time).

3.1. Software Architecture

The software solution is implemented in the C# programming language and includes
several components:

• Library for the synthesis of optimal circulant topologies.
• Console application for interacting with the library.
• Console application for evaluating synthesis time and validating results.

The main component is a library for the synthesis of optimal circulant topologies. It
contains the basic functionality associated with the synthesis of circulant topologies. The
library is easily portable to other projects including those developed in other languages.
The second most important component is the console application for interacting with
the library, which is responsible for calling the methods contained in it. The application
for evaluating the synthesis and validation time of the results is designed to analyze the
limit of the number of nodes for a single search configuration that will be executed in a
reasonable time.

3.2. Description of the Features of the Software

The software interface is implemented as a console application. The input param-
eters, which the program should accept, are set in two files: a file with the extension
.config and a separate XML file. The .config file is the manifest of the application and it
is essentially also an XML file. It is supplemented by two parameters in the appSettings
section: FirstTaskPath—path to the first file with the “task”, and LastStatePath—path to the
file saving the current progress in the synthesis.

The second file (directly the “task” for synthesis) contains a description of the
following parameters:

• nodesDescription describes the number of nodes within which the topologies will be
synthesized; this parameter can be specified as a range or can be listed with a comma.



Big Data Cogn. Comput. 2023, 7, 80 7 of 14

• dimension sets the number of generators which will take part in the compilation of a
parametric description of circulant topologies and is used for synthesis.

• threadCount is responsible for the number of threads allocated for synthesis; the appli-
cation dynamically monitors the commands passed to it by the user or the program
that launched the application (for example, the application can be paused or stopped);
so, at least two threads are allocated for working: one for the commands, the other for
synthesis. Other parameters which are responsible for the format of the output data
include: logging of the synthesis process, saving intermediate results of the synthesis
with signatures of non-optimal topologies, user identifier, and storing the information.

The application has a mechanism for maintaining progress. When the stop command
is called, an XML file will automatically be created; the path to it is specified in the variable
LastStatePath. This file has the following structure:

• NodesDescription is responsible for checking the progress save file; if, in the current task,
the value of the nodesDescription parameter from the first file (its structure is described
above) completely coincides with NodesDescription, the synthesis progress will be
restored from the breakpoint; otherwise, this file will be ignored and overwritten
when the application continues to work.

• NotCheckedConfig contains the vector of generators of the circulant topology from
which it will be necessary to begin the search.

• GoodConfigs are the best topologies found at the time when the program has been
stopped; with the continuation of the work, these topologies will be considered optimal
by default.

• Dimension is determined by a given number of generators of the circulant topology.
• Diameter is the minimum diameter of the topology at the time when the program has

been stopped.
• AverageDiameter is the minimum MPL at the time when the program has stopped working.
• CurrentNodesCount is the current number of nodes from which the task is to be continued.

4. Illustrative Examples

Currently, the developed software uses the enumeration of all topologies by
their generators.

In this algorithm, the input parameter nodesCount is used to indicate the number of
nodes; config is an array of generators in which one generator si is incremented, and the
other generators (to the right of it) take the values si + j− i, where i < j; i, j—current
positions of generators in the parametric description.

The next step in the synthesis algorithm is to find the minimum distances between
one node and the rest of them. There are no accelerated algorithms for finding the diameter
and MPL (as, for example, the one described in [16–18,31]), which could be applied to
any circulant topologies. When the initial task starts, it is possible to choose one of sev-
eral algorithms in the general case (Dijkstra’s algorithm [32] or one of the modifications
based on it).

Dijkstra’s algorithm allows finding the exact distance between one node and the
others, but with a large number of nodes, the size of the RAM used to store the adjacency
matrix increases significantly. Partially, memory costs can be reduced by storing adjacency
matrices called sparse [37], which helps in the case of topologies with a large number of
nodes, including irregular ones. For circulant topologies, due to their features [19,38], a
more effective solution is to completely get rid of the use of adjacency matrices as such.

The generators variable is an array of generators of the topology, d—array of minimum
distances between the source node and the node with a given index.

With a small number of nodes and generators, Dijkstra’s algorithm shows better results
in the synthesis time compared to the modified algorithm. With a large number of nodes
(from 5000 upwards) in the circulant topology, the achieved synthesis rate is noticeably
lower than in the modified algorithm (Figures 5 and 6).



