
Citation: Khettabi, K.; Kouahla, Z.;

Farou, B.; Seridi, H.; Ferrag, M.A.

Efficient Method for Continuous IoT

Data Stream Indexing in the Fog-Cloud

Computing Level. Big Data Cogn.

Comput. 2023, 7, 119. https://

doi.org/10.3390/bdcc7020119

Academic Editors: Habib Hamam,

Ateeq Ur Rehman, Mohamed Tahar

Ben Othman and Rabie A. Ramadan

Received: 9 May 2023

Revised: 26 May 2023

Accepted: 7 June 2023

Published: 14 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

Efficient Method for Continuous IoT Data Stream Indexing in
the Fog-Cloud Computing Level
Karima Khettabi 1, Zineddine Kouahla 1 , Brahim Farou 1 , Hamid Seridi 1 and Mohamed Amine Ferrag 2,*

1 LabSTIC Laboratory, Department of Computer Science, 8 Mai 1945 University, Guelma 24000, Algeria;
khattabi.karima@univ-guelma.dz (K.K.); kouahla.zineddine@univ-guelma.dz (Z.K.);
farou.brahim@univ-guelma.dz (B.F.); seridi.hamid@univ-guelma.dz (H.S.)

2 Technology Innovation Institute, Masdar City P.O. Box 9639, Abu Dhabi, United Arab Emirates
* Correspondence: mohamed.ferrag@tii.ae

Abstract: Internet of Things (IoT) systems include many smart devices that continuously generate
massive spatio-temporal data, which can be difficult to process. These continuous data streams need
to be stored smartly so that query searches are efficient. In this work, we propose an efficient method,
in the fog-cloud computing architecture, to index continuous and heterogeneous data streams in
metric space. This method divides the fog layer into three levels: clustering, clusters processing and
indexing. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is
used to group the data from each stream into homogeneous clusters at the clustering fog level. Each
cluster in the first data stream is stored in the clusters processing fog level and indexed directly in
the indexing fog level in a Binary tree with Hyperplane (BH tree). The indexing of clusters in the
subsequent data stream is determined by the coefficient of variation (CV) value of the union of the
new cluster with the existing clusters in the cluster processing fog layer. An analysis and comparison
of our experimental results with other results in the literature demonstrated the effectiveness of the
CV method in reducing energy consumption during BH tree construction, as well as reducing the
search time and energy consumption during a k Nearest Neighbor (kNN) parallel query search.

Keywords: continuous IoT data stream; clustering; indexing; BH tree; variation; parallel kNN
query search

1. Introduction

IoT data is continually collected from a wide range of devices and sensors, which
gives it some characteristics such as homogeneity within heterogeneity, data record size,
time series format, dynamism [1], distribution and spatio-temporality [2] in addition to
other big data characteristics [3]. These characteristics involve some issues, such as data
overlapping and cloud computing latency, that make data searching and storage more
difficult. To address these issues, many indexing methods for data storage have been
proposed [4–6]. However, not all of the indexing methods are appropriate for the ever-
changing IoT environment, due to the endless flow of heterogeneous IoT data. Before
storage, the heterogeneous data streams in IoT must be processed and analyzed using
novel methods appropriate to the evolutionary nature of the IoT environment. A novel
process entails, in the first step, partitioning each IoT data stream into homogeneous
groups, or clusters, before indexing in the second step. The data objects in each of the
clusters are similar, but the clusters are dissimilar [7]. Several achievements in data stream
clustering research [8,9] have been made. The current data stream clustering frameworks
include four types of methods: partition-based, hierarchy-based, density-based and model-
based methods [10]. Before being indexed in the second step, each cluster of the next data
stream is compared to the existing clusters, and so on. The existing indexing structures for
generating IoT data address the volume [11,12] and variety of types [13,14] but, in doing
so, have limited efficiency. In comparison to multidimensional space, the metric space is

Big Data Cogn. Comput. 2023, 7, 119. https://doi.org/10.3390/bdcc7020119 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7020119
https://doi.org/10.3390/bdcc7020119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0001-8105-9810
https://orcid.org/0000-0002-1609-6006
https://orcid.org/0000-0002-0632-3172
https://doi.org/10.3390/bdcc7020119
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7020119?type=check_update&version=2

Big Data Cogn. Comput. 2023, 7, 119 2 of 24

ideal for addressing variety because it supports all types of data as long as its associated
distance concept satisfies the triangular inequality. Metric Access Methods (MAMs) [15]
can also be used to search for data in indexes in the metric space.

As a result of the progress in IoT device networking and communication, as well as
some online applications and platforms, such as Google, Amazon, IBM, and Facebook, the
architecture of the internet has become less efficient in supporting continuous streams of
IoT and industrial IoT data, such as satellite imaging, social media, emails, and others. This
large volume of data results in a significant processing load [16]. Thus, researchers have
been using technological advancements and fog-cloud computing architecture to analyze
and store massive amounts of IoT data. The cloud-computing layer, the fog-computing
layer, and the terminal layer are all part of this architecture (Figure 1). The terminal layer is
a multi-hop self-organizing sensors network made up of many nodes that are distributed
throughout an area and frequently have wireless interconnection [17]. The fog-computing
layer is located between the cloud and terminal layers. It is located at the network’s edge,
close to the terminal layer [17]. The cloud computing layer is responsible for recovering
and executing information derived from the other layers. A diverse set of applications
can manage a large amount of heterogeneous IoT data in the cloud layer in a precise
manner [18].

Control
Accelerators

Network
Storage

Computation Accelerators

Network Storage

Computation Control

Analysis Service

Monitor Batch

Scheduler

Figure 1. Fog-Cloud computing architecture.

This paper proposes an effective approach in fog-cloud computing architecture. The
aim is to overcome data volume problems, encountered in [11,12] and the variety of
types [13,14], to organize and store the continuous flow of IoT data and to accelerate
searches in the dynamic IoT environment. IoT data in the terminal layer is characterized
by heterogeneity, noise, diversity, and rapid growth because it is collected from various
devices [19]. The fog layer is divided into three levels for the organization of each IoT
data stream: clustering fog level, clusters processing fog level, and indexing fog level
(Figure 2). Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is
used for clustering at the fog level because it is the best algorithm for grouping diverse
IoT data into homogeneous and high-density clusters. Outliers, or noise generated by
data stream clustering, could be kept waiting for similar values from arriving streams.
DBSCAN is an algorithm that is based on density accessibility and density connectivity.
It requires two initial parameters: the cluster’s radius Eps and the minimum number of
points MinPts [20].

Big Data Cogn. Comput. 2023, 7, 119 3 of 24

Te
rm

in
al

la

ye
r

Fo
g

la
ye

r
C

lo
u

d

la
ye

r

Continuous IoT
data stream

Data collection
and Clustering

Creation of new
index or

insertion in
existing index

Data storage and
Query search

Cluster
processing using

CV

Figure 2. Architecture of the CV method.

Compared with other clustering algorithms, such as k-means [21] and Balanced Itera-
tive Reducing and Clustering using Hierarchies(BIRCH) [22], DBSCAN can find irregularly
shaped clusters, and is robust in detecting outliers [23]. Each cluster of the first data stream
is stored in the cluster’s processing fog level and is directly indexed in the indexing fog
level in a Binary tree with Hyper-plane (BH-tree). After DBSCAN clustering, the index-
ing of arrival data streams is based on a comparison of the arrival cluster’s coefficient
of variation (CV) value and those of the arrival cluster’s unions with existing clusters in
the clusters processing fog level. The arrival cluster is either directly indexed in a new
BH-tree or inserted into an existing index, based on the minimum CV value. To assess
its effectiveness, this approach is compared to two other scenarios. The fog layer in the
IoT architecture is divided into only clustering and indexing levels in these scenarios. The
first scenario, known as the Creation of a New Index (CNI) method, directly indexes data
from each arrival cluster using a BH-tree. The second scenario, known as Insertion in
an Existing Index (IEI) method, involves inserting data from each arrival cluster into an
existing BH-tree.

The remainder of the paper is organized as follows. Section 2 introduces some methods
for multidimensional and metric space clustering and indexing. Section 3 introduces
the proposed approach with two scenarios for comparison and Section 4 describes the
experimentation. The section on experimentation is divided into two parts. The first section
describes the experimental platform and the datasets, while the second section presents,
analyzes, and discusses the CV method’s experimental results, such as an evaluation of the
BH-tree construction and the parallel kNN query search. Section 5 of the paper concludes
with directions for future work.

