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Abstract: Internet of Things (IoT) systems include many smart devices that continuously generate
massive spatio-temporal data, which can be difficult to process. These continuous data streams need
to be stored smartly so that query searches are efficient. In this work, we propose an efficient method,
in the fog-cloud computing architecture, to index continuous and heterogeneous data streams in
metric space. This method divides the fog layer into three levels: clustering, clusters processing and
indexing. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is
used to group the data from each stream into homogeneous clusters at the clustering fog level. Each
cluster in the first data stream is stored in the clusters processing fog level and indexed directly in
the indexing fog level in a Binary tree with Hyperplane (BH tree). The indexing of clusters in the
subsequent data stream is determined by the coefficient of variation (CV) value of the union of the
new cluster with the existing clusters in the cluster processing fog layer. An analysis and comparison
of our experimental results with other results in the literature demonstrated the effectiveness of the
CV method in reducing energy consumption during BH tree construction, as well as reducing the
search time and energy consumption during a k Nearest Neighbor (kNN) parallel query search.

Keywords: continuous IoT data stream; clustering; indexing; BH tree; variation; parallel kNN
query search

1. Introduction

IoT data is continually collected from a wide range of devices and sensors, which
gives it some characteristics such as homogeneity within heterogeneity, data record size,
time series format, dynamism [1], distribution and spatio-temporality [2] in addition to
other big data characteristics [3]. These characteristics involve some issues, such as data
overlapping and cloud computing latency, that make data searching and storage more
difficult. To address these issues, many indexing methods for data storage have been
proposed [4–6]. However, not all of the indexing methods are appropriate for the ever-
changing IoT environment, due to the endless flow of heterogeneous IoT data. Before
storage, the heterogeneous data streams in IoT must be processed and analyzed using
novel methods appropriate to the evolutionary nature of the IoT environment. A novel
process entails, in the first step, partitioning each IoT data stream into homogeneous
groups, or clusters, before indexing in the second step. The data objects in each of the
clusters are similar, but the clusters are dissimilar [7]. Several achievements in data stream
clustering research [8,9] have been made. The current data stream clustering frameworks
include four types of methods: partition-based, hierarchy-based, density-based and model-
based methods [10]. Before being indexed in the second step, each cluster of the next data
stream is compared to the existing clusters, and so on. The existing indexing structures for
generating IoT data address the volume [11,12] and variety of types [13,14] but, in doing
so, have limited efficiency. In comparison to multidimensional space, the metric space is
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ideal for addressing variety because it supports all types of data as long as its associated
distance concept satisfies the triangular inequality. Metric Access Methods (MAMs) [15]
can also be used to search for data in indexes in the metric space.

As a result of the progress in IoT device networking and communication, as well as
some online applications and platforms, such as Google, Amazon, IBM, and Facebook, the
architecture of the internet has become less efficient in supporting continuous streams of
IoT and industrial IoT data, such as satellite imaging, social media, emails, and others. This
large volume of data results in a significant processing load [16]. Thus, researchers have
been using technological advancements and fog-cloud computing architecture to analyze
and store massive amounts of IoT data. The cloud-computing layer, the fog-computing
layer, and the terminal layer are all part of this architecture (Figure 1). The terminal layer is
a multi-hop self-organizing sensors network made up of many nodes that are distributed
throughout an area and frequently have wireless interconnection [17]. The fog-computing
layer is located between the cloud and terminal layers. It is located at the network’s edge,
close to the terminal layer [17]. The cloud computing layer is responsible for recovering
and executing information derived from the other layers. A diverse set of applications
can manage a large amount of heterogeneous IoT data in the cloud layer in a precise
manner [18].

Control
Accelerators

Network
Storage

Computation Accelerators

Network Storage

Computation Control

Analysis Service

Monitor Batch

Scheduler

Figure 1. Fog-Cloud computing architecture.

This paper proposes an effective approach in fog-cloud computing architecture. The
aim is to overcome data volume problems, encountered in [11,12] and the variety of
types [13,14], to organize and store the continuous flow of IoT data and to accelerate
searches in the dynamic IoT environment. IoT data in the terminal layer is characterized
by heterogeneity, noise, diversity, and rapid growth because it is collected from various
devices [19]. The fog layer is divided into three levels for the organization of each IoT
data stream: clustering fog level, clusters processing fog level, and indexing fog level
(Figure 2). Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is
used for clustering at the fog level because it is the best algorithm for grouping diverse
IoT data into homogeneous and high-density clusters. Outliers, or noise generated by
data stream clustering, could be kept waiting for similar values from arriving streams.
DBSCAN is an algorithm that is based on density accessibility and density connectivity.
It requires two initial parameters: the cluster’s radius Eps and the minimum number of
points MinPts [20].
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Figure 2. Architecture of the CV method.

Compared with other clustering algorithms, such as k-means [21] and Balanced Itera-
tive Reducing and Clustering using Hierarchies(BIRCH) [22], DBSCAN can find irregularly
shaped clusters, and is robust in detecting outliers [23]. Each cluster of the first data stream
is stored in the cluster’s processing fog level and is directly indexed in the indexing fog
level in a Binary tree with Hyper-plane (BH-tree). After DBSCAN clustering, the index-
ing of arrival data streams is based on a comparison of the arrival cluster’s coefficient
of variation (CV) value and those of the arrival cluster’s unions with existing clusters in
the clusters processing fog level. The arrival cluster is either directly indexed in a new
BH-tree or inserted into an existing index, based on the minimum CV value. To assess
its effectiveness, this approach is compared to two other scenarios. The fog layer in the
IoT architecture is divided into only clustering and indexing levels in these scenarios. The
first scenario, known as the Creation of a New Index (CNI) method, directly indexes data
from each arrival cluster using a BH-tree. The second scenario, known as Insertion in
an Existing Index (IEI) method, involves inserting data from each arrival cluster into an
existing BH-tree.