Big Data Cogn. Comput. 2023, 7, 80 8 of 14

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 15 
 

 

• AverageDiameter is the minimum MPL at the time when the program has stopped 
working. 

• CurrentNodesCount is the current number of nodes from which the task is to be con-
tinued. 

4. Illustrative Examples 
Currently, the developed software uses the enumeration of all topologies by their 

generators. 
In this algorithm, the input parameter nodesCount is used to indicate the number of 

nodes; config is an array of generators in which one generator 𝑠  is incremented, and the 
other generators (to the right of it) take the values 𝑠  +  𝑗 −  𝑖, where 𝑖 <  𝑗;  𝑖, 𝑗—current 
positions of generators in the parametric description. 

The next step in the synthesis algorithm is to find the minimum distances between 
one node and the rest of them. There are no accelerated algorithms for finding the diam-
eter and MPL (as, for example, the one described in [16–18,31]), which could be applied 
to any circulant topologies. When the initial task starts, it is possible to choose one of sev-
eral algorithms in the general case (Dijkstra’s algorithm [32] or one of the modifications 
based on it). 

Dijkstra’s algorithm allows finding the exact distance between one node and the oth-
ers, but with a large number of nodes, the size of the RAM used to store the adjacency 
matrix increases significantly. Partially, memory costs can be reduced by storing adja-
cency matrices called sparse [37], which helps in the case of topologies with a large num-
ber of nodes, including irregular ones. For circulant topologies, due to their features 
[19,38], a more effective solution is to completely get rid of the use of adjacency matrices 
as such. 

The generators variable is an array of generators of the topology, d—array of mini-
mum distances between the source node and the node with a given index. 

With a small number of nodes and generators, Dijkstra’s algorithm shows better re-
sults in the synthesis time compared to the modified algorithm. With a large number of 
nodes (from 5000 upwards) in the circulant topology, the achieved synthesis rate is no-
ticeably lower than in the modified algorithm (Figures 5 and 6). 

 
Figure 5. Diagram of speed of searching for the diameter and MPL for one topology when using the 
original Dijkstra’s algorithm and GCG. 

Figure 5. Diagram of speed of searching for the diameter and MPL for one topology when using the
original Dijkstra’s algorithm and GCG.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 6. Diagram of memory consumption when using the original Dijkstra’s algorithm and 
GCG. 

4.1. Evaluation of the Results 
To calculate the consumed RAM and the time it takes to find the diameter and MPL 

for one topology, a single-threaded mode was used. To reduce the error in the results 
obtained, the resulting arithmetic mean values are given. For each parametric description, 
a separate process was launched to correctly evaluate the consumed memory with a 
forced call to the garbage collector. The process was launched at the following configura-
tion: 6-core Intel i7-8750H processor with a set frequency of 3.8 GHz with disabled hyper-
threading (HT) and 16 GB of RAM. To estimate the approximate synthesis time of the 
optimal circulant topology, the number of iterations was obtained using the algorithm 
and the arithmetic mean of the time of searching for the diameter and MPL for one topol-
ogy. Table 2 shows the estimated synthesis time for two algorithms: the unmodified Dijks-
tra’s algorithm [32] and the optimized algorithm for circulant topologies. 

Table 2. Estimated time of synthesis of three-dimensional circulant topologies. 

Number of Nodes Number of Iterations Estimated Time 
(Dijkstra’s Algorithm) 

Estimated Time (GCG) Acceleration 

100 1224 2 ± 0.5 s 2 ± 0.5 s 100% 
500 31,124 1 min 19 ± 10 s 1 min 8 ± 15 s 116% 
750 70,124 3 min 45 ± 30 s 2 min 49 ± 20 s 133% 

1000 124,749 8 min 39 ± 60 s 5 min 51 ± 30 s 148% 
2500 780,624 3 h 15 ± 10 min 1 h 16 ± 20 min 203% 
5000 3,123,749 56 ± 3 h 18 ± 2 h 312% 

10,000 12,497,499 39 ± 3 days 11 ± 1 days 358% 
20,000 49,994,999 1 year 7 ± 1 month 6 ± 1 month 340% 
50,000 312,487,499 65 ± 3 years 18 ± 1 year 345% 

The new GCG algorithm allows for an acceleration of more than three times for 5000 
nodes. For more nodes, the search time is already unsatisfactory. To speed up the search, 
multithreading and cluster systems may be used so that the synthesis of circulant topolo-
gies could be parallelized. 