2. Related Work

Existing approaches for indexing IoT data, whether in multidimensional [6,24–27] or
metric space [28–32], do not provide efficient mechanisms for IoT data storage, despite
their dynamic natures and continuous growth. There have been few publications in the
field of continuous IoT data stream indexing. Wang et al. [33] proposed the Continuous
Range Index (CR-index) as a method for indexing observed data, based on its value
ranges and type attributes. The CR-index constructs a compact indexing scheme in which
measurement and observation data items are aggregated into boundary blocks, based on
their interval blocks. The indexes are designed to respond to range queries. This method,

Big Data Cogn. Comput. 2023, 7, 119 4 of 24

however, can only index data with a single dimension [2]. In [11], the authors presented a
multi-attribute index combination. This method employs four types of attributes: spatial,
temporal, keyword, and value. Each attribute has its indexing method, and the inclusion of
these four indexes in a combined index necessitates a specific sequencing that determines
the query search’s performance. By considering all possible sequences and automatically
determining the most efficient combined index for each query, query search performance is
improved. This approach focuses on improving query search performance, and the authors
do not specify how to store indexed IoT data [11].

Doan et al. [34] introduced an indexing model for IoT data that includes a lossless
compression technique as well as the advantages of bit-padding, bit-blocking, and Huffman
coding. It reduces data size during compression, which eliminates the need for fixed eight-
bit streams. The index is based on timestamps and allows access to compressed data
without requiring full decompression. This information is linked in during the compression
process. The goal of this framework was to create indexing within lossless compression
for floating-point time series data. This framework, according to the authors, needs to be
improved by addressing temporal alignment and de-duplication issues when IoT streaming
data is sourced from multiple devices. In SeaCloudDM [35], continuous data generated by
IoT devices is received, stored, and processed in a sea-computing layer. The sea-computing
layer generates numeric key sample values that are much smaller than the original data
from the devices. This key sample data is sent to the cloud data management layer to be
processed later. To manage SQL queries and keyword searches, a combined Relational
Data-Base and Key-Value (RDB–KV) store cloud data management model is used. However,
because this method manages massive amounts of data from disparate sensors in the cloud,
it suffers from latency issues. The methods mentioned above have limitations that limit their
effectiveness. The CR-index’s unique dimension renders it useless for higher-dimensional
data [33]. Given the use of a multi-attribute index, this method is not applicable to all data
types [11]. The use of indexes based on timestamps adapt this method to a specific type
of data [34]. The SeaCloudDM [35], like other cloud methods, suffers from latency issues,
making it insufficient when processing continuous big IoT data.

To avoid these limitations during the indexing of the continuous data stream, we use
the fog-cloud architecture to reduce latency in this work. The current approach is developed
in the metric space, due to its ability to process data of various types and dimensions, as
only distances between objects are used in this space. The fog layer is divided into three
levels in the proposed approach: the clustering fog level, the clusters processing fog level,
and the indexing fog level. In the clustering fog layer, the first arrival data are grouped
into homogeneous clusters using the DBSCAN algorithm. These clusters are stored in the
clusters processing fog layer, and their objects are indexed in the indexing fog layer in a
Binary tree with Hyper-plane (BH-tree). Objects in the clusters processing fog level are
indexed or inserted in existing BH-trees based on the value of the coefficient of variation
(CV) in the clusters processing fog level. The division of continuous data into groups, or
clusters, of similar objects may greatly aid in indexing. For example, Balakrishna et al. [36]
proposed the Incremental Clustering Driven Automatic Annotation for IoT Streaming Data
(IHC-AA-IoTSD). It is an automatic annotation mechanism for streaming semantic data
generated by IoT sensors using incremental hierarchical clustering. SPARQL queries are
used to extract semantic annotations from hierarchical clustered data. This mechanism,
according to the authors, can be improved by using a hash table (key–value pair) to
store SPARQL queries. Furthermore, artificial intelligence systems require lightning-fast
decisions. The IHC-AA-IoTSD has a total time complexity of T(n) = θ(n3). Clusters are
formed automatically in the DBSCAN algorithm [23], and outliers are easily detected and
compared with objects in the next data stream.

3. Proposed Approach

IoT allows devices (sensors, actuators) to communicate and share information with
one another. These devices are diverse, and they are typically deployed in distributed and

Big Data Cogn. Comput. 2023, 7, 119 5 of 24

dynamic environments across a large geographical area. These devices generate data in a
variety of formats, including textual, numerical, streaming, and multimedia data [2]. Due
to the dynamism and diversity of types and dimensions, storing these continuous streams
of IoT data and determining an efficient retrieval method involve significant challenges.
The cloud-fog computing architecture (Figure 1) is used for the storage and indexing of the
continuous IoT data stream, and is located in the terminal layer. Geographically dispersed
IoT devices generate massive amounts of diverse data on a continuous basis. The indexing
of this continuous data stream is carried out in the fog computing layer due to its numerous
characteristics, such as reduction of service latency, provision of real-time applications, and
the processing capacity of a large number of nodes [37].

The fog layer is divided into three levels in this work: clustering fog level, clusters
processing fog level, and indexing fog level (Figure 2). Each data stream from the terminal
layer is grouped into homogenous clusters at the clustering fog level. The first data stream’s
clusters are stored in the clusters processing fog layer, and their objects are directly indexed
in separate BH-trees in the indexing fog layer. In the clusters processing fog level, a new BH-
tree is constructed for the arrival data streams. On the basis of the coefficient of variation
(CV) value of the clusters, or objects, the arrival cluster is inserted into an existing BH-tree.
The additional work introduced in each layer has no effect on the processing capabilities of
fog nodes because the number of sensors installed automatically gives rise to a suitable
type of hardware to capture, process, and transmit data from the sensors. This means
that having many sensors requires a lot of power from the fog (this condition is ensured
during the installation process). Furthermore, the Fog’s three-level architecture, with level
specialization, allows for smoother processing. Detailed descriptions of the clustering,
CV, and indexing methods are presented in the following sections. The definitions of the
parameters used in this approach are regrouped in Table 1.

Table 1. Table of notations.

Abbreviation Explantation

N Number of the first clusters
K Number of the arrival clusters
Cln {n = 1...N} Clusters of the first data stream
Cl
′

k {k = 1...K} Clusters of the arrival data stream
cn {n = 1...N} Cluster centers of the first data stream
c
′

k {k = 1...K} Cluster centers of the arrival data stream
Cl
′

k ∪ Cln Union of the arrival clusters Cl
′

k and the first
clusters Cln

d(cn, c
′

k) Distance between two centers
In, {n = 1...N} Set of indexes
Mind Minimum distances between the centers

of the existing clusters and the incoming clusters
p1,p2 Pivots
E Set of elements
LN Leaf node
IN Inner node
o Object
L Left sub tree
R Right sub tree
q Query
rq Radius for recovering k objects closes to q
A List in with, the set of k objects is stored
B(q, rq) Query ball q with radius rq

3.1. Clustering Method

In the clustering fog level, each data stream sent by the terminal layer is collected
and grouped in N clusters Cln with {n = 1...N}. The Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm [38] is used. It is modified by the intro-

Big Data Cogn. Comput. 2023, 7, 119 6 of 24

duction of the calculation of the cluster centers (cn) for the coefficient of variation (CV).
Each cluster Cln contains similar elements. Since Fog nodes do not have the same storage
and processing capacities, the triggering of the clustering process is closely related to the
storage capacity. This condition allows one to move beyond congestion and conceptual
bottlenecks and tailor processing to the capabilities of the fog node.

The DBSCAN algorithm is one of the most used data clustering methods [7], based on
the connection of points within a specific distance threshold. However, it only connects
points that meet a density threshold (the number of objects in a radius). The DBSCAN
algorithm divides the data into arbitrarily shaped clusters. Each cluster contains all the
objects connected by the density. This clustering method was chosen because DBSCAN
clusters form automatically, whereas the k-means algorithm, for example, requires the
number of clustersto be determined before clustering. Furthermore, the DBSCAN algorithm
is robust in the detection of outliers, which are considered to be objects that wait for other
similar objects in the next data stream. The complexity of the DBSCAN algorithm for
grouping a dataset of o objects into N clusters is O(o.d) [39] where, o = oc1 + oc2 + . . . + ocN
which could be written as o = N.mean(oc), oc is the number of objects per cluster, and d is
the average number of neighbors. This gives the final form of the DBSCAN algorithm’s
complexity for each data stream, which is O(N.mean(oc).d).