The remainder of the paper is organized as follows. Section 2 introduces some methods
for multidimensional and metric space clustering and indexing. Section 3 introduces
the proposed approach with two scenarios for comparison and Section 4 describes the
experimentation. The section on experimentation is divided into two parts. The first section
describes the experimental platform and the datasets, while the second section presents,
analyzes, and discusses the CV method’s experimental results, such as an evaluation of the
BH-tree construction and the parallel kNN query search. Section 5 of the paper concludes
with directions for future work.

2. Related Work

Existing approaches for indexing IoT data, whether in multidimensional [6,24–27] or
metric space [28–32], do not provide efficient mechanisms for IoT data storage, despite
their dynamic natures and continuous growth. There have been few publications in the
field of continuous IoT data stream indexing. Wang et al. [33] proposed the Continuous
Range Index (CR-index) as a method for indexing observed data, based on its value
ranges and type attributes. The CR-index constructs a compact indexing scheme in which
measurement and observation data items are aggregated into boundary blocks, based on
their interval blocks. The indexes are designed to respond to range queries. This method,
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however, can only index data with a single dimension [2]. In [11], the authors presented a
multi-attribute index combination. This method employs four types of attributes: spatial,
temporal, keyword, and value. Each attribute has its indexing method, and the inclusion of
these four indexes in a combined index necessitates a specific sequencing that determines
the query search’s performance. By considering all possible sequences and automatically
determining the most efficient combined index for each query, query search performance is
improved. This approach focuses on improving query search performance, and the authors
do not specify how to store indexed IoT data [11].

Doan et al. [34] introduced an indexing model for IoT data that includes a lossless
compression technique as well as the advantages of bit-padding, bit-blocking, and Huffman
coding. It reduces data size during compression, which eliminates the need for fixed eight-
bit streams. The index is based on timestamps and allows access to compressed data
without requiring full decompression. This information is linked in during the compression
process. The goal of this framework was to create indexing within lossless compression
for floating-point time series data. This framework, according to the authors, needs to be
improved by addressing temporal alignment and de-duplication issues when IoT streaming
data is sourced from multiple devices. In SeaCloudDM [35], continuous data generated by
IoT devices is received, stored, and processed in a sea-computing layer. The sea-computing
layer generates numeric key sample values that are much smaller than the original data
from the devices. This key sample data is sent to the cloud data management layer to be
processed later. To manage SQL queries and keyword searches, a combined Relational
Data-Base and Key-Value (RDB–KV) store cloud data management model is used. However,
because this method manages massive amounts of data from disparate sensors in the cloud,
it suffers from latency issues. The methods mentioned above have limitations that limit their
effectiveness. The CR-index’s unique dimension renders it useless for higher-dimensional
data [33]. Given the use of a multi-attribute index, this method is not applicable to all data
types [11]. The use of indexes based on timestamps adapt this method to a specific type
of data [34]. The SeaCloudDM [35], like other cloud methods, suffers from latency issues,
making it insufficient when processing continuous big IoT data.

To avoid these limitations during the indexing of the continuous data stream, we use
the fog-cloud architecture to reduce latency in this work. The current approach is developed
in the metric space, due to its ability to process data of various types and dimensions, as
only distances between objects are used in this space. The fog layer is divided into three
levels in the proposed approach: the clustering fog level, the clusters processing fog level,
and the indexing fog level. In the clustering fog layer, the first arrival data are grouped
into homogeneous clusters using the DBSCAN algorithm. These clusters are stored in the
clusters processing fog layer, and their objects are indexed in the indexing fog layer in a
Binary tree with Hyper-plane (BH-tree). Objects in the clusters processing fog level are
indexed or inserted in existing BH-trees based on the value of the coefficient of variation
(CV) in the clusters processing fog level. The division of continuous data into groups, or
clusters, of similar objects may greatly aid in indexing. For example, Balakrishna et al. [36]
proposed the Incremental Clustering Driven Automatic Annotation for IoT Streaming Data
(IHC-AA-IoTSD). It is an automatic annotation mechanism for streaming semantic data
generated by IoT sensors using incremental hierarchical clustering. SPARQL queries are
used to extract semantic annotations from hierarchical clustered data. This mechanism,
according to the authors, can be improved by using a hash table (key–value pair) to
store SPARQL queries. Furthermore, artificial intelligence systems require lightning-fast
decisions. The IHC-AA-IoTSD has a total time complexity of T(n) = θ(n3). Clusters are
formed automatically in the DBSCAN algorithm [23], and outliers are easily detected and
compared with objects in the next data stream.

3. Proposed Approach

IoT allows devices (sensors, actuators) to communicate and share information with
one another. These devices are diverse, and they are typically deployed in distributed and
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dynamic environments across a large geographical area. These devices generate data in a
variety of formats, including textual, numerical, streaming, and multimedia data [2]. Due
to the dynamism and diversity of types and dimensions, storing these continuous streams
of IoT data and determining an efficient retrieval method involve significant challenges.
The cloud-fog computing architecture (Figure 1) is used for the storage and indexing of the
continuous IoT data stream, and is located in the terminal layer. Geographically dispersed
IoT devices generate massive amounts of diverse data on a continuous basis. The indexing
of this continuous data stream is carried out in the fog computing layer due to its numerous
characteristics, such as reduction of service latency, provision of real-time applications, and
the processing capacity of a large number of nodes [37].