Compared to the single-threaded mode of operation, the increase in productivity and 
the consumption of RAM are directly proportional to the number of logical cores that the 

Figure 6. Diagram of memory consumption when using the original Dijkstra’s algorithm and GCG.

4.1. Evaluation of the Results

To calculate the consumed RAM and the time it takes to find the diameter and MPL for
one topology, a single-threaded mode was used. To reduce the error in the results obtained,
the resulting arithmetic mean values are given. For each parametric description, a separate
process was launched to correctly evaluate the consumed memory with a forced call to the
garbage collector. The process was launched at the following configuration: 6-core Intel
i7-8750H processor with a set frequency of 3.8 GHz with disabled hyper-threading (HT)
and 16 GB of RAM. To estimate the approximate synthesis time of the optimal circulant
topology, the number of iterations was obtained using the algorithm and the arithmetic
mean of the time of searching for the diameter and MPL for one topology. Table 2 shows
the estimated synthesis time for two algorithms: the unmodified Dijkstra’s algorithm [32]
and the optimized algorithm for circulant topologies.



Big Data Cogn. Comput. 2023, 7, 80 9 of 14

Table 2. Estimated time of synthesis of three-dimensional circulant topologies.

Number of Nodes Number of Iterations Estimated Time
(Dijkstra’s Algorithm)

Estimated Time
(GCG) Acceleration

100 1224 2 ± 0.5 s 2 ± 0.5 s 100%
500 31,124 1 min 19 ± 10 s 1 min 8 ± 15 s 116%
750 70,124 3 min 45 ± 30 s 2 min 49 ± 20 s 133%
1000 124,749 8 min 39 ± 60 s 5 min 51 ± 30 s 148%
2500 780,624 3 h 15 ± 10 min 1 h 16 ± 20 min 203%
5000 3,123,749 56 ± 3 h 18 ± 2 h 312%

10,000 12,497,499 39 ± 3 days 11 ± 1 days 358%
20,000 49,994,999 1 year 7 ± 1 month 6 ± 1 month 340%
50,000 312,487,499 65 ± 3 years 18 ± 1 year 345%

The new GCG algorithm allows for an acceleration of more than three times for
5000 nodes. For more nodes, the search time is already unsatisfactory. To speed up the
search, multithreading and cluster systems may be used so that the synthesis of circulant
topologies could be parallelized.

Compared to the single-threaded mode of operation, the increase in productivity and
the consumption of RAM are directly proportional to the number of logical cores that
the system employs. It should be mentioned that the configuration of the system and
its multiprocessing does not practically affect performance, and all stages are performed
almost independently of each other, since the parallelization of the flows associated with
the generation, calculation, and comparison of the results was performed.

4.2. Comparison with Other Solutions

The effectiveness of the proposed software solution can be demonstrated in com-
parison with the developments of other authors. For example, in [5,6], the results of the
study of circulant topologies are presented for their application in the construction of
high-performance clusters. The key point is that to search for circulants, the authors used
their own algorithm based on a modified exhaustive search and ran it on a powerful
SeaWulf supercomputer at Stony Brook University. At the same time, the circulant graphs
considered in the articles do not exceed in their characteristic graphs, which can be obtained
using GCG on just one computer.

4.3. Validation of the Topologies Generated

The correctness of the work of the developed software was validated by checking the
characteristics of the found optimal circulants for compliance with the estimates of the
maximum lower and upper boundaries of the circulant topologies diameter and MPL [19].

The results of the software proposed in this work coincide with the signatures of
circulants found by other authors. In the Acknowledgments section of work [5], researchers
thanked the author of the present work for the comments and recommendations made to
them through e-mail correspondence and while discussing the preprint of their work.

The topologies generated by the developed software and their characteristics were
used to test the calculations in preprint [18] and the formulas for estimating the diameter of
Cn(1, s) graphs presented in the preprint [31]. Due to this, an inaccuracy in the calculations
was found.

4.4. Dataset

Using the developed software, a dataset [36] of circulant signatures was created for
k = 2 . . . 10. The dataset is divided into sections for each k. Each section contains catalogs
with optimal circulants and ring optimal circulants. Entries in the dataset are .csv files
containing variants of circulant signatures for a given N, which varies from 8 to 1000. The
dataset is constantly replenished and updated due to the continuous operation of the GCG
software on a separate high-performance server.