3.2. CV Method

The coefficient of variation (CV) is used as a criterion in the clusters processing fog
level to determine whether a cluster of the arrival data stream should be inserted in an
existing BH-tree or indexed in a new BH-tree. The coefficient of variation is a statistical
measure of data point dispersion around the mean in a dataset. It represents the standard
deviation to mean ratio. The coefficient of variation has the advantage of being insensitive
to data type and dimension [40]. The processing of the fog level clusters contains clusters
from the first data stream Cln. Each cluster of the arrival data stream Cl

′
k is unified with a

copy of all the existing clusters Cln (Algorithm 1) at this fog level (Figure 3). Subsequently,
the CV of the cluster of the arrival data stream CVCl′k

and the CVs of the union of this

cluster with every existing cluster CVCl′k∪Cln
are determined. If the cluster of the arrival

data stream Cl
′
k has the minimum value of CV, a new BH-tree is constructed in the indexing

fog level. The cluster Cl
′
k is stored with the existing clusters Cln in the clusters processing

fog level. If the minimum value of CV corresponds to the union of the cluster of the arrival
data stream with an existing cluster Cl

′
k ∪ Cln, objects in the arrival cluster Cl

′
k are inserted

into the BH-tree of the corresponding existing cluster Cln.
Since the CV calculation of the union of one arrival cluster with the first clusters is

parallel, the complexity for all clusters is taken as the complexity for the CV calculation
of the cluster with the maximum number of objects ocmax. It represents approximately
2mean(oc) and is given by O(mean(oc)). Since the comparison of N arrival clusters with
existing clusters is sequential, the complexity of the CV method for each data stream is
O(N.mean(oc)).The CV method processes clusters rather than data, which allows it to
significantly reduce processing time, despite polynomial complexity, because the number
of clusters is negligible in comparison to the number of data. This is due to the DBSCAN
method’s capabilities, which allow it to detect all clusters, even those with a convex shape.
The method, in fact, consider only true clusters, while the others are classified as noise.

Big Data Cogn. Comput. 2023, 7, 119 7 of 24

Algorithm 1 CV method

Require: Cl = {Cl1...Cln, n = 1...N} Cl
′
= {Cl

′
1...Cl

′
k, k = 1...K}

Ensure: Im
for each data stream do

for cl
′ ∈ Cl

′
do

CVcl′ ←Calculate the coefficient of variation of the new cluster (cl
′
)

for cl ∈ Cl do
CVcl′∪cl ← Calculate the coefficient of variation of (Cl

′ ∪ Cl)
if CVcl′ < CVcl′∪cl then

create new index (cl
′
)

else
insert cl

′
in In

end if
end for

end for
end for

C1 C3

C2

Cn

C4

BH-tree 1

BH-tree 2

BH-tree 3

BH-tree 4

BH-tree n

First clusters

C1 U C1’ C3 U C1’

C2 U C1’

Cn U C1’

C4 U C1’

C1’

Arrival cluster

CVmin

New BH-tree

Construction of a new BH-tree with data
of the arrival cluster

Insertion of the arrival data in a
existing BH-tree

Figure 3. CV method at the cluster processing level.

3.3. Indexing Method

The binary tree with hyper-plane (BH-tree) used in the indexing fog layer is based
on a recursive division of space by a hyper-plane into two regions via two pivots p1, p2
chosen as the two farthest elements. In the set E, elements closer to p1 belong to the first
region, while those closer to p2 belong to the second region. This prevents regions from
overlapping when answering queries. Firstly, a leaf node LN contains a subset ELN of
objects with ELN ⊆ E. Secondly, an inner node IN consists of two elements and two
children: (p1, p2, L, R) ∈ O2 × IN 2. That is :

• p1,p2 are two unconfused objects, d(p1, p2) = dmax, called “pivots”. They define the
hyper-plane.

• L is a left sub-tree and R is a right sub-tree.

The construction of the BH-tree is realized incrementally. The insertion is top–down.

3.4. The kNN Similarity Queries Search

The search algorithm gives an answer to query q with radius rq to recover the k objects
closest to q (Algorithm 2). The set of k objects is stored in the list A. To address the queries,
the kNN algorithm on the BH-tree is applied by starting from the root to its leaves. The
search is performed by calculating the distance between the query point and the two pivots

Big Data Cogn. Comput. 2023, 7, 119 8 of 24

p1 or p2, going down the tree, and determining whether the search should continue on the
left branch (L) or the right branch (R). The query starts with a radius rq = +∞ and, then,
decrements by traversing each sub-tree that corresponds to the distance to the ke object in
the order list A. Parallelism is also used in this work in the similarity search query process
to minimize retrieve time to make the kNN search more efficient [39]. The complexity of the
kNN search across all indexes could be reduced to the complexity of a single index search.
The CV method is tested against two other scenarios to determine its effectiveness. The fog
layer only contains the clustering and indexing levels in these scenarios. The first scenario
is known as the Creation of a New Index (CNI) method, while the second is known as the
Insertion into an Existing Index (IEI) method.

Algorithm 2 The kNN search in the BH-tree

kNN-BH-tree

IN ∈ N ,
q ∈ Rn,
k ∈ N∗,
d : O ×O → R+,
rq ∈ R+ = +∞,
A ∈ (R+ ×O)N = ∅

 ∈ (R+ ×O)N

with:
(p1, p2, L, R) = IN
d1 = d(p1, q)
d2 = d(p2, q)
B(q, rq) query ball q with radius rq
if IN == NULL then

return A
else

Calculate the distances d1 and d2
if |A| < k then

rq ← +∞
else

r ← A
end if
for i ∈ (0, 1) do

if di < rq then
A← k− Insert(k, A, (di, pi))

end if
for each node IN do

if B(q, rq) ∩ IN 6= ∅ then
A← kNN − BH − tree(INi, q, k, d, rq, A)

end if
end for

end for
end if

3.4.1. CNI Method

Objects in the arrival data stream’s Cl
′

are indexed in a new BH-tree in this scenario.
Algorithm 3 includes a description of this method, which is straightforward, and there is
no need to compare it to existing clusters or indexes. The CNI method generates indexes of
objects that are similar.

Big Data Cogn. Comput. 2023, 7, 119 9 of 24

Algorithm 3 CNI method

Require: Cl = {Cl1...Cln, n = 1...N}
Cl
′
= {Cl

′
1...Cl

′
k, k = 1...K}

Ensure: In+k
for each data stream do

for cl
′ ∈ Cl

′
do

create new index(cl
′
)

end for
end for

3.4.2. IEI Method

Objects from each cluster of the arrival data stream are inserted into one of the ex-
isting indexes in this scenario. The cluster centers of the first data stream cn are used as
representatives of the existing indexes in this method. The selection of an existing BH-tree
into which the arrival cluster Cl

′
objects are inserted is based on a distance test between the

arrival cluster center c
′
k and the existing BH-tree representative centers cn (Algorithm 4).

When the distance between c
′
k and cn is at a minimum, objects from the arrival cluster Cl

′

are inserted in the index n.

Algorithm 4 IEI method.

Require: Cl = {Cl1...Cln, n = 1...N}
Cl
′
= {Cl

′
1...Cl

′
k, k = 1...K}

Ensure: In
for each data stream do

for cl
′
k ∈ Cl

′
do

for cln ∈ Cl do
Mind ←calculate distances(d(cn, c

′
k))

insert cl
′

in In
end for

end for
end for

4. Experimentation

This section describes the experimental parameters, including the datasets and the ex-
perimental platform. Then, the experimental results regarding the evolution of the number
of indexes with the data stream are discussed. The evaluation of the index construction
and the evaluation of the parallel kNN search are also analyzed.

4.1. Experimental Settings

Three real data sets (GPS trajectory, WARD, and traffic datasets), and one synthetic
dataset (Tracking), were used to test the four proposed indexing methods. The following
subsections provide further information on these datasets.

1. GPS Trajectories: collected from Go!Track Android application [41]
2. Tracking dataset: moving vectors generated by an object tracking simulator with wire-

less cameras in the wireless multimedia sensor network in a random simulation [31]
3. Wearable Action Recognition Database (WARD): database of human action reconnais-

sance using wearable movement sensors [42]
4. Traffic dataset: belongs to the road network category [43]

The datasets were divided into subsets to perform the data stream simulation. The
subsets of different sizes and dimensions (Table 2) were considered to be data streams. The
experiments were carried out on a 64-bit Linux operating system (Ubuntu) with an Intel(R)
Core TM i7-8550U CPU, 1.80 GHz×8 processor, 16 GB RAM, and 256 GB ROM.

Big Data Cogn. Comput. 2023, 7, 119 10 of 24

Table 2. Characteristics of the selected datasets for the index evaluation.

Dataset Size (Vectors) Dimension Data Stream Size (Vectors) Data Stream Size (Bytes)

GPS trajectory 18,107 3 4000 115,507.02
Tracking dataset 62,702 20 12,000 1,270,493.8

WARD 3,078,552 5 600,000 18,058,184
Traffic dataset 5,000,000 2 1,000,000 20,132,659.2

4.2. Evolution of the Number of Indexes with Data Stream

Figure 4 depicts the variation in the number of indexes as a function of the streams
for the datasets used for the CV method and the other two scenarios. It is worth noting
that the BH-tree of each cluster was constructed directly for the first data stream. For the
second data stream, the proposed method was used. The IEI method, as expected, resulted
in the construction of a minimum number of indexes that remained invariant with the data
stream. Unlike the IEI method, the CNI method resulted in the construction of a maximum
number of indexes that grew proportionally with the number of data streams. The number
of constructed indexes for the CV method was between that of the IEI method and that of
the CNI method. For all datasets, the number of indexes produced by the CV method was
closer to that produced by the IEI method, indicating that the insertion process was more
pronounced in the CV method than was the construction process. It can be noted that the
number of indexes produced by the CV method varied from one data set to the next. This
was directly dependent on the dynamic aspect of DBSCAN clustering, which caused the
distances between cluster centers to change for each data stream.