The fog layer is divided into three levels in this work: clustering fog level, clusters
processing fog level, and indexing fog level (Figure 2). Each data stream from the terminal
layer is grouped into homogenous clusters at the clustering fog level. The first data stream’s
clusters are stored in the clusters processing fog layer, and their objects are directly indexed
in separate BH-trees in the indexing fog layer. In the clusters processing fog level, a new BH-
tree is constructed for the arrival data streams. On the basis of the coefficient of variation
(CV) value of the clusters, or objects, the arrival cluster is inserted into an existing BH-tree.
The additional work introduced in each layer has no effect on the processing capabilities of
fog nodes because the number of sensors installed automatically gives rise to a suitable
type of hardware to capture, process, and transmit data from the sensors. This means
that having many sensors requires a lot of power from the fog (this condition is ensured
during the installation process). Furthermore, the Fog’s three-level architecture, with level
specialization, allows for smoother processing. Detailed descriptions of the clustering,
CV, and indexing methods are presented in the following sections. The definitions of the
parameters used in this approach are regrouped in Table 1.

Table 1. Table of notations.

Abbreviation Explantation

N Number of the first clusters
K Number of the arrival clusters
Cln {n = 1...N} Clusters of the first data stream
Cl
′

k {k = 1...K} Clusters of the arrival data stream
cn {n = 1...N} Cluster centers of the first data stream
c
′

k {k = 1...K} Cluster centers of the arrival data stream
Cl
′

k ∪ Cln Union of the arrival clusters Cl
′

k and the first
clusters Cln

d(cn, c
′

k) Distance between two centers
In, {n = 1...N} Set of indexes
Mind Minimum distances between the centers

of the existing clusters and the incoming clusters
p1,p2 Pivots
E Set of elements
LN Leaf node
IN Inner node
o Object
L Left sub tree
R Right sub tree
q Query
rq Radius for recovering k objects closes to q
A List in with, the set of k objects is stored
B(q, rq) Query ball q with radius rq

3.1. Clustering Method

In the clustering fog level, each data stream sent by the terminal layer is collected
and grouped in N clusters Cln with {n = 1...N}. The Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm [38] is used. It is modified by the intro-
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duction of the calculation of the cluster centers (cn) for the coefficient of variation (CV).
Each cluster Cln contains similar elements. Since Fog nodes do not have the same storage
and processing capacities, the triggering of the clustering process is closely related to the
storage capacity. This condition allows one to move beyond congestion and conceptual
bottlenecks and tailor processing to the capabilities of the fog node.

The DBSCAN algorithm is one of the most used data clustering methods [7], based on
the connection of points within a specific distance threshold. However, it only connects
points that meet a density threshold (the number of objects in a radius). The DBSCAN
algorithm divides the data into arbitrarily shaped clusters. Each cluster contains all the
objects connected by the density. This clustering method was chosen because DBSCAN
clusters form automatically, whereas the k-means algorithm, for example, requires the
number of clustersto be determined before clustering. Furthermore, the DBSCAN algorithm
is robust in the detection of outliers, which are considered to be objects that wait for other
similar objects in the next data stream. The complexity of the DBSCAN algorithm for
grouping a dataset of o objects into N clusters is O(o.d) [39] where, o = oc1 + oc2 + . . . + ocN
which could be written as o = N.mean(oc), oc is the number of objects per cluster, and d is
the average number of neighbors. This gives the final form of the DBSCAN algorithm’s
complexity for each data stream, which is O(N.mean(oc).d).

3.2. CV Method

The coefficient of variation (CV) is used as a criterion in the clusters processing fog
level to determine whether a cluster of the arrival data stream should be inserted in an
existing BH-tree or indexed in a new BH-tree. The coefficient of variation is a statistical
measure of data point dispersion around the mean in a dataset. It represents the standard
deviation to mean ratio. The coefficient of variation has the advantage of being insensitive
to data type and dimension [40]. The processing of the fog level clusters contains clusters
from the first data stream Cln. Each cluster of the arrival data stream Cl

′
k is unified with a

copy of all the existing clusters Cln (Algorithm 1) at this fog level (Figure 3). Subsequently,
the CV of the cluster of the arrival data stream CVCl′k

and the CVs of the union of this

cluster with every existing cluster CVCl′k∪Cln
are determined. If the cluster of the arrival

data stream Cl
′
k has the minimum value of CV, a new BH-tree is constructed in the indexing

fog level. The cluster Cl
′
k is stored with the existing clusters Cln in the clusters processing

fog level. If the minimum value of CV corresponds to the union of the cluster of the arrival
data stream with an existing cluster Cl

′
k ∪ Cln, objects in the arrival cluster Cl

′
k are inserted

into the BH-tree of the corresponding existing cluster Cln.
Since the CV calculation of the union of one arrival cluster with the first clusters is

parallel, the complexity for all clusters is taken as the complexity for the CV calculation
of the cluster with the maximum number of objects ocmax. It represents approximately
2mean(oc) and is given by O(mean(oc)). Since the comparison of N arrival clusters with
existing clusters is sequential, the complexity of the CV method for each data stream is
O(N.mean(oc)).The CV method processes clusters rather than data, which allows it to
significantly reduce processing time, despite polynomial complexity, because the number
of clusters is negligible in comparison to the number of data. This is due to the DBSCAN
method’s capabilities, which allow it to detect all clusters, even those with a convex shape.
The method, in fact, consider only true clusters, while the others are classified as noise.
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Algorithm 1 CV method