Big Data Cogn. Comput. 2023, 7, 80 10 of 14

The resulting signatures of optimal circulants can be examined to identify regular
dependencies between graph characteristics (diameter, MPL, generators values) and their
node count, number of generators, etc. Also, the dataset can be used to train machine
learning models [26] to predict the characteristics of graphs. Presenting the generated
topologies in a dataset format opens up tremendous opportunities for studying optimal
circulant graphs, as well as for searching for new families and formulas for estimating
their characteristics. The search for new families of circulant graphs is an urgent and open
problem. Until now, such datasets did not exist; there were analytical descriptions for a
number of families of graphs only [19,24,25,29].

5. Use Case
5.1. New Topologies Search Speedup

The developed software and algorithm make it possible to accelerate the synthesis of
optimal topologies for circulant topologies in comparison with the usual exhaustive search
by a thousand times. The obtained optimal circulant topologies can be used to design
NoCs or cluster systems with the best structural characteristics and to solve one of the
fundamental scientific problems in the field of computer systems: the construction of com-
munication structures and algorithms for exchanging data in networks on next-generation
chips. Thus, this solution is a powerful tool for developers of new topologies and methods
of communication in multicore systems; it can also be used by mathematicians to study
the features of various families of circulant graphs and to search for new families. Despite
the fact that the GCG algorithm has a lower speed compared with the implementation
based on genetic algorithms [39], it guarantees that all signatures of optimal circulant
graphs exist for given conditions. Thus, the proposed software is excellent for verifying the
results of other algorithms based on bio-inspired optimization algorithms and analytical
and hybrid methods.

This work is intended for a narrow range of tasks but, nevertheless, the project is open;
it is constantly evolving both towards improving the speed of the algorithm, the quality
of the source code, and adding the ability to search for regular graphs with topologies of
other types.

5.2. The Analysis of Routing Algorithms for Circulant Topologies

An important task is not only the generation of new topologies, but also the develop-
ment of routing algorithms in them. There are many approaches to routing in circulants,
for example, those described in [29,40–44]. However, they are often developed for the
general case of routing and do not take into account deadlocks, livelocks, starvation, and
faults [45,46]. The developed software allows generating complete maps of routes possible
for specific circulant signatures, as well as implementing different routing strategies that
can be used to calculate target metrics when searching for optimal graphs. i.e., it is possible
to search for circulant topologies that are optimal for a particular routing algorithm.

In work [47], a routing method well suited for use in circulants is proposed: the
centers of the hierarchy around which the distance means the distance along a certain
virtual coordinate are preliminarily marked in the graph. This allows fault-tolerant routing
based on performing calculations on coordinate vectors. It was also found experimentally
that there were circulant signatures in which the neighborhoods of the centers of the
hierarchy were completely filled with nodes. Such circulants are optimal for use with the
routing algorithm proposed. The developed software allows searching for such topologies.

5.3. Regression Analysis

The signatures of circulants from the generated dataset were subjected to regression
analysis, which made it possible to obtain approximation formulas using linear regres-
sion [48]; thanks to the latter, it is possible to predict the parameters of circulants depending
on their characteristics. So, for example, Figures 7–9 show graphs for the obtained formulas



Big Data Cogn. Comput. 2023, 7, 80 11 of 14

for calculating MPL from N for k = 3, 4, 5 (the most promising circulant graphs dimensions
for NoCs design), respectively:

MPLcirc (N, k = 3) = (0.313·N − 2.355)
1
3 , MAE = 0.02, PPMCC = 1.00 (1)

MPLcirc (N, k = 4) = (0.505·N − 8.023)
1
4 , MAE = 0.05, PPMCC = 0.98 (2)

MPLcirc (N, k = 5) = (0.955·N − 33.896)
1
5 , MAE = 0.04, PPMCC = 0.99 (3)

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 7. Dependence of MPL on 𝑁 for 𝑘 = 3. 

 
Figure 8. Dependence of MPL on 𝑁 for 𝑘 = 4. 

 
Figure 9. Dependence of MPL on 𝑁 for 𝑘 = 5. 

The calculated values of the mean absolute error (MAE; no more than 0.05) and Pear-
son product-moment correlation coefficient (PPMCC; no less than 0.98) allow us to state 
that even such simple formulas accurately describe the dependence of MPL on 𝑁 and can 
be used in practice. Further analysis of the dataset using more advanced regression 

Figure 7. Dependence of MPL on N for k = 3.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 7. Dependence of MPL on 𝑁 for 𝑘 = 3. 