1st 2nd 3rd 4th 5th
0

5

10

15

20

25

30

GPS trajectory

N
um

be
r

of
 in

de
xe

s

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0

20

40

60

80

Tracking dataset

N
um

be
r

of
 in

de
xe

s

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0

50

100

150

200

250

300

350
WARD

N
um

be
r

of
 in

de
xe

s

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th
0

20

40

60

80

100

Traffic dataset

N
um

be
r

of
 in

de
xe

s

Data stream

 CNI method
 IEI method
 CV method

Figure 4. Number of BH-trees vs. data stream.

4.3. Evaluation of Index Construction

The number of distances, comparisons, indexing time, and energy consumption were
calculated as a function of the data stream to evaluate the BH-tree construction.

Big Data Cogn. Comput. 2023, 7, 119 11 of 24

4.3.1. Number of Calculated Distances

As indicated in Figure 5, the number of distances was traced as a function of the data
stream for the three methods. The number of distances during the construction of the
BH-trees started varying from the second data stream. From this data stream, the number
of distances varied, from one method to another, as a function of the data size. For the four
datasets, the CNI method presented the highest number of distances, since the creation of
pivots required more distance calculations, while the IEI method presented a lower number
because, in the insertion process, no pivots were created. Despite the CV method combining
both insertion and indexing processes, the number of distances, from this method, was
close to that from the IEI method and this reflects the efficiency of the CV method.

1st 2nd 3rd 4th 5th
0

1x105

2x105

3x105

GPS trajectory

N
um

be
r

of
 d

is
ta

nc
es

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

1.2x106

1.4x106

1.6x106

11
6

10
42

67
2

68
8

76
8

Tracking dataset

N
um

be
r

of
 d

is
ta

nc
es

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0

1x108

2x108

3x108

4x108

5x108

20
8

92
6

11
40

11
40

11
28

WARD

N
um

be
r

of
 d

is
ta

nc
es

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th
0.0

2.0x107

4.0x107

6.0x107

8.0x107

1.0x108

Data stream

Traffic dataset

12
98

8

54
18

97
58

45
40

8N
um

be
r

of
 d

is
ta

nc
es

 CNI method
 IEI method
 CV method

Figure 5. Number of distances calculated during the indexing of each data stream.

4.3.2. Number of Calculated Comparisons

Figure 6 depicts the variation in the number of comparisons as a function of the data
stream. This variation, as seen in Figure 5, was similar to that of the number of distances.
The number of comparisons was greater than the number of distances for all three methods.
Comparisons were required during the construction of new indexes or during insertion to
select the left or right side of each BH-tree.

4.3.3. Indexing Time

As shown in Figure 7, indexing time depended not only on the data stream but also on
the size of each data stream. For GPS trajectory data, the time of indexing was great when
the IEI method was used, while for tracking and WARD data, the time of indexing was at a
maximum when the CNI method was used. The time required to index the traffic dataset
varied depending on the method used and the data stream. The indexing of data streams
using the CV method consumed acceptable times for the four datasets used, regardless of
data stream size. Unlike the IEI and CNI methods, the CV method was not affected by the
size of the data stream.

Big Data Cogn. Comput. 2023, 7, 119 12 of 24

1st 2nd 3rd 4th 5th
0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

1.4x105

1.6x105

1.8x105

GPS trajectory

N
um

be
r

of
 c

om
pa

ris
on

s

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0

1x105

2x105

3x105

4x105

5x105

6x105

7x105

8x105

Tracking dataset

5852
1

33
6

34
4

38
4

N
um

be
r

of
 c

om
pa

ris
on

s

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0.0

5.0x107

1.0x108

1.5x108

2.0x108

2.5x108

10
4

46
3

57
0

57
0

56
4

WARD

N
um

be
r

of
 c

om
pa

ris
on

s

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th
0

1x107

2x107

3x107

4x107

5x107

Data stream

Traffic dataset

64
94

27
09

48
79

22
70

4N
um

be
r

of
 c

om
pa

ris
on

s

 CNI method
 IEI method
 CV method

Figure 6. Number of comparisons calculated during the indexing of each data stream.

1st 2nd 3rd 4th 5th
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

GPS trajectory

T
im

e
of

 in
de

xi
ng

 (
s)

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0
5

10
15
20
25
30
35
40
45
50

Tracking dataset

T
im

e
of

 in
de

xi
ng

 (
s)

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th 6th
0.0

5.0x103

1.0x104

1.5x104

2.0x104

WARD

35
5

71

T
im

e
of

 in
de

xi
ng

 (
s)

Data stream

 CNI method
 IEI method
 CV method

1st 2nd 3rd 4th 5th
0.0

5.0x102

1.0x103

1.5x103

2.0x103

2.5x103

3.0x103

3.5x103

Data stream

Traffic dataset

T
im

e
of

 in
de

xi
ng

 (
s)

 CNI method
 IEI method
 CV method

Figure 7. Indexing time of the data stream using the CV method compared to the IEI and CNI methods.

4.3.4. Energy Consumption during the Indexing

Figure 8 illustrates the energy consumption per stream for the CV, CNI and IEI
methods. The energy consumption Eprog (in Joule) during the execution of a program prog

Big Data Cogn. Comput. 2023, 7, 119 13 of 24

is given by the following expression [44] :

Eprog =
∫ te

tb

P(prog, t)dt−
∫ te

tb

Pi(t)dt (1)

where, tb and te represent the beginning time and the end time of the execution of the
program prog (in second), P(prog, t) is the electrical power needed for the execution of the
program prog (in Watts) and Pi(t) is the idle power (in Watts).

Figure 8 indicates that the energy consumed during indexing using these three meth-
ods varied depending on the dataset. The energy consumption for the GPS trajectory
increased during data indexing using the IEI method. The energy consumption when
using the CV method was lower than when using the CNI method. In contrast to the GPS
trajectory dataset, the CNI method consumed more energy during the indexing of both
tracking and WARD datasets than the CV and IEI methods. These last two were mostly
close. The energy consumption during indexing using the CNI and IEI methods for the
traffic dataset was comparable and greater than that during indexing using the CV method.

GPS trajectory
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Dataset

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

st
re

am
 (

kJ
) CNI method

 IEI method
 CV method

Tracking dataset
0

1

2

3

4

5

6

Dataset

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

st
re

am
 (

kJ
) CNI method

 IEI method
 CV method

WARD
0

500

1000

1500

2000

2500

Dataset

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

st
re

am
 (

kJ
) CNI method

 IEI method
 CV method

Traffic dataset
0

50

100

150

200

250

300

350

400

Dataset

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

st
re

am
 (

kJ
) CNI method

 IEI method
 CV method

Figure 8. Average energy consumption during index construction using CV, CNI and IEI methods.

4.4. Quality of the Constructed BH-Trees

In Figure 9 the average height of indexes, the average number of internal nodes and the
average number of leaves nodes are plotted for the four datasets to evaluate and compare
the quality of BH-trees constructed using the CV method with those using the IEI and the
CNI methods. The number of nodes per level (Figure 10) and the data distribution in leaves
(Figure 11) were determined after the indexing of all data streams.

Big Data Cogn. Comput. 2023, 7, 119 14 of 24

GPS trajectory

Tracking data

WARD

Traffic dataset

0 10 20 30 40 50 700

D
at

as
et

s

Average height

 CV method
 IEI method
 CNI method

GPS trajectory

Tracking data

WARD

Traffic dataset

0 500 2000 3000

D
at

as
et

s

Average number of internal nodes

 CV method
 IEI method
 CNI method

GPS trajectory

Tracking data

WARD

Traffic dataset

0 500 3000

D
at

as
et

s

Average number of leaves nodes

 CV method
 IEI method
 CNI method

Figure 9. Average height, average number of internal nodes and average number of leaves nodes of
BH-trees constructed using the CV, CNI and IEI methods.

4.4.1. Average Height of BH-Trees

Figure 9 presents the average height of BH-trees resulting from the indexing of streams
of GPS trajectory, tracking, WARD and traffic datasets. The average height of indexes
constructed using the IEI method was greater than that of indexes constructed using the
CNI method for all datasets. This was due to the fact that, in the IEI method, all data
were inserted into a fixed number of BH-trees, whereas in the CNI method, a BH-tree was
constructed for each cluster. In addition, Figure 9 shows that, for the GPS trajectory and
tracking datasets, the average height of indexes constructed using the CV method was
comparable to that of the CNI method, whereas for the WARD and traffic datasets, the
average height from the CV method was greater than that of the CNI method and slightly
exceeded the average height from the IEI method for the WARD data. The CV method’s
behavior varied depending on the size and dimension of the data stream. When indexing
the GPS trajectory and tracking datasets, it behaved similarly to the CNI method, and when
indexing the WARD and traffic datasets, it behaved similarly to the IEI method.