Require: Cl = {Cl1...Cln, n = 1...N} Cl
′
= {Cl

′
1...Cl

′
k, k = 1...K}

Ensure: Im
for each data stream do

for cl
′ ∈ Cl

′
do

CVcl′ ←Calculate the coefficient of variation of the new cluster (cl
′
)

for cl ∈ Cl do
CVcl′∪cl ← Calculate the coefficient of variation of (Cl

′ ∪ Cl)
if CVcl′ < CVcl′∪cl then

create new index (cl
′
)

else
insert cl

′
in In

end if
end for

end for
end for

C1 C3

C2

Cn

C4

BH-tree 1

BH-tree 2

BH-tree 3

BH-tree 4

BH-tree n

First clusters

C1 U C1’ C3 U C1’

C2 U C1’

Cn U C1’

C4 U C1’

C1’

Arrival cluster

CVmin

New BH-tree

Construction of a new BH-tree with data 
of the arrival cluster

Insertion of the arrival data in a 
existing BH-tree

Figure 3. CV method at the cluster processing level.

3.3. Indexing Method

The binary tree with hyper-plane (BH-tree) used in the indexing fog layer is based
on a recursive division of space by a hyper-plane into two regions via two pivots p1, p2
chosen as the two farthest elements. In the set E, elements closer to p1 belong to the first
region, while those closer to p2 belong to the second region. This prevents regions from
overlapping when answering queries. Firstly, a leaf node LN contains a subset ELN of
objects with ELN ⊆ E. Secondly, an inner node IN consists of two elements and two
children: (p1, p2, L, R) ∈ O2 × IN 2. That is :

• p1,p2 are two unconfused objects, d(p1, p2) = dmax, called “pivots”. They define the
hyper-plane.

• L is a left sub-tree and R is a right sub-tree.

The construction of the BH-tree is realized incrementally. The insertion is top–down.

3.4. The kNN Similarity Queries Search

The search algorithm gives an answer to query q with radius rq to recover the k objects
closest to q (Algorithm 2). The set of k objects is stored in the list A. To address the queries,
the kNN algorithm on the BH-tree is applied by starting from the root to its leaves. The
search is performed by calculating the distance between the query point and the two pivots
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p1 or p2, going down the tree, and determining whether the search should continue on the
left branch (L) or the right branch (R). The query starts with a radius rq = +∞ and, then,
decrements by traversing each sub-tree that corresponds to the distance to the ke object in
the order list A. Parallelism is also used in this work in the similarity search query process
to minimize retrieve time to make the kNN search more efficient [39]. The complexity of the
kNN search across all indexes could be reduced to the complexity of a single index search.
The CV method is tested against two other scenarios to determine its effectiveness. The fog
layer only contains the clustering and indexing levels in these scenarios. The first scenario
is known as the Creation of a New Index (CNI) method, while the second is known as the
Insertion into an Existing Index (IEI) method.

Algorithm 2 The kNN search in the BH-tree

kNN-BH-tree


IN ∈ N ,
q ∈ Rn,
k ∈ N∗,
d : O ×O → R+,
rq ∈ R+ = +∞,
A ∈ (R+ ×O)N = ∅

 ∈ (R+ ×O)N

with:
(p1, p2, L, R) = IN
d1 = d(p1, q)
d2 = d(p2, q)
B(q, rq) query ball q with radius rq
if IN == NULL then

return A
else

Calculate the distances d1 and d2
if |A| < k then

rq ← +∞
else

r ← A
end if
for i ∈ (0, 1) do

if di < rq then
A← k− Insert(k, A, (di, pi))

end if
for each node IN do

if B(q, rq) ∩ IN 6= ∅ then
A← kNN − BH − tree(INi, q, k, d, rq, A)

end if
end for

end for
end if

3.4.1. CNI Method

Objects in the arrival data stream’s Cl
′

are indexed in a new BH-tree in this scenario.
Algorithm 3 includes a description of this method, which is straightforward, and there is
no need to compare it to existing clusters or indexes. The CNI method generates indexes of
objects that are similar.
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Algorithm 3 CNI method

Require: Cl = {Cl1...Cln, n = 1...N}
Cl
′
= {Cl

′
1...Cl

′
k, k = 1...K}

Ensure: In+k
for each data stream do

for cl
′ ∈ Cl

′
do

create new index( cl
′
)

end for
end for

3.4.2. IEI Method

Objects from each cluster of the arrival data stream are inserted into one of the ex-
isting indexes in this scenario. The cluster centers of the first data stream cn are used as
representatives of the existing indexes in this method. The selection of an existing BH-tree
into which the arrival cluster Cl

′
objects are inserted is based on a distance test between the

arrival cluster center c
′
k and the existing BH-tree representative centers cn (Algorithm 4).

When the distance between c
′
k and cn is at a minimum, objects from the arrival cluster Cl

′

are inserted in the index n.

Algorithm 4 IEI method.