 
Figure 8. Dependence of MPL on 𝑁 for 𝑘 = 4. 

 
Figure 9. Dependence of MPL on 𝑁 for 𝑘 = 5. 

The calculated values of the mean absolute error (MAE; no more than 0.05) and Pear-
son product-moment correlation coefficient (PPMCC; no less than 0.98) allow us to state 
that even such simple formulas accurately describe the dependence of MPL on 𝑁 and can 
be used in practice. Further analysis of the dataset using more advanced regression 

Figure 8. Dependence of MPL on N for k = 4.



Big Data Cogn. Comput. 2023, 7, 80 12 of 14

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 7. Dependence of MPL on 𝑁 for 𝑘 = 3. 

 
Figure 8. Dependence of MPL on 𝑁 for 𝑘 = 4. 

 
Figure 9. Dependence of MPL on 𝑁 for 𝑘 = 5. 

The calculated values of the mean absolute error (MAE; no more than 0.05) and Pear-
son product-moment correlation coefficient (PPMCC; no less than 0.98) allow us to state 
that even such simple formulas accurately describe the dependence of MPL on 𝑁 and can 
be used in practice. Further analysis of the dataset using more advanced regression 

Figure 9. Dependence of MPL on N for k = 5.

The calculated values of the mean absolute error (MAE; no more than 0.05) and
Pearson product-moment correlation coefficient (PPMCC; no less than 0.98) allow us to
state that even such simple formulas accurately describe the dependence of MPL on N and
can be used in practice. Further analysis of the dataset using more advanced regression
analysis methods [49] and machine learning methods [26] will provide more accurate
estimates for various parameters of optimal circulant graphs.

6. Conclusions

Thus, we presented a software solution for the synthesis of circulant topologies with
any number of generators and the order of the graph reaching thousands of nodes. The
existing algorithm for the synthesis of circulant topologies was improved so that the search
for a topology with a minimum diameter and an MPL between nodes could be sped up. The
software supports multi-threaded calculations and makes it possible to synthesize optimal
circulant topologies in an acceptable time, as well as to collect statistics on other circulant
topologies. The existing application logic was reworked and the main part (responsible for
the synthesis of circulant topologies) was moved to a separate library. The infrastructure for
expanding the software solution through the use of parallel computing was implemented,
which makes it possible to further accelerate the application and, accordingly, to increase
the order of graphs that can be synthesized using this software development. Compared
with the basic Dijkstra’s algorithm, the computation speed was increased by approximately
35,000 times and 3.5 times compared with the modified version, and a linear dependence of
the consumed RAM on the number of nodes per thread (unlike the quadratic dependence
in the basic version of Dijkstra’s algorithm) was achieved.

Using a large dataset of optimal circulant topologies opens up good opportunities for
further research on these topologies, as well as for the identification of the dependencies
between their parameters and characteristics and for developing new routing algorithms for
them. The obtained optimal circulant topologies can be used to check the correctness of the
generated topologies and also methods for the accelerated calculation of the characteristics
of circulant topologies obtained by other authors.

Funding: The results of this research were obtained within the RSF grant (project No. 22-29-00979).

Data Availability Statement: The software and dataset of this research are available from [36] and
https://github.com/RomeoMe5/circulantGraphs (accessed on 12 Aril 2023).

https://github.com/RomeoMe5/circulantGraphs


Big Data Cogn. Comput. 2023, 7, 80 13 of 14

Acknowledgments: The author acknowledges Glukhikh A.Y. and Kotov F.I. for doing some calcula-
tions and the support provided.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Lu, R. Fast Methods for Designing Circulant Network Topology with High Connectivity and Survivability. J. Cloud Comput.

2016, 5, 5. [CrossRef]
2. Benmessaoud Gabis, A.; Koudil, M. NoC Routing Protocols—Objective-Based Classification. J. Syst. Archit. 2016, 66–67, 14–32.

