
Citation: Pagano, T.P.; Loureiro, R.B.;

Lisboa, F.V.N.; Peixoto, R.M.;

Guimarães, G.A.S.; Cruz, G.O.R.;

Araujo, M.M.; Santos, L.L.; Cruz,

M.A.S.; Oliveira, E.L.S.; et al. Bias

and Unfairness in Machine Learning

Models: A Systematic Review on

Datasets, Tools, Fairness Metrics, and

Identification and Mitigation

Methods. Big Data Cogn. Comput.

2023, 7, 15. https://doi.org/

10.3390/bdcc7010015

Academic Editor: Min Chen

Received: 2 December 2022

Revised: 16 December 2022

Accepted: 28 December 2022

Published: 13 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Systematic Review

Bias and Unfairness in Machine Learning Models: A Systematic
Review on Datasets, Tools, Fairness Metrics, and Identification
and Mitigation Methods
Tiago P. Pagano 1 , Rafael B. Loureiro 1 , Fernanda V. N. Lisboa 2 , Rodrigo M. Peixoto 3 ,
Guilherme A. S. Guimarães 3 , Gustavo O. R. Cruz 3 , Maira M. Araujo 2 , Lucas L. Santos 1 ,
Marco A. S. Cruz 4 , Ewerton L. S. Oliveira 4 , Ingrid Winkler 5 and Erick G. S. Nascimento 1,6,*

1 Computational Modeling Department, SENAI CIMATEC University Center, Salvador 41650-010, BA, Brazil
2 Computing Engineering Department, SENAI CIMATEC University Center, Salvador 41650-010, BA, Brazil
3 Software Development Department, SENAI CIMATEC University Center, Salvador 41650-010, BA, Brazil
4 HP Inc. Brazil R&D, Porto Alegre 90619-900, RS, Brazil
5 Management and Industrial Technology Department, SENAI CIMATEC University Center,

Salvador 41650-010, BA, Brazil
6 Surrey Institute for People-Centred AI, School of Computer Science and Electronic Engineering,

Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
* Correspondence: erick.sperandio@surrey.ac.uk

Abstract: One of the difficulties of artificial intelligence is to ensure that model decisions are fair and
free of bias. In research, datasets, metrics, techniques, and tools are applied to detect and mitigate
algorithmic unfairness and bias. This study examines the current knowledge on bias and unfairness
in machine learning models. The systematic review followed the PRISMA guidelines and is registered
on OSF plataform. The search was carried out between 2021 and early 2022 in the Scopus, IEEE Xplore,
Web of Science, and Google Scholar knowledge bases and found 128 articles published between 2017
and 2022, of which 45 were chosen based on search string optimization and inclusion and exclusion
criteria. We discovered that the majority of retrieved works focus on bias and unfairness identification
and mitigation techniques, offering tools, statistical approaches, important metrics, and datasets
typically used for bias experiments. In terms of the primary forms of bias, data, algorithm, and user
interaction were addressed in connection to the preprocessing, in-processing, and postprocessing
mitigation methods. The use of Equalized Odds, Opportunity Equality, and Demographic Parity as
primary fairness metrics emphasizes the crucial role of sensitive attributes in mitigating bias. The
25 datasets chosen span a wide range of areas, including criminal justice image enhancement, finance,
education, product pricing, and health, with the majority including sensitive attributes. In terms of
tools, Aequitas is the most often referenced, yet many of the tools were not employed in empirical
experiments. A limitation of current research is the lack of multiclass and multimetric studies, which
are found in just a few works and constrain the investigation to binary-focused method. Furthermore,
the results indicate that different fairness metrics do not present uniform results for a given use case,
and that more research with varied model architectures is necessary to standardize which ones are
more appropriate for a given context. We also observed that all research addressed the transparency
of the algorithm, or its capacity to explain how decisions are taken.

Keywords: bias; unfairness; machine learning; artificial intelligence

1. Introduction

Prediction-based decision algorithms are being widely adopted by governments and
organizations [1], and are already commonly used in lending, contracting, and online
advertising, as well as in criminal pre-trial proceedings, immigration detention, and public
health, among other areas [2].
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However, as these techniques gained popularity, concerns arose about the bias embed-
ded in the models and how fair they are in defining their performance for issues related to
sensitive social aspects such as race, gender, class, and so on [3].