Require: Cl = {Cl1...Cln, n = 1...N}
Cl
′
= {Cl

′
1...Cl

′
k, k = 1...K}

Ensure: In
for each data stream do

for cl
′
k ∈ Cl

′
do

for cln ∈ Cl do
Mind ←calculate distances(d(cn, c

′
k))

insert cl
′

in In
end for

end for
end for

4. Experimentation

This section describes the experimental parameters, including the datasets and the ex-
perimental platform. Then, the experimental results regarding the evolution of the number
of indexes with the data stream are discussed. The evaluation of the index construction
and the evaluation of the parallel kNN search are also analyzed.

4.1. Experimental Settings

Three real data sets (GPS trajectory, WARD, and traffic datasets), and one synthetic
dataset (Tracking), were used to test the four proposed indexing methods. The following
subsections provide further information on these datasets.

1. GPS Trajectories: collected from Go!Track Android application [41]
2. Tracking dataset: moving vectors generated by an object tracking simulator with wire-

less cameras in the wireless multimedia sensor network in a random simulation [31]
3. Wearable Action Recognition Database (WARD): database of human action reconnais-

sance using wearable movement sensors [42]
4. Traffic dataset: belongs to the road network category [43]

The datasets were divided into subsets to perform the data stream simulation. The
subsets of different sizes and dimensions (Table 2) were considered to be data streams. The
experiments were carried out on a 64-bit Linux operating system (Ubuntu) with an Intel(R)
Core TM i7-8550U CPU, 1.80 GHz×8 processor, 16 GB RAM, and 256 GB ROM.
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Table 2. Characteristics of the selected datasets for the index evaluation.

Dataset Size (Vectors) Dimension Data Stream Size (Vectors) Data Stream Size (Bytes)

GPS trajectory 18,107 3 4000 115,507.02
Tracking dataset 62,702 20 12,000 1,270,493.8

WARD 3,078,552 5 600,000 18,058,184
Traffic dataset 5,000,000 2 1,000,000 20,132,659.2

4.2. Evolution of the Number of Indexes with Data Stream

Figure 4 depicts the variation in the number of indexes as a function of the streams
for the datasets used for the CV method and the other two scenarios. It is worth noting
that the BH-tree of each cluster was constructed directly for the first data stream. For the
second data stream, the proposed method was used. The IEI method, as expected, resulted
in the construction of a minimum number of indexes that remained invariant with the data
stream. Unlike the IEI method, the CNI method resulted in the construction of a maximum
number of indexes that grew proportionally with the number of data streams. The number
of constructed indexes for the CV method was between that of the IEI method and that of
the CNI method. For all datasets, the number of indexes produced by the CV method was
closer to that produced by the IEI method, indicating that the insertion process was more
pronounced in the CV method than was the construction process. It can be noted that the
number of indexes produced by the CV method varied from one data set to the next. This
was directly dependent on the dynamic aspect of DBSCAN clustering, which caused the
distances between cluster centers to change for each data stream.
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Figure 4. Number of BH-trees vs. data stream.

4.3. Evaluation of Index Construction

The number of distances, comparisons, indexing time, and energy consumption were
calculated as a function of the data stream to evaluate the BH-tree construction.
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4.3.1. Number of Calculated Distances

As indicated in Figure 5, the number of distances was traced as a function of the data
stream for the three methods. The number of distances during the construction of the
BH-trees started varying from the second data stream. From this data stream, the number
of distances varied, from one method to another, as a function of the data size. For the four
datasets, the CNI method presented the highest number of distances, since the creation of
pivots required more distance calculations, while the IEI method presented a lower number
because, in the insertion process, no pivots were created. Despite the CV method combining
both insertion and indexing processes, the number of distances, from this method, was
close to that from the IEI method and this reflects the efficiency of the CV method.
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Figure 5. Number of distances calculated during the indexing of each data stream.

4.3.2. Number of Calculated Comparisons

Figure 6 depicts the variation in the number of comparisons as a function of the data
stream. This variation, as seen in Figure 5, was similar to that of the number of distances.
The number of comparisons was greater than the number of distances for all three methods.
Comparisons were required during the construction of new indexes or during insertion to
select the left or right side of each BH-tree.

4.3.3. Indexing Time

As shown in Figure 7, indexing time depended not only on the data stream but also on
the size of each data stream. For GPS trajectory data, the time of indexing was great when
the IEI method was used, while for tracking and WARD data, the time of indexing was at a
maximum when the CNI method was used. The time required to index the traffic dataset
varied depending on the method used and the data stream. The indexing of data streams
using the CV method consumed acceptable times for the four datasets used, regardless of
data stream size. Unlike the IEI and CNI methods, the CV method was not affected by the
size of the data stream.
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Figure 6. Number of comparisons calculated during the indexing of each data stream.
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Figure 7. Indexing time of the data stream using the CV method compared to the IEI and CNI methods.

4.3.4. Energy Consumption during the Indexing

Figure 8 illustrates the energy consumption per stream for the CV, CNI and IEI
methods. The energy consumption Eprog (in Joule) during the execution of a program prog
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is given by the following expression [44] :

Eprog =
∫ te

tb

P(prog, t)dt−
∫ te

tb

Pi(t)dt (1)

where, tb and te represent the beginning time and the end time of the execution of the
program prog (in second), P(prog, t) is the electrical power needed for the execution of the
program prog (in Watts) and Pi(t) is the idle power (in Watts).

Figure 8 indicates that the energy consumed during indexing using these three meth-
ods varied depending on the dataset. The energy consumption for the GPS trajectory
increased during data indexing using the IEI method. The energy consumption when
using the CV method was lower than when using the CNI method. In contrast to the GPS
trajectory dataset, the CNI method consumed more energy during the indexing of both
tracking and WARD datasets than the CV and IEI methods. These last two were mostly
close. The energy consumption during indexing using the CNI and IEI methods for the
traffic dataset was comparable and greater than that during indexing using the CV method.
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Figure 8. Average energy consumption during index construction using CV, CNI and IEI methods.