[CrossRef]
3. Baby, N.; Mathew, S.; Abraham, S.; Ravindranath, S.; Sanju, V. Network on Chip Simulator: Design, Implementation and

Comparison of Mesh, Torus and RiCoBiT Topologies. In Proceedings of the 2016 2nd International Conference on Next Generation
Computing Technologies, NGCT 2016, Dehradun, India, 14–16 October 2016; pp. 46–50. [CrossRef]

4. Lau, F.C.M.; Chen, G. Optimal Layouts of Midimew Networks. IEEE Trans. Parallel Distrib. Syst. 1996, 7, 954–961. [CrossRef]
5. Huang, X.; Ramos, A.F.; Deng, Y. Optimal circulant graphs as low-latency network topologies. J. Supercomput. 2022,

78, 13491–13510. [CrossRef]
6. Deng, Y.; Guo, M.; Ramos, A.F.; Huang, X.; Xu, Z.; Liu, W. Optimal low-latency network topologies for cluster performance

enhancement. J. Supercomput. 2020, 76, 9558–9584. [CrossRef]
7. Puente, V.; Izu, C.; Beivide, R.; Gregorio, J.A.; Vallejo, F.; Prellezo, J.M. The Adaptive Bubble Router. J. Parallel Distrib. Comput.

2001, 61, 1180–1208. [CrossRef]
8. Yang, Y.; Funahashi, A.; Jouraku, A.; Nishi, H.; Amano, H.; Sueyoshi, T. Recursive Diagonal Torus: An Interconnection Network

for Massively Parallel Computers. IEEE Trans. Parallel Distrib. Syst. 2001, 12, 701–715. [CrossRef]
9. Beivide, R.; Martínez, C.; Izu, C.; Gutierrez, J.; Gregorio, J.Á.; Miguel-Alonso, J. Chordal Topologies for Interconnection Networks.

In High Performance Computing, Proceedings of the 5th International Symposium, ISHPC 2003, Tokyo, Japan, 20–22 October 2003;
Springer: Berlin, Germany, 2003; Volume 2858. [CrossRef]

10. Atajan, T.; Otsuka, N.; Yong, X. Counting the Number of Spanning Trees in a Class of Double Fixed-Step Loop Networks. Appl.
Math. Lett. 2010, 23, 291–298. [CrossRef]

11. Liestman, A.L.; Opatrny, J.; Zaragozá, M. Network Properties of Double and Triple Fixed Step Graphs. Int. J. Found. Comput. Sci.
1998, 09, 57–76. [CrossRef]

12. Attrah, N.H.; Abdul-Majeed, G.H.; Abdullah, M.Z. Implementation of Chordal Ring Network Topology to Enhance the Perfor-
mance of Wireless Broadband Network. EUREKA. Phys. Eng. 2021, 2021, 11–18. [CrossRef]

13. Bulut, A.; Hacioglu, I. Asymptotic Energy of Connected Cubic Circulant Graphs. AKCE Int. J. Graphs Comb. 2021, 18, 25–28.
[CrossRef]

14. Azeem, M.; Imran, M.; Nadeem, M. Sharp Bounds on Partition Dimension of Hexagonal Möbius Ladder. J. King Saud Univ.—Sci.
2022, 34, 101779. [CrossRef]

15. Newman, M.E.J. The Structure and Function of Complex Networks. SIAM Rev. 2003, 45, 167–256. [CrossRef]
16. Chen, B.; Xiao, W.; Parhami, B. Diameter Formulas for a Class of Undirected Double-Loop Networks. J. Interconnect. Networks

2005, 6, 1–15. [CrossRef]
17. Zerovnik, J.; Pisanski, T. Computing the Diameter in Multiple-Loop Networks. J. Algorithms 1993, 14, 226–243. [CrossRef]
18. Loudiki, L.; Kchikech, M.; Essaky, E.H. Diameter Formulas for a Class of Undirected Multi-Loop Networks. arXiv 2022. [CrossRef]
19. Monakhova, E.A. A Survey on Undirected Circulant Graphs. Discret. Math. Algorithms Appl. 2012, 4, 1250002. [CrossRef]
20. Romanov, A.Y.; Romanova, I.I.; Glukhikh, A.Y. Development of a Universal Adaptive Fast Algorithm for the Synthesis of

Circulant Topologies for Networks-on-Chip Implementations. In Proceedings of the 2018 IEEE 38th International Conference on
Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 24–26 April 2018; IEEE: New York, NY, USA, 2018; pp. 110–115.
[CrossRef]