Systems that have an impact on people’s lives raise ethical concerns about making fair
and unbiased judgments. As a result, challenges to bias and unfairness have been thor-
oughly studied, taking into consideration the constraints imposed by corporate practices,
legislation, societal traditions, and ethical commitments [4]. Recognizing and reducing
bias and unfairness are tough undertakings because unfairness differs between cultures.
As a consequence, the unfairness criteria are influenced by user experience, cultural, social,
historical, political, legal, and ethical factors [5].

Injustice is “systematic and unfair discrimination or prejudice of certain individuals
or groups of individuals in favor of others” [6]. The author also explains that social or
statistical biases are frequently to blame for injustice, with the former referring to the
disparity between how the world should be and how it really is and the latter to the
discrepancy between how the world is and how it is encoded in the system.

A distinction was made between the concepts of bias and unfairness, pointing out that
most authors in the field use the two terms interchangeably [7].

The author described justice as a social idea of value judgment—therefore, a subjective
concept—that varies among cultures and nations as well as inside institutions such as
schools, hospitals, and companies. Bias, on the other hand, is a systematic mistake that
modify human behaviors or judgements about others due to their belonging to a group
defined by distinguishing features such as gender or age.

As a result, new methodologies from data science, artificial intelligence (AI), and ma-
chine learning (ML) are necessary to account for algorithms constraints [8].

The issue becomes more challenging if key technological applications do not yet have
ML models associated with the explainability of decisions made, or if those models can
only be evaluated by the developers that created them, leaving researchers unable to obtain
these explanations and conduct experiments [9]. Obtaining a transparent algorithm is
difficult given the millions of parameters analyzed by the machine. Another method is to
understand it without knowing each stage of the algorithm’s execution [10].

Because analyzing bias and unfairness combined with model explainability, explain-
ability is included in the research. Explainability entails (1) defining model explainability,
(2) devising explainability tasks to understand model behavior and providing solutions to
those tasks, and (3) designing measurements to evaluate model performance [11]. Thus,
evaluating bias and unfairness tackles these issues directly, much as explainability in-
creases transparency.

Some solutions, such as AIF360 [12], FairLearn [13], Tensorflow Responsible AI [5,14,15]
and Aequitas [16] are designed specifically to address bias and unfairness. However, the ap-
proach to identifying and mitigating bias and unfairness in ML models is entirely left to
the developer, who frequently lacks adequate knowledge of the problem and must also
consider aspects of fairness as a key element for the quality of the final model, proving the
need for a methodology to assist address the problem [9].

Another issue is that most existing solutions to mitigate bias and unfairness are applied
to a specific problem or use case (UC). There are several techniques to recognizing bias
and unfairness, known as fairness metrics, and the variety makes it difficult to choose the
appropriate assessment criteria for the issue one wishes to mitigate [17,18].

Identifying and separating the vast quantity of visual information in the environment,
for example, is an issue in computer vision (CV). Machines can classify objects, animals,
and humans using algorithms, optical and acoustic sensors, and other techniques [19].
However, because biases can originate in a variety of ways, such machines may struggle
to discern between various faces, skin tones, or races [20]. Typically, this occurs when the
context is ignored while developing a model, such as not accounting for user demographics
that may be underrepresented in the training data.
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Similarly, natural language processing (NLP) applications are essential for the oper-
ation of systems that interact with people, such as in tasks like language translation [21]
and the automatic removal of offensive comments [22]. Recent techniques use Transformer
architectures to understand implicit meanings through long sentences [23]. Nevertheless,
one major problem with such models is the propagation of social and representational
biases propagated by a negative generalization of words that should not contain a harmful
meaning general context, such as Gender identities like gay or woman [24,25].

Recommendation Systems (RecSys) are already prevalent in daily life through catalog
streaming systems and the user’s perception of product order in online retailers. These
programs fall under the category of rankers, whose job it is to determine the existing
preferences in the input and produce a list of suggestions as output [26]. Their method of
learning necessitates qualitative interactions between consumers and products in order
to assess a specific product or service, as in a ’likes’, and ’dislikes’ system, for example.
Recommender systems in Amazon’s catalogs profile customers, mapping their interests
to present related products [27]. Another feature of RecSys is the ability to relate similar
profiles, understanding that if one user has positively rated a product, another similar
user is likely to give that item a positive rating. However, such systems depend on huge
amounts of historical data, which might contain unrealistic training samples or reflect
historical inequalities [28]. Furthermore, biased systems that favor particular groups might
produce vicious cycles for recommendations and strengthen negative biases.