4.4. Quality of the Constructed BH-Trees

In Figure 9 the average height of indexes, the average number of internal nodes and the
average number of leaves nodes are plotted for the four datasets to evaluate and compare
the quality of BH-trees constructed using the CV method with those using the IEI and the
CNI methods. The number of nodes per level (Figure 10) and the data distribution in leaves
(Figure 11) were determined after the indexing of all data streams.
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Figure 9. Average height, average number of internal nodes and average number of leaves nodes of
BH-trees constructed using the CV, CNI and IEI methods.

4.4.1. Average Height of BH-Trees

Figure 9 presents the average height of BH-trees resulting from the indexing of streams
of GPS trajectory, tracking, WARD and traffic datasets. The average height of indexes
constructed using the IEI method was greater than that of indexes constructed using the
CNI method for all datasets. This was due to the fact that, in the IEI method, all data
were inserted into a fixed number of BH-trees, whereas in the CNI method, a BH-tree was
constructed for each cluster. In addition, Figure 9 shows that, for the GPS trajectory and
tracking datasets, the average height of indexes constructed using the CV method was
comparable to that of the CNI method, whereas for the WARD and traffic datasets, the
average height from the CV method was greater than that of the CNI method and slightly
exceeded the average height from the IEI method for the WARD data. The CV method’s
behavior varied depending on the size and dimension of the data stream. When indexing
the GPS trajectory and tracking datasets, it behaved similarly to the CNI method, and when
indexing the WARD and traffic datasets, it behaved similarly to the IEI method.

4.4.2. Average Number of Internal Nodes

Figure 9 illustrates how the average number of internal nodes per BH-tree varied
depending on the dataset. The average number of internal nodes in indexes constructed
using the IEI method was greater than in indexes constructed using the CNI method for
GPS trajectory, tracking, and traffic datasets, whereas for the WARD dataset, the average
number of internal nodes in BH-trees constructed using the CNI method was greater than
that in indexes constructed using the IEI method. The average number of internal nodes
constructed using the CV method was located between those of the CNI and IEI methods
for all datasets. The variation in the average number of leaves nodes as a function of the
indexing method was similar to the variation in the average number of internal nodes, as
expected (Figure 9).
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4.4.3. Number of Nodes per Level

Figure 10 depicts the number of nodes per level in BH-trees constructed using the
CNI, IEI, and CV methods for the four datasets used. The number of nodes per level varied
depending on the dataset, and the number of nodes in the GPS trajectory was constant at all
levels of the BH-tree, regardless of the proposed indexing method. Moreover, the number
of internal nodes per level in a tracking dataset varied depending on the indexing method.
The IEI method yielded five levels with a high number of nodes, while the CV method
yielded two levels with a high number of nodes and the CNI method yielded only one level
with a high number of nodes from indexes. Only one level, with the maximum number of
nodes in indexes constructed using both CNI and IEI methods, was used for the WARD
dataset. The CV method produced indexes with two levels of maximum number of nodes.
For the traffic dataset, BH-trees constructed using the CNI and CV methods yielded one
level with the highest number of nodes. Three levels of the IEI methods had many nodes.
Beyond level 25 for the CV method (2 nodes per level) and level 60 for the IEI method (25
nodes per level), the number of nodes remained constant.
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Figure 10. Variation of the number of nodes per level of BH-trees constructed using the CNI, IEI and
CV methods.

4.4.4. Data Distribution in BH-Tree Leaves

Figure 11 shows the data distribution for the CNI, IEI, and CV methods on the left and
right sides of the BH-tree. The resulting indexes for GPS trajectory datasets constructed
using both CNI and IEI methods were not balanced, whereas indexes constructed using
the CV method were well balanced. Indexes from the three proposed methods were well
balanced for the trajectory, WARD, and traffic datasets. It can also be noted that the data
distribution in indexes built using the CNI and IEI methods was similar regardless of the
dataset used.
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Figure 11. Data distribution in leaves.

4.5. Evaluation of the Parallel kNN Search in BH-Trees

The number of distances, the number of comparisons, the time of search, energy
consumption and the number of visited leaves were determined to search 100 queries to
evaluate the parallel kNN search with k = 5, 10, 15, 20, 50 and 100 in BH-trees constructed
using CNI, IEI and CV scenarios. All statistical results were averaged over 100 randomly
generated queries.
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4.5.1. Number of Calculated Distances

In Figure 12, the average number of calculated distances during the kNN search with
k = 5, 10, 15, 20, 50 and 100 was plotted for the three methods. The average number of
distances varied from data to data (Figure 12). The average number of distances calculated
during the query search in BH-trees constructed using the CNI and CV methods for the
GPS trajectory dataset was close to, and less than, that calculated during the query search
in indexes constructed using the IEI method. As the number of nodes per level in the GPS
trajectory data was constant (Figure 10) this could be related to the variation in average
height of indexes (Figure 9). The average number of distances calculated during the kNN
query search in indexes constructed using the CV method was less than the number of
distances calculated in indexes constructed using the CNI and IEI methods for tracking and
WARD data sets. This was due to the variation in the number of nodes per level (Figure 10).
For the tracking dataset and levels between 5 and 10, the CNI method had more nodes than
the IEI method, and the IEI method had more nodes than the CV method. The number of
nodes per level from the IEI method was greater than that from the CNI method, which
was greater than the number of nodes per level from the CV method for the WARD data
set. For the traffic dataset, the number of distances calculated during the query search in
CV method indexes was greater than that in CNI method indexes and less than that in IEI
method indexes. This could be directly related to the height of the index (Figure 9).
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Figure 12. Number of distances calculated for the kNN search in BH-trees by CNI, IEI and CV methods.