21. Herrada, E.; Balcazar, J.L.; Arruabarrena, A. Optimal distance networks of low degree for parallel computers. IEEE Trans. Comput.
1991, 40, 1109–1124. [CrossRef]

22. Park, J.-H.; Chwa, K.-Y. Recursive Circulant: A New Topology for Multicomputer Networks. In Proceedings of the Inter-
national Symposium on Parallel Architectures, Algorithms and Networks (ISPAN), Kanazawa, Japan, 14–16 December 1994;
IEEE Computer Society Press: New York, NY, USA, 1994; pp. 73–80. [CrossRef]

23. Cheng, D.-W.; Yao, K.-H.; Hsieh, S.-Y. Constructing Independent Spanning Trees on Generalized Recursive Circulant Graphs.
IEEE Access 2021, 9, 74028–74037. [CrossRef]

24. Stojmenovic, I. Multiplicative circulant networks. Topological properties and communication algorithms. Discr. Appl. Math. 1997,
77, 281–305. [CrossRef]

25. Lewis, R.R. Analysis and Construction of Extremal Circulant and Other Abelian Cayley Graphs. The Open University:
Hong Kong, China, 2021. [CrossRef]

26. Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.; Catasta, M.; Leskovec, J. Open Graph Benchmark: Datasets for Machine
Learning on Graphs. Adv. Neural Inf. Process Syst. 2020, 33, 22118–22133. [CrossRef]

https://doi.org/10.1186/s13677-016-0056-x
https://doi.org/10.1016/j.sysarc.2016.04.011
https://doi.org/10.1109/NGCT.2016.7877388
https://doi.org/10.1109/71.536939
https://doi.org/10.1007/s11227-022-04396-5
https://doi.org/10.1007/s11227-020-03216-y
https://doi.org/10.1006/jpdc.2001.1746
https://doi.org/10.1109/71.940745
https://doi.org/10.1007/978-3-540-39707-6_33
https://doi.org/10.1016/j.aml.2009.04.006
https://doi.org/10.1142/S0129054198000076
https://doi.org/10.21303/2461-4262.2021.001734
https://doi.org/10.1080/09728600.2021.1894907
https://doi.org/10.1016/j.jksus.2021.101779
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1142/S0219265905001289
https://doi.org/10.1006/jagm.1993.1011
https://doi.org/10.48550/arXiv.2209.13018
https://doi.org/10.1142/S1793830912500024
https://doi.org/10.1109/ELNANO.2018.8477462
https://doi.org/10.1109/12.93744
https://doi.org/10.1109/ISPAN.1994.367162
https://doi.org/10.1109/ACCESS.2021.3080315
https://doi.org/10.1016/S0166-218X(96)00138-2
https://doi.org/10.21954/OU.RO.00013612
https://doi.org/10.48550/arXiv.2005.00687


Big Data Cogn. Comput. 2023, 7, 80 14 of 14

27. Manevich, R.; Polishuk, L.; Cidon, I.; Kolodny, A. Designing Single-Cycle Long Links in Hierarchical NoCs. Microprocess.
Microsyst. 2014, 38, 814–825. [CrossRef]

28. Ogras, U.Y.; Marculescu, R.; Lee, H.G.; Chang, N. Communication Architecture Optimization: Making the Shortest Path Shorter in
Regular Networks-on-Chip. In Proceedings of the Design, Automation and Test in Europe, Munich, Germany, 6–10 March 2006.
[CrossRef]

29. Elspas, B.; Turner, J. Graphs with Circulant Adjacency Matrices. J. Comb. Theory 1970, 9, 3. [CrossRef]
30. Saldaña, M.; Shannon, L.; Chow, P. The Routability of Multiprocessor Network Topologies in FPGAs. In Proceedings of the

Internation Symposium on Field Programmable Gate Arrays—FPGA’06, Monterey, CA, USA, 22–24 February 2006; ACM Press:
New York, NY, USA, 2006; p. 232. [CrossRef]

31. Loudiki, L.; Kchikech, M.; Essaky, E.H. A New Approach for Computing the Distance and the Diameter in Circulant Graphs.
arXiv 2022. [CrossRef]

32. Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
33. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
34. Abbott, S.; Bottcher, A.; Grudsky, S.M. Toeplitz Matrices, Asymptotic Linear Algebra and Functional Analysis. Math. Gaz. 2000,