4.4.2. Average Number of Internal Nodes

Figure 9 illustrates how the average number of internal nodes per BH-tree varied
depending on the dataset. The average number of internal nodes in indexes constructed
using the IEI method was greater than in indexes constructed using the CNI method for
GPS trajectory, tracking, and traffic datasets, whereas for the WARD dataset, the average
number of internal nodes in BH-trees constructed using the CNI method was greater than
that in indexes constructed using the IEI method. The average number of internal nodes
constructed using the CV method was located between those of the CNI and IEI methods
for all datasets. The variation in the average number of leaves nodes as a function of the
indexing method was similar to the variation in the average number of internal nodes, as
expected (Figure 9).

Big Data Cogn. Comput. 2023, 7, 119 15 of 24

4.4.3. Number of Nodes per Level

Figure 10 depicts the number of nodes per level in BH-trees constructed using the
CNI, IEI, and CV methods for the four datasets used. The number of nodes per level varied
depending on the dataset, and the number of nodes in the GPS trajectory was constant at all
levels of the BH-tree, regardless of the proposed indexing method. Moreover, the number
of internal nodes per level in a tracking dataset varied depending on the indexing method.
The IEI method yielded five levels with a high number of nodes, while the CV method
yielded two levels with a high number of nodes and the CNI method yielded only one level
with a high number of nodes from indexes. Only one level, with the maximum number of
nodes in indexes constructed using both CNI and IEI methods, was used for the WARD
dataset. The CV method produced indexes with two levels of maximum number of nodes.
For the traffic dataset, BH-trees constructed using the CNI and CV methods yielded one
level with the highest number of nodes. Three levels of the IEI methods had many nodes.
Beyond level 25 for the CV method (2 nodes per level) and level 60 for the IEI method (25
nodes per level), the number of nodes remained constant.

0 50 100 150 200 250
0.5

1.0

1.5

2.0

2.5 GPS trajectory

N
um

be
r

of
 n

od
es

Level

 CNI method
 IEI method
 CV method

0 10 20 30 40 50 60
0

20

40

60

80

100

120 Tracking dataset

N
um

be
r

of
 n

od
es

Level

 CNI method
 IEI method
 CV method

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800
WARD

N
um

be
r

of
 n

od
es

Level

 CNI method
 IEI method
 CV method

0 50 100 150 200 250
0

10
20
30
40
50
60
70
80
90

Traffic dataset

N
um

be
r

of
 n

od
es

Level

 CNI method
 IEI method
 CV method

Figure 10. Variation of the number of nodes per level of BH-trees constructed using the CNI, IEI and
CV methods.

4.4.4. Data Distribution in BH-Tree Leaves

Figure 11 shows the data distribution for the CNI, IEI, and CV methods on the left and
right sides of the BH-tree. The resulting indexes for GPS trajectory datasets constructed
using both CNI and IEI methods were not balanced, whereas indexes constructed using
the CV method were well balanced. Indexes from the three proposed methods were well
balanced for the trajectory, WARD, and traffic datasets. It can also be noted that the data
distribution in indexes built using the CNI and IEI methods was similar regardless of the
dataset used.

Big Data Cogn. Comput. 2023, 7, 119 16 of 24

Left side Right side
20

30

40

50

60

70

CNI method

13

14

15

16

17

IEI method

9

18

27

36

45 GPS trajectory

A
ve

ra
ge

 n
um

be
r

of
 o

bj
ec

ts
 p

er
 le

af
CV method

Left side Right side

50
55
60
65
70
75
80
85

CNI method

30
40
50
60
70
80
90

IEI method

0
10
20
30
40
50
60
70 Tracking dataset

A
ve

ra
ge

 n
um

be
r

of
 o

bj
ec

ts
 p

er
 le

af

CV method

Left side Right side
100

200

300

400

500

CNI method

100

200

300

400

500

IEI method

0

50

100

150

200

Tree side

WARD

A
ve

ra
ge

 n
um

be
r

of
 o

bj
ec

ts
 p

er
 le

af

CV method

Left side Right side
0

200
400
600
800

1000
1200

CNI method

0

200

400

600

800

1000

1200

1400

IEI method

A
ve

ra
ge

 n
um

be
r

of
 o

bj
ec

ts
 p

er
 le

af

0

200

400

600

800

1000

Tree side

Traffic dataset

CV method

Figure 11. Data distribution in leaves.

4.5. Evaluation of the Parallel kNN Search in BH-Trees

The number of distances, the number of comparisons, the time of search, energy
consumption and the number of visited leaves were determined to search 100 queries to
evaluate the parallel kNN search with k = 5, 10, 15, 20, 50 and 100 in BH-trees constructed
using CNI, IEI and CV scenarios. All statistical results were averaged over 100 randomly
generated queries.

Big Data Cogn. Comput. 2023, 7, 119 17 of 24

4.5.1. Number of Calculated Distances

In Figure 12, the average number of calculated distances during the kNN search with
k = 5, 10, 15, 20, 50 and 100 was plotted for the three methods. The average number of
distances varied from data to data (Figure 12). The average number of distances calculated
during the query search in BH-trees constructed using the CNI and CV methods for the
GPS trajectory dataset was close to, and less than, that calculated during the query search
in indexes constructed using the IEI method. As the number of nodes per level in the GPS
trajectory data was constant (Figure 10) this could be related to the variation in average
height of indexes (Figure 9). The average number of distances calculated during the kNN
query search in indexes constructed using the CV method was less than the number of
distances calculated in indexes constructed using the CNI and IEI methods for tracking and
WARD data sets. This was due to the variation in the number of nodes per level (Figure 10).
For the tracking dataset and levels between 5 and 10, the CNI method had more nodes than
the IEI method, and the IEI method had more nodes than the CV method. The number of
nodes per level from the IEI method was greater than that from the CNI method, which
was greater than the number of nodes per level from the CV method for the WARD data
set. For the traffic dataset, the number of distances calculated during the query search in
CV method indexes was greater than that in CNI method indexes and less than that in IEI
method indexes. This could be directly related to the height of the index (Figure 9).

k=5 k=10 k=15 k=20 k=50 k=100
0.0

4.0x102

8.0x102

1.2x103

1.6x103

2.0x103

k Parameter

GPS trajectory

A
ve

ra
ge

 n
um

be
r

of
 d

is
ta

nc
es

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0

1x103

2x103

3x103

4x103

5x103

6x103

7x103

k Parameter

Tracking dataset

A
ve

ra
ge

 n
um

be
r

of
 d

is
ta

nc
es

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

4.0x105

k Parameter

WARD

A
ve

ra
ge

 n
um

be
r

of
 d

is
ta

nc
es

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0.0

2.0x102

4.0x102

6.0x102

8.0x102

1.0x103

1.2x103

1.4x103

1.6x103

1.8x103

k Parameter

Traffic dataset

A
ve

ra
ge

 n
um

be
r

of
 d

is
ta

nc
es

 CNI method
 IEI method
 CV method

Figure 12. Number of distances calculated for the kNN search in BH-trees by CNI, IEI and CV methods.

4.5.2. Number of Calculated Comparisons

Figure 13 depicts the average number of comparisons calculated during the kNN
queries search in BH-trees constructed using CNI, IEI, and CV methods. The four datasets
exhibited similar variations. It can be noted that the average number of comparisons
calculated in indexes built using the CV method was less than that calculated in indexes
built using the CNI and IEI methods. This could be because the CV method resulted in
the fusion of clusters of similar objects, as opposed to the IEI method, which inserted
heterogeneous objects into a fixed number of indexes.

Big Data Cogn. Comput. 2023, 7, 119 18 of 24

k=5 k=10 k=15 k=20 k=50 k=100
0.0

2.0x104

4.0x104

6.0x104

8.0x104

k Parameter

GPS trajectory

A
ve

ra
ge

 n
um

be
r

of
 c

om
pa

ris
on

s

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0

1x105

2x105

3x105

4x105

k Parameter

Tracking dataset

A
ve

ra
ge

 n
um

be
r

of
 c

om
pa

ris
on

s

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0.0

5.0x106

1.0x107

1.5x107

2.0x107

2.5x107

3.0x107

3.5x107

k Parameter

WARD

A
ve

ra
ge

 n
um

be
r

of
 c

om
pa

ris
on

s

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

k Parameter

Traffic dataset

A
ve

ra
ge

 n
um

be
r

of
 c

om
pa

ris
on

s

 CNI method
 IEI method
 CV method

Figure 13. Number of comparisons calculated for the kNN search in BH-trees by CNI, IEI and
CV methods.