4.5.2. Number of Calculated Comparisons

Figure 13 depicts the average number of comparisons calculated during the kNN
queries search in BH-trees constructed using CNI, IEI, and CV methods. The four datasets
exhibited similar variations. It can be noted that the average number of comparisons
calculated in indexes built using the CV method was less than that calculated in indexes
built using the CNI and IEI methods. This could be because the CV method resulted in
the fusion of clusters of similar objects, as opposed to the IEI method, which inserted
heterogeneous objects into a fixed number of indexes.
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Figure 13. Number of comparisons calculated for the kNN search in BH-trees by CNI, IEI and
CV methods.

4.5.3. Time of Search

Figure 14 shows the time variation of kNN search queries in BH-trees constructed
using the CNI, IEI, and CV methods. The variation in search time was related to the
variation in both the average number of distances (Figure 12) and the average number
of visited leaves (Figure 15). The shortest time of search for the GPS trajectory dataset
was obtained for indexes constructed using the CNI method, where the time of search
varied from 0.0016 to 0.0046 s when k varied from 5 to 100. The number of distances
and visited leaves was lower for this indexing method than for the other two methods.
The time of search in CV-constructed indexes was nearly invariant as a function of k and
always fell between those of the CNI and IEI methods. The CV method searched indexes in
approximately 0.0048 s. When k varied from 5 to 100, the CV method presented the shortest
time for kNN query search, which varied from 0.008 to 0.02 s for the tracking dataset and
from 0.227 to 0.596 s for the WARD dataset. Although the IEI method indexes had the
shortest search time for the traffic dataset, the search time for the three methods remained
close. When k varied from 5 to 100, the search time varied between 0.0137 and 0.0338 s.
The time of search for the traffic dataset was less than that for the WARD data because the
traffic dataset had fewer visited leaves than the WARD dataset, as shown in Figure 15. For
k = 100 and for tracking data, the time of search in indexes by the CV method represented
46% of that of the CNI method and 69% of that of the IEI method, while for the WARD
data, it represented 53% and 47% of that of the CNI and the IEI, respectively.

For the traffic dataset, the time of search in indexes by the IEI method represented 96%
of that of the CV method and the time of search for the CNI method was 97% of that of
the CV method. When the coefficient of variation (CV) of the union of a new cluster from
the incoming data stream with the existing first clusters was minimal in the CV method,
it indicated that the objects in the two clusters were very similar. Objects from the new
cluster were, thus, inserted into the index corresponding to the first cluster, making objects
in that index more similar. As a result, the number of distances and visited leaves were
lower in the CV method indexes during the kNN query search than in the other methods.
Since indexes constructed using CV, CNI, and IEI methods had a constant number of nodes
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per level, the height of indexes directly influenced the search time for the GPS trajectory
dataset (Figure 10).
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Figure 14. The kNN search time of CNI, IEI and CV methods.
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Figure 15. Number of the visited leaves in CNI, IEI and CV methods.

For k = 100, the search time in indexes constructed using the CV method was grouped,
as evident in in Table 3, with that of other methods for GPS trajectory, tracking dataset and
WARD. In the Threshold Distance (TD) method [45], proposed for indexing continuous
data streams, the creation of new indexes and the insertion of arrival data in existing
indexes was based on a comparison of the distances between cluster centers to a threshold
distance value. In this method, the kNN query search proceeded in parallel. The Binary
trees, based on Containers at the Cloud-Clusters Fog computing level (B3CF-trees) [39],
were constructed in parallel from clusters. These last resulted from the grouping of the
whole dataset into clusters of homogeneous objects using the DBSCAN [23] algorithm. In
this approach, the kNN query search was combined with parallelism. The Binary tree,
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based on Containers at the Cloud-Fog computing level (BCCF-tree) [31], was based on the
division of the space by means of the k-means [21] clustering algorithm. The BCCF-tree
was directly constructed from the whole dataset in the fog layer. The Bubble Buckets tree
(BB-tree) [46] recursively partitions the data space into k partitions. The BB-tree leaf nodes
stocks objects in elastic buckets named Bubble Buckets. The MX-tree [47] is an enhancement
of the M-tree [28], due to the introduction of super-nodes, inspired from the X-tree [48], in
the space of the search area. In the Indexing tree Without Containers (IWC-tree), which is a
binary tree, simulated from the GH-tree [49], objects are directly inserted without the use
of containers. According to Table 3, for the three datasets, the CV method presented the
lowest 100NN search time after the B3CF-tree and before the TD method, which reflected its
efficiency in indexing continuous data streams. The three indexing methods benefited from
the advantages of a combination of parallelism and the kNN search method allowed by the
use of the DBSCAN clustering algorithm in the first step of the indexing process. The search
time in indexes constructed using the CV method was approximately five times greater
than that of the B3CF-tree for the GPS trajectory dataset, and approximately ten times
greater for both tracking and WARD datasets. This could be explained by the fact that,
in the B3CF-tree, the whole data, which was considered as only one data stream, was
grouped into separated clusters of homogeneous objects in each cluster. This allowed the
parallel construction of indexes with very similar objects in each one. Compared with the
TD method, which also indexes continuous data streams, we can see that the CV method
surpassed it in terms of parallel kNN search time. It was approximately 25 times less for
the GPS trajectory dataset and twice lower than for both tracking and WARD datasets.
The use of the coefficient of variation as the criterion for the homogeneity of the union
of clusters induced the construction of BH-trees containing very similar objects. Even if
the TD method presented good results, as can be seen in Table 3, its efficiency depended
strongly on the choice of the value of the threshold distance. The proposed CV method
also proved its efficiency, in terms of search time, compared with other indexing methods,
such as that proposed by Zhang et al. [50]. For k = 100, this team obtained a search time
of 0.682 s for a dataset of 1 million size which was, a little greater than our result for the
WARD dataset (0.597 s) of 3 millions size.