Despite these concerns, according to our knowledge, there is no recent review on this
topic. Other reviews did not specify a recent timeframe [29–35], allowing for surveys that
are now outdated. Our review, on the other hand, excluded studies that were published
before 2017, so that we could give a more up-to-date examination at bias and unfairness
in machine learning models. As demonstrated in Figure 1, there was an increase in
publications in 2018 compared to previous years; consequently, research conducted after
this time should provide more recent overviews correlating with the most effective and
less embryonic solutions to the issue.

Some works only addressed datasets for bias and unfairness research, without diving
into mitigating issues [29]. In addition, there is more unpacking of mitigating features [33],
but the focus is on data management, stressing the unfairness problems for this domain
in comparison to the others provided. While there were primary focus on classification
problems [30], emphasizing that other techniques should emerge in the coming years,
research on algorithmic fairness concentrates on single classification tasks [34], a finding
that was also identified by our review; however, the authors do not go into detail on bias
mitigation methods. Additionally, Suresh and Guttag [35] does not relate to recent works,
with just one article from 2019 and all others before this date.

In certain cases, a more simplified analysis of fairness metrics and mitigation tech-
niques was performed, without addressing issues related to reference datasets for studies in
the field [32]. Mehrabi et al. [31] emphasizes the need for fairness by providing examples
of potential consequences in the actual world, and examines the definitions of fairness
and bias offered by researchers in other domains, such as general machine learning, deep
learning, and natural language processing, albeit the strategy for selecting the articles
was not provided. The algorithmic bias literature was also examined by Kordzadeh and
Ghasemaghaei [18], but solely on theoretical issues of fairness. According to the authors,
the processes through which technology-driven biases transfer into judgments and actions
have largely gone unnoticed. The authors also include definitions for how a context classi-
fies, which might be person, task, technological, organizational, or environmental, and can
impact the model’s perceptual and behavioral expressions of bias. The study considers the
behavior of persons touched by model decisions in order to use it as an influencing factor
in model decisions.
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Figure 1. Year of the references cited in the works.

On the other hand, our review concentrated on extracting the concepts and techniques
presented during the era when the topic was most widely discussed within the scientific
community. We focused on methods of bias and unfairness identification and mitigation
for ML technologies, including fairness metrics, bias mitigation techniques, supporting
tools, and more common datasets, with work addressing bias and unfairness identification
and mitigation with binary and multiclass targets. The development of each of these
characteristics will be covered in the sections that follow.

Thus, this study examines the current knowledge on bias and unfairness in machine
learning models.

This work is organized as follows. In Section 2, we describe the research method
and the advantages of using systematic reviews. In Section 3, we examine the results and
addresses elements such as the types of bias, the identified datasets, the fairness metrics
for measuring the models’ bias and unfairness in different ways, and how to approach
the techniques and models for bias and unfairness mitigation, either by manipulating the
data (preprocessing), the model itself (in-processing) or the prediction (postprocessing).
In Section 4, we compare techniques, case studies, datasets, metrics, and application.
In Section 5, we present our final considerations and suggestions for further research.

2. Methods

A systematic review (RS) aims to consolidate research by bringing together elements
for understanding it [4]. Systematic reviews are a widely used method to gather existing
findings into a research field [36].

This systematic review followed the preferred reporting items for systematic reviews
and meta-analyses (PRISMA) guidelines [37] (Supplementary Materials) and was con-
ducted using a method which encompasses five steps: planning, scoping, searching, assess-
ing, and synthesizing [38,39]. This study is registered on open science framework, number
https://osf.io/q3h2a accessed on 2 December 2022.

To assess the risk of bias in the included studies, as per PRISMA item five estab-
lishes [37], the preliminary search strategy was designed by a team of five machine learning

https://osf.io/q3h2a
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model researchers. Then, the candidate strategy was peer-reviewed by three senior ML
researchers. The developed method is explained in the following sections.

During the planning step, the knowledge bases that will be explored are defined [39].
The search for document patents was undertaken in the following knowledge bases:

• IEEE Xplore (https://ieeexplore.ieee.org/) accessed on 1 December 2022
• Scopus (https://www.scopus.com/) accessed on 1 December 2022
• Web Of Science (https://webofscience.com/) accessed on 1 December 2022
• Google Scholar (https://scholar.google.com.br/) accessed on 1 December 2022

These bases were chosen because they are reliable and multidisciplinary knowledge
databases of international scope, with comprehensive coverage of citation indexing, allow-
ing the best data from scientific publications.

The scope definition step ensures that questions relevant to the research are considered
before the actual literature review is carried out [39]. A brainstorming session was held
with an interdisciplinary group composed