4.5.3. Time of Search

Figure 14 shows the time variation of kNN search queries in BH-trees constructed
using the CNI, IEI, and CV methods. The variation in search time was related to the
variation in both the average number of distances (Figure 12) and the average number
of visited leaves (Figure 15). The shortest time of search for the GPS trajectory dataset
was obtained for indexes constructed using the CNI method, where the time of search
varied from 0.0016 to 0.0046 s when k varied from 5 to 100. The number of distances
and visited leaves was lower for this indexing method than for the other two methods.
The time of search in CV-constructed indexes was nearly invariant as a function of k and
always fell between those of the CNI and IEI methods. The CV method searched indexes in
approximately 0.0048 s. When k varied from 5 to 100, the CV method presented the shortest
time for kNN query search, which varied from 0.008 to 0.02 s for the tracking dataset and
from 0.227 to 0.596 s for the WARD dataset. Although the IEI method indexes had the
shortest search time for the traffic dataset, the search time for the three methods remained
close. When k varied from 5 to 100, the search time varied between 0.0137 and 0.0338 s.
The time of search for the traffic dataset was less than that for the WARD data because the
traffic dataset had fewer visited leaves than the WARD dataset, as shown in Figure 15. For
k = 100 and for tracking data, the time of search in indexes by the CV method represented
46% of that of the CNI method and 69% of that of the IEI method, while for the WARD
data, it represented 53% and 47% of that of the CNI and the IEI, respectively.

For the traffic dataset, the time of search in indexes by the IEI method represented 96%
of that of the CV method and the time of search for the CNI method was 97% of that of
the CV method. When the coefficient of variation (CV) of the union of a new cluster from
the incoming data stream with the existing first clusters was minimal in the CV method,
it indicated that the objects in the two clusters were very similar. Objects from the new
cluster were, thus, inserted into the index corresponding to the first cluster, making objects
in that index more similar. As a result, the number of distances and visited leaves were
lower in the CV method indexes during the kNN query search than in the other methods.
Since indexes constructed using CV, CNI, and IEI methods had a constant number of nodes

Big Data Cogn. Comput. 2023, 7, 119 19 of 24

per level, the height of indexes directly influenced the search time for the GPS trajectory
dataset (Figure 10).

k=5 k=10 k=15 k=20 k=50 k=100
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

k Parameter

GPS trajectory

T
im

e
of

 s
ea

rc
h

(s
)

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0.00

0.01

0.02

0.03

0.04

k Parameter

Tracking dataset

T
im

e
of

 s
ea

rc
h

(s
)

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

k Parameter

WARD

T
im

e
of

 s
ea

rc
h

(s
)

 CNI method
 IEI method
 CV method

k=5 k=10 k=15 k=20 k=50 k=100
0.0

5.0x10 -3

1.0x10 -2

1.5x10 -2

2.0x10 -2

2.5x10 -2

3.0x10 -2

3.5x10 -2

k Parameter

Traffic dataset

T
im

e
of

 s
ea

rc
h

(s
)

 CNI method
 IEI method
 CV method

Figure 14. The kNN search time of CNI, IEI and CV methods.

GPS trajectory Tracking data WARD Traffic dataset
0

200

400

1000

Datasets

A
ve

ra
ge

 n
um

be
r

of
 v

is
ite

d
le

av
es

 CNI method
 IEI method
 CV method

Figure 15. Number of the visited leaves in CNI, IEI and CV methods.

For k = 100, the search time in indexes constructed using the CV method was grouped,
as evident in in Table 3, with that of other methods for GPS trajectory, tracking dataset and
WARD. In the Threshold Distance (TD) method [45], proposed for indexing continuous
data streams, the creation of new indexes and the insertion of arrival data in existing
indexes was based on a comparison of the distances between cluster centers to a threshold
distance value. In this method, the kNN query search proceeded in parallel. The Binary
trees, based on Containers at the Cloud-Clusters Fog computing level (B3CF-trees) [39],
were constructed in parallel from clusters. These last resulted from the grouping of the
whole dataset into clusters of homogeneous objects using the DBSCAN [23] algorithm. In
this approach, the kNN query search was combined with parallelism. The Binary tree,

Big Data Cogn. Comput. 2023, 7, 119 20 of 24

based on Containers at the Cloud-Fog computing level (BCCF-tree) [31], was based on the
division of the space by means of the k-means [21] clustering algorithm. The BCCF-tree
was directly constructed from the whole dataset in the fog layer. The Bubble Buckets tree
(BB-tree) [46] recursively partitions the data space into k partitions. The BB-tree leaf nodes
stocks objects in elastic buckets named Bubble Buckets. The MX-tree [47] is an enhancement
of the M-tree [28], due to the introduction of super-nodes, inspired from the X-tree [48], in
the space of the search area. In the Indexing tree Without Containers (IWC-tree), which is a
binary tree, simulated from the GH-tree [49], objects are directly inserted without the use
of containers. According to Table 3, for the three datasets, the CV method presented the
lowest 100NN search time after the B3CF-tree and before the TD method, which reflected its
efficiency in indexing continuous data streams. The three indexing methods benefited from
the advantages of a combination of parallelism and the kNN search method allowed by the
use of the DBSCAN clustering algorithm in the first step of the indexing process. The search
time in indexes constructed using the CV method was approximately five times greater
than that of the B3CF-tree for the GPS trajectory dataset, and approximately ten times
greater for both tracking and WARD datasets. This could be explained by the fact that,
in the B3CF-tree, the whole data, which was considered as only one data stream, was
grouped into separated clusters of homogeneous objects in each cluster. This allowed the
parallel construction of indexes with very similar objects in each one. Compared with the
TD method, which also indexes continuous data streams, we can see that the CV method
surpassed it in terms of parallel kNN search time. It was approximately 25 times less for
the GPS trajectory dataset and twice lower than for both tracking and WARD datasets.
The use of the coefficient of variation as the criterion for the homogeneity of the union
of clusters induced the construction of BH-trees containing very similar objects. Even if
the TD method presented good results, as can be seen in Table 3, its efficiency depended
strongly on the choice of the value of the threshold distance. The proposed CV method
also proved its efficiency, in terms of search time, compared with other indexing methods,
such as that proposed by Zhang et al. [50]. For k = 100, this team obtained a search time
of 0.682 s for a dataset of 1 million size which was, a little greater than our result for the
WARD dataset (0.597 s) of 3 millions size.

Table 3. Comparison of 100NN search time in indexes constructed using the CV method with other
methods from literature.

Datastes

Indexing
Methods CV TD

[45]
B3CF-Tree

[39]
BCCF-Tree

[31]
BB-Tree

[46]
MX-Tree

[47]
IWC-Tree

[31]

GPS trajectory 0.00531 s 0.13583 s 0.00118 s 0.16191 s 0.97994 s 0.35414 s 0.04013 s

Tracking dataset 0.02022 s 0.03919 s 0.00020 s 0.21034 s 20.26953 s 19.70434 s 20.12095 s

WARD 0.59673 s 1.13473 s 0.00576 s 2.72482 s 116.87681 s 3.0745 s 120.23918 s

4.5.4. Energy Consumption during the kNN Search

Figure 16 presents the energy consumption during the parallel kNN search with
k = 100 in indexes constructed using CV, CNI and IEI methods. For the four datasets
chosen, the CNI method consumed more energy than the CV and IEI methods. This
was anticipated because using the CNI method results in the creation of more indexes.
Furthermore, the use of parallelism causes an increase in energy consumption across all
indexes. The energy consumption during the 100NN search in the CV-created indexes was
comparable to that of the IEI method, reflecting its efficiency when indexing continuous
data streams.

Although the kNN search time in indexes constructed with the CNI and IEI meth-
ods was comparable to the above-mentioned methods, some of their characteristics are
undesirable for continuous IoT data stream indexing. The CNI method can dynamically
index a continuous IoT data stream, resulting in many indexes. The construction of these

Big Data Cogn. Comput. 2023, 7, 119 21 of 24

indices is an expensive process in terms of the numbers of distances and comparisons,
computing time, and energy consumption. The cost of the number of distances, the number
of comparisons, the time, and energy consumed by search computing during the kNN
query search increases as the number of indexes increases. Furthermore, creating a large
number of indexes increases the risk of memory overload, which has a negative impact
on the indexing process of continuous IoT data. The IEI method indexes the continuous
IoT data stream at a low computational cost in terms of distances, comparisons, and time.
However, it is not designed to handle continuous IoT data streams. The inclusion of many
different elements from the continuous incoming data in a small number of indexes raises
their heights and decreases their similarities because the insertion criterion is the shortest
distance between the existing and incoming cluster centers. Increasing the depth of indexes,
while decreasing their similarities, may result in an increase in the number of distances,
comparisons, and times required for kNN search computations. Furthermore, inserting a
large number of elements means indexes, constructed using the IEI method, are exposed to
the degradation problem.

CNI method IEI method CV method
0.000
0.005
0.010
0.015
0.020
0.025
0.030

GPS trajectory

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Tracking dataset

 E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

01020304050607080
WARD

0.00.10.20.30.40.50.60.70.8

Proposed methods

Traffic dataset

Figure 16. Energy consumption during the 100NN search for CNI, IEI and CV methods.