Table 3. Comparison of 100NN search time in indexes constructed using the CV method with other
methods from literature.

Datastes

Indexing
Methods CV TD

[45]
B3CF-Tree

[39]
BCCF-Tree

[31]
BB-Tree

[46]
MX-Tree

[47]
IWC-Tree

[31]

GPS trajectory 0.00531 s 0.13583 s 0.00118 s 0.16191 s 0.97994 s 0.35414 s 0.04013 s

Tracking dataset 0.02022 s 0.03919 s 0.00020 s 0.21034 s 20.26953 s 19.70434 s 20.12095 s

WARD 0.59673 s 1.13473 s 0.00576 s 2.72482 s 116.87681 s 3.0745 s 120.23918 s

4.5.4. Energy Consumption during the kNN Search

Figure 16 presents the energy consumption during the parallel kNN search with
k = 100 in indexes constructed using CV, CNI and IEI methods. For the four datasets
chosen, the CNI method consumed more energy than the CV and IEI methods. This
was anticipated because using the CNI method results in the creation of more indexes.
Furthermore, the use of parallelism causes an increase in energy consumption across all
indexes. The energy consumption during the 100NN search in the CV-created indexes was
comparable to that of the IEI method, reflecting its efficiency when indexing continuous
data streams.

Although the kNN search time in indexes constructed with the CNI and IEI meth-
ods was comparable to the above-mentioned methods, some of their characteristics are
undesirable for continuous IoT data stream indexing. The CNI method can dynamically
index a continuous IoT data stream, resulting in many indexes. The construction of these
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indices is an expensive process in terms of the numbers of distances and comparisons,
computing time, and energy consumption. The cost of the number of distances, the number
of comparisons, the time, and energy consumed by search computing during the kNN
query search increases as the number of indexes increases. Furthermore, creating a large
number of indexes increases the risk of memory overload, which has a negative impact
on the indexing process of continuous IoT data. The IEI method indexes the continuous
IoT data stream at a low computational cost in terms of distances, comparisons, and time.
However, it is not designed to handle continuous IoT data streams. The inclusion of many
different elements from the continuous incoming data in a small number of indexes raises
their heights and decreases their similarities because the insertion criterion is the shortest
distance between the existing and incoming cluster centers. Increasing the depth of indexes,
while decreasing their similarities, may result in an increase in the number of distances,
comparisons, and times required for kNN search computations. Furthermore, inserting a
large number of elements means indexes, constructed using the IEI method, are exposed to
the degradation problem.
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Figure 16. Energy consumption during the 100NN search for CNI, IEI and CV methods.

When compared to the CNI and IEI methods, the CV method was more capable
of dynamically indexing the continuous IoT data stream. The coefficient of variation
(CV) determines whether the resulting cluster is similar or dissimilar to the existing and
incoming clusters. If the union of clusters is similar, incoming elements are inserted into
the corresponding existing cluster index, and if not, a new index is built from the incoming
cluster. Having similar elements in each index lowers the cost of computing the numbers of
distances and comparisons, energy consumption, and kNN query search time. Furthermore,
the ability to create new indexes in cases where the union of clusters is not similar, which
makes this method suitable for indexing continuous IoT data streams. Using the CV
method, the problems of an infinite number of indexes and index degradation are avoided
and the construction of new indexes with low-energy consumption and no data overlap
is guaranteed.

5. Conclusions

This paper presented the CV method for indexing continuous data streams. The first
data stream was clustered using the DBSCAN algorithm at the clustering fog level. The first
clusters were stored in the clusters processing fog level, and their corresponding BH-trees
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were built in the indexing fog level. The incoming cluster either created a new BH-tree or
was inserted into an existing BH-tree, depending on the value of the coefficient of variation
(CV) of the union of the incoming cluster and the existing clusters. Two other scenarios
were proposed for comparison to test the efficiency of our proposed method. In the first
scenario, known as the CNI method, each arrival cluster created its own BH-tree.

In the second scenario, known as the IEI method, the objects of the arrival cluster were
inserted into an existing BH-tree when the distances between the arrival center cluster
and the representative center clusters of the existing indexes were the shortest. In the
evaluation of BH-tree construction, the IEI method outperformed the CV and CNI methods.
The parameters of the CV method were always located between those of the CNI and IEI
methods. The three proposed methods for parallel kNN query search were more efficient
than other methods in the literature. In terms of energy consumption, the CV method
outperformed the CNI and IEI methods. In future work, we propose to address issues
related to geographic and conceptual/domain clustering, as well as to focus on how the
effectiveness of the proposed method can be ensured in the movement of data providers
from one region to another.
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