84, 572. [CrossRef]
35. Boesch, F.; Tindell, R. Circulants and Their Connectivities. J. Graph Theory 1984, 8, 487–499. [CrossRef]
36. Optimal Circulant Topologies Dataset. Available online: https://doi.org/10.5281/zenodo.7265637 (accessed on 3 March 2023).
37. Tamimi, A.A. Comparison Studies for Different Shortest Path Algorithms. Int. J. Comput. Technol. 2015, 14, 5979–5986. [CrossRef]
38. Romanov, A.Y. Development of Routing Algorithms in Networks-on-Chip Based on Ring Circulant Topologies. Heliyon 2019,

5, e01516. [CrossRef]
39. Monakhova, E.A.; Monakhov, O.G.; Mukhoed, E.V. Genetic Construction of Optimal Circulant Network Designs. In Proceedings

of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer: Berlin, Germany, 1999; Volume 1596, pp. 215–233. [CrossRef]

40. Robic, B. Optimal Routing in 2-Jump Circulant Networks; Univ. Cambridge: Cambridge, UK, 1996. [CrossRef]
41. Chen, B.-X.; Meng, J.-X.; Xiao, W.-J. A constant time optimal routing algorithm for undirected double-loop networks. Lect. Notes

Comp. Sci. 2005, 3794, 308–316. [CrossRef]
42. Gomez, D.; Gutierrez, J.; Ibeas, A.; Martinez, C.; Beivide, R. On Finding a Shortest Path in Circulant Graphs with Two Jumps. Lect.

Notes Comp. Sci. 2005, 3595, 777–786. [CrossRef]
43. Dobravec, T.; Zerovnik, J.; Robic, B. An Optimal Message Routing Algorithm for Circulant Networks. J. Syst. Arch. 2006,

52, 298–306. [CrossRef]
44. Perez-Roses, H.; Bras-Amoros, M.; Serradilla-Merinero, J.M. Greedy Routing in Circulant Networks. Graphs Comb. 2022, 8, 86.

[CrossRef]
45. Das, S.; Karfa, S.; Biswas, S. Formal Modeling of Network-on-Chip Using CFSM and its Application in Detecting Deadlock. IEEE

Trans. Very Large Scale Integr. Syst. 2020, 28, 1016–1029. [CrossRef]
46. Nadeem, M.; Imran, M.; Siddiqui, H.M.; Azeem, M. Fault Tolerance Designs of Interconnection Networks. Peer-to-Peer Netw. Appl.

2023, 1, 1–10. [CrossRef]
47. Romanov, A.; Myachin, N.; Sukhov, A. Fault-Tolerant Routing in Networks-on-Chip Using Self-Organizing Routing Algorithms.

In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada,
13–16 October 2021; pp. 1–6. [CrossRef]

48. Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 6th ed.; John Wiley & Sons, Inc.: Hoboken,
NJ, USA, 2021.

49. Freedman, D. Statistical Models: Theory and Practice, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.micpro.2014.05.005
https://doi.org/10.1109/DATE.2006.244068
https://doi.org/10.1016/S0021-9800(70)80068-0
https://doi.org/10.1145/1117201.1117253
https://doi.org/10.48550/arXiv.2210.11116
https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.2307/3620823
https://doi.org/10.1002/jgt.3190080406
https://doi.org/10.5281/zenodo.7265637
https://doi.org/10.24297/ijct.v14i8.1857
https://doi.org/10.1016/j.heliyon.2019.e01516
https://doi.org/10.1007/10704703_18
https://doi.org/10.48456/tr-397
https://doi.org/10.1007/11599463_31
https://doi.org/10.1007/11533719_79
https://doi.org/10.1016/j.sysarc.2005.12.003
https://doi.org/10.1007/s00373-022-02489-9
https://doi.org/10.1109/TVLSI.2019.2959618
https://doi.org/10.1007/s12083-023-01462-4
https://doi.org/10.1109/IECON48115.2021.9589829
https://doi.org/10.1017/CBO9780511815867

	Introduction 
	The Problem of the Synthesis of Circulant Topologies 
	Software Description 
	Software Architecture 
	Description of the Features of the Software 

	Illustrative Examples 
	Evaluation of the Results 
	Comparison with Other Solutions 
	Validation of the Topologies Generated 
	Dataset 

	Use Case 
	New Topologies Search Speedup 
	The Analysis of Routing Algorithms for Circulant Topologies 
	Regression Analysis 

	Conclusions 
	References