When compared to the CNI and IEI methods, the CV method was more capable
of dynamically indexing the continuous IoT data stream. The coefficient of variation
(CV) determines whether the resulting cluster is similar or dissimilar to the existing and
incoming clusters. If the union of clusters is similar, incoming elements are inserted into
the corresponding existing cluster index, and if not, a new index is built from the incoming
cluster. Having similar elements in each index lowers the cost of computing the numbers of
distances and comparisons, energy consumption, and kNN query search time. Furthermore,
the ability to create new indexes in cases where the union of clusters is not similar, which
makes this method suitable for indexing continuous IoT data streams. Using the CV
method, the problems of an infinite number of indexes and index degradation are avoided
and the construction of new indexes with low-energy consumption and no data overlap
is guaranteed.

5. Conclusions

This paper presented the CV method for indexing continuous data streams. The first
data stream was clustered using the DBSCAN algorithm at the clustering fog level. The first
clusters were stored in the clusters processing fog level, and their corresponding BH-trees

Big Data Cogn. Comput. 2023, 7, 119 22 of 24

were built in the indexing fog level. The incoming cluster either created a new BH-tree or
was inserted into an existing BH-tree, depending on the value of the coefficient of variation
(CV) of the union of the incoming cluster and the existing clusters. Two other scenarios
were proposed for comparison to test the efficiency of our proposed method. In the first
scenario, known as the CNI method, each arrival cluster created its own BH-tree.

In the second scenario, known as the IEI method, the objects of the arrival cluster were
inserted into an existing BH-tree when the distances between the arrival center cluster
and the representative center clusters of the existing indexes were the shortest. In the
evaluation of BH-tree construction, the IEI method outperformed the CV and CNI methods.
The parameters of the CV method were always located between those of the CNI and IEI
methods. The three proposed methods for parallel kNN query search were more efficient
than other methods in the literature. In terms of energy consumption, the CV method
outperformed the CNI and IEI methods. In future work, we propose to address issues
related to geographic and conceptual/domain clustering, as well as to focus on how the
effectiveness of the proposed method can be ensured in the movement of data providers
from one region to another.

Author Contributions: Conceptualization, K.K., Z.K. and B.F.; methodology, Z.K., H.S. and B.F.;
software, K.K., Z.K. and B.F.; validation, K.K., Z.K., M.A.F. and B.F.; investigation, K.K., Z.K., H.S.
and B.F.; resources, K.K., Z.K. and B.F.; data curation, K.K., Z.K. and B.F.; writing—original draft
preparation, K.K., Z.K., M.A.F. and B.F.; writing—review and editing, K.K., Z.K., M.A.F. and B.F.;
visualization, K.K., Z.K., M.A.F. and B.F.; supervision, H.S. and M.A.F.; project administration, H.S.,
Z.K., and B.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The
GPS trajectory dataset is available in: https://archive.ics.uci.edu/ml/datasets/GPS+Trajectories
(accessed on 11 May 2021). The tacking dataset is available in: https://drive.google.com/file/d/1B2
Yd2S2b0mLh2tUZjpNNzxrdDrZxvH0b/view?usp=sharing (accessed on 5 April 2021) The WARD
dataset is available in: https://people.eecs.berkeley.edu/~yang/software/WAR/ (accessed on 5 De-
cember 2021). The traffic dataset is available in: https://networkrepository.com/road.php (accessed
on 13 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bangui, H.; Ge, M.; Buhnova, B. Exploring Big Data Clustering Algorithms for Internet of Things Applications. In Proceedings of

the IoTBDS, Funchal, Portugal, 19–21 March 2018; pp. 269–276.
2. Fathy, Y.; Barnaghi, P.; Tafazolli, R. Large-scale indexing, discovery, and ranking for the Internet of Things (IoT). ACM Comput.

Surv. (CSUR) 2018, 51, 1–53. [CrossRef]
3. Demchenko, Y.; Grosso, P.; De Laat, C.; Membrey, P. Addressing big data issues in scientific data infrastructure. In Proceedings

of the 2013 International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA, 20–24 May 2013;
pp. 48–55.

4. Zhong, Y.; Fang, J.; Zhao, X. VegaIndexer: A distributed composite index scheme for big spatio-temporal sensor data on cloud. In
Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26
July 2013; pp. 1713–1716.

5. Zhou, Y.; De, S.; Wang, W.; Moessner, K. Enabling query of frequently updated data from mobile sensing sources. In Proceedings
of the 2014 IEEE 17th International Conference on Computational Science and Engineering, Chengdu, China, 19–21 December
2014; pp. 946–952.

6. Gao, X.; Gao, Y.; Zhu, Y.; Chen, G. U 2-Tree: A Universal Two-Layer Distributed Indexing Scheme for Cloud Storage System.
IEEE/ACM Trans. Netw. 2019, 27, 201–213. [CrossRef]

7. Mehta, N.; Dang, S. A Review of Clustering Techiques in various Applications for Effective Data Mining. Int. J. Res. IT Manag.
2011, 1, 2231–4334.

https://archive.ics.uci.edu/ml/datasets/GPS+Trajectories
https://drive.google.com/file/d/1B2Yd2S2b0mLh2tUZjpNNzxrdDrZxvH0b/view?usp=sharing
https://drive.google.com/file/d/1B2Yd2S2b0mLh2tUZjpNNzxrdDrZxvH0b/view?usp=sharing
https://people.eecs.berkeley.edu/~yang/software/WAR/
https://networkrepository.com/road.php
http://doi.org/10.1145/3154525
http://dx.doi.org/10.1109/TNET.2019.2891008

Big Data Cogn. Comput. 2023, 7, 119 23 of 24

8. Makhmutova, A.; Anikin, I. Uncertain Big Data Stream Clustering. In Cyber-Physical Systems; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 361–372.

9. Alencar, B.M.; Rios, R.A.; Santana, C.; Prazeres, C. FoT-Stream: A Fog platform for data stream analytics in IoT. Comput. Commun.
2020, 164, 77–87. [CrossRef]

10. Jiang, Y.; Bi, A.; Xia, K.; Xue, J.; Qian, P. Exemplar-based data stream clustering toward Internet of Things. J. Supercomput. 2020,
76, 2929–2957. [CrossRef]

11. Huang, C.Y.; Chang, Y.J. An adaptively multi-attribute index framework for big IoT data. Comput. Geosci. 2021, 155, 104841.
[CrossRef]

12. Limkar, S.V.; Jha, R.K. A novel method for parallel indexing of real time geospatial big data generated by IoT devices. Future
Gener. Comput. Syst. 2019, 97, 433–452. [CrossRef]

13. Xia, J.; Huang, S.; Zhang, S.; Li, X.; Lyu, J.; Xiu, W.; Tu, W. DAPR-tree: a distributed spatial data indexing scheme with data access
patterns to support Digital Earth initiatives. Int. J. Digit. Earth 2020, 13, 1656–1671. [CrossRef]

14. Chaudhry, N.; Yousaf, M.M.; Khan, M.T. Indexing of real time geospatial data by IoT enabled devices: Opportunities, challenges
and design considerations. J. Ambient. Intell. Smart Environ. 2020, 12, 281–312. [CrossRef]

15. Chen, L.; Gao, Y.; Song, X.; Li, Z.; Miao, X.; Jensen, C.S. Indexing metric spaces for exact similarity search. arXiv 2020,
arXiv:2005.03468.

16. Zhang, R.; Manotas, I.; Li, M.; Hildebrand, D. Towards a big data benchmarking and demonstration suite for the online social
network era with realistic workloads and live data. In Proceedings of the BPOE; Kohala, HI, USA, 31 August–4 September 2015;
pp. 25–36.

17. Ma, K.; Bagula, A.; Nyirenda, C.; Ajayi, O. An iot-based fog computing model. Sensors 2019, 19, 2783. [CrossRef]
18. Din, I.U.; Guizani, M.; Hassan, S.; Kim, B.S.; Khan, M.K.; Atiquzzaman, M.; Ahmed, S.H. The Internet of Things: A review of

enabled technologies and future challenges. IEEE Access 2018, 7, 7606–7640. [CrossRef]
19. Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT data analytics: architecture,

opportunities, and open research challenges. IEEE Access 2017, 5, 5247–5261.
20. Han, J.; Kamber, M. Data Mining Concepts and Techniques, 2nd ed.; Stephan, A., Ed.; Morgan Kaufmann Publishers Inc.:

San Francisco, CA, USA; Elsevier Inc.: San Francisco, CA, USA, 2006; Volume 40, pp. 347–350.
21. Krishna, K.; Murty, M.N. Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. 1999, 29, 433–439. [CrossRef]
22. Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An efficient data clustering method for very large databases. ACM Sigmod Rec.

1996, 25, 103–114. [CrossRef]
23. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.

In Proceedings of the KDD, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231.
24. Wang, J.; Wu, S.; Gao, H.; Li, J.; Ooi, B.C. Indexing multi-dimensional data in a cloud system. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of Data, Indianapolis, IN, USA, 6–10 June 2010; pp. 591–602.
25. Wu, S.; Jiang, D.; Ooi, B.C.; Wu, K.L. Efficient B-tree based indexing for cloud data processing. Proc. VLDB Endow. 2010,

3, 1207–1218. [CrossRef]
26. Feng, C.; Yang, X.; Liang, F.; Sun, X.H.; Xu, Z. LCIndex: A local and clustering index on distributed ordered tables for flexible

multi-dimensional range queries. In Proceedings of the 2015 44th International Conference on Parallel Processing, Beijing, China,
1–4 September 2015; pp. 719–728.

27. Hong, Y.; Tang, Q.; Gao, X.; Yao, B.; Chen, G.; Tang, S. Efficient R-tree based indexing scheme for server-centric cloud storage
system. IEEE Trans. Knowl. Data Eng. 2016, 28, 1503–1517. [CrossRef]

28. Ciaccia, P.; Patella, M.; Zezula, P. M-tree: An efficient access method for similarity search in metric spaces. In Proceedings of the ,
23rd International Conference on Very Large Data Bases, Athens, Greece, 25–29 August 1997; Volume 97, pp. 426–435.

29. Kouahla, Z.; Martinez, J. A new intersection tree for content-based image retrieval. In Proceedings of the 2012 10th International
Workshop on Content-Based Multimedia Indexing (CBMI), Annecy, France, 27–29 June 2012; pp. 1–6.

30. Kouahla, Z.; Anjum, A.; Akram, S.; Saba, T.; Martinez, J. XM-tree: data driven computational model by using metric extended
nodes with non-overlapping in high-dimensional metric spaces. Comput. Math. Organ. Theory 2019, 25, 196–223. [CrossRef]

31. Benrazek, A.E.; Kouahla, Z.; Farou, B.; Ferrag, M.A.; Seridi, H.; Kurulay, M. An efficient indexing for Internet of Things massive
data based on cloud-fog computing. Trans. Emerg. Telecommun. Technol. 2020, 31, e3868. [CrossRef]

32. Khettabi, K.; Kouahla, Z.; Farou, B.; Seridi, H. QCCF-tree: A New Efficient IoT Big Data Indexing Method at the Fog-Cloud
Computing Level. In Proceedings of the 2021 IEEE International Smart Cities Conference (ISC2), Manchester, UK, 7–10 September
2021; pp. 1–7.

33. Wang, S.; Maier, D.; Ooi, B.C. Lightweight indexing of observational data in log-structured storage. Proc. VLDB Endow. 2014,
7, 529–540. [CrossRef]

34. Doan, Q.T.; Kayes, A.; Rahayu, W.; Nguyen, K. Integration of iot streaming data with efficient indexing and storage optimization.
IEEE Access 2020, 8, 47456–47467. [CrossRef]

35. Ding, Z.; Xu, J.; Yang, Q. SeaCloudDM: A database cluster framework for managing and querying massive heterogeneous sensor
sampling data. J. Supercomput. 2013, 66, 1260–1284. [CrossRef]

36. Balakrishna, S.; Thirumaran, M.; Solanki, V.K.; Núñez Valdéz, E.R. Incremental hierarchical clustering driven automatic
annotations for unifying IoT streaming data. Int. J. Interact. Multimed. Artif. Intell. 2020, 6, 56–70.

http://dx.doi.org/10.1016/j.comcom.2020.10.001
http://dx.doi.org/10.1007/s11227-019-03080-5
http://dx.doi.org/10.1016/j.cageo.2021.104841
http://dx.doi.org/10.1016/j.future.2018.09.061
http://dx.doi.org/10.1080/17538947.2020.1778804
http://dx.doi.org/10.3233/AIS-200565
http://dx.doi.org/10.3390/s19122783
http://dx.doi.org/10.1109/ACCESS.2018.2886601
http://dx.doi.org/10.1109/3477.764879
http://dx.doi.org/10.1145/235968.233324
http://dx.doi.org/10.14778/1920841.1920991
http://dx.doi.org/10.1109/TKDE.2016.2526006
http://dx.doi.org/10.1007/s10588-018-9272-x
http://dx.doi.org/10.1002/ett.3868
http://dx.doi.org/10.14778/2732286.2732290
http://dx.doi.org/10.1109/ACCESS.2020.2980006
http://dx.doi.org/10.1007/s11227-012-0762-1

Big Data Cogn. Comput. 2023, 7, 119 24 of 24

37. Mukherjee, M.; Matam, R.; Shu, L.; Maglaras, L.; Ferrag, M.A.; Choudhury, N.; Kumar, V. Security and privacy in fog computing:
Challenges. IEEE Access 2017, 5, 19293–19304. [CrossRef]

38. Al-mamory, S.O.; Algelal, Z.M. A modified DBSCAN clustering algorithm for proactive detection of DDoS attacks. In Proceedings
of the 2017 Annual Conference on New Trends in Information & Communications Technology Applications (NTICT), Baghdad,
Iraq, 7–9 March 2017; pp. 304–309.

39. Khettabi, K.; Kouahla, Z.; Farou, B.; Seridi, H.; Ferrag, M.A. Clustering and parallel indexing of big IoT data in the fog-cloud
computing level. Trans. Emerg. Telecommun. Technol. 2022, 33, e4484. [CrossRef]

40. Liu, T.; Qu, S.; Zhang, K. A Clustering Algorithm for Automatically Determining the Number of Clusters Based on Coefficient
of Variation. In Proceedings of the 2nd International Conference on Big Data Research, Weihai, China, 27–29 October 2018;
pp. 100–106.

41. Cruz, M.; Macedo, H.T.; Guimarães, A.P. Grouping Similar Trajectories for Carpooling Purposes. In Proceedings of the 2015
Brazilian Conference on Intelligent Systems (BRACIS), Natal, Brazil, 4–7 November 2015; pp. 234–239.

42. Yang, A.Y.; Jafari, R.; Sastry, S.S.; Bajcsy, R. Distributed recognition of human actions using wearable motion sensor networks. J.
Ambient. Intell. Smart Environ. 2009, 1, 103–115. [CrossRef]

43. Rossi, R.; Ahmed, N. The network data repository with interactive graph analytics and visualization. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.

44. Wu, H.Y.; Lee, C.R. Energy efficient scheduling for heterogeneous fog computing architectures. In Proceedings of the 2018 IEEE
42nd annual computer software and applications conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; Volume 1, pp. 555–560.

45. Khettabi, K.; Kouahla, Z.; Farou, B.; Seridi, H.; Ferrag, M.A. A new method for indexing continuous IoT data flows in metric
space. Internet Technol. Lett. 2022, e391. [CrossRef]

46. Sprenger, S.; Schäfer, P.; Leser, U. Bb-tree: A main-memory index structure for multidimensional range queries. In Proceedings of
the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; pp. 1566–1569.

47. Jin, S.; Kim, O.; Feng, W. MX-tree: a double hierarchical metric index with overlap reduction. In Proceedings of the Computational
Science and Its Applications—ICCSA 2013: 13th International Conference, Ho Chi Minh City, Vietnam, 24–27 June 2013; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 574–589.

48. Berchtold, S.; Keim, D.A.; Kriegel, H.P. The X-tree: An index structure for high-dimensional data. In Proceedings of the Very
Large Data-Bases, Mumbai, India, 3–6 September 1996; pp. 28–39.

49. Uhlmann, J.K. Satisfying general proximity/similarity queries with metric trees. Inf. Process. Lett. 1991, 40, 175–179. [CrossRef]
50. Zhang, K.; Zhou, W.; Sun, S.; Li, B. Multiple complementary inverted indexing based on multiple metrics. Multimed. Tools Appl.

2019, 78, 7727–7747. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2017.2749422
http://dx.doi.org/10.1002/ett.4484
http://dx.doi.org/10.3233/AIS-2009-0016
http://dx.doi.org/10.1002/itl2.391
http://dx.doi.org/10.1016/0020-0190(91)90074-R
http://dx.doi.org/10.1007/s11042-018-6439-x

	Introduction
	Related Work
	Proposed Approach
	Clustering Method
	CV Method
	Indexing Method
	The kNN Similarity Queries Search
	CNI Method
	IEI Method

	Experimentation
	Experimental Settings
	Evolution of the Number of Indexes with Data Stream
	Evaluation of Index Construction
	Number of Calculated Distances
	Number of Calculated Comparisons
	Indexing Time
	Energy Consumption during the Indexing

	Quality of the Constructed BH-Trees
	Average Height of BH-Trees
	Average Number of Internal Nodes
	Number of Nodes per Level
	Data Distribution in BH-Tree Leaves

	Evaluation of the Parallel kNN Search in BH-Trees
	Number of Calculated Distances
	Number of Calculated Comparisons
	Time of Search
	Energy Consumption during the kNN Search

	Conclusions
	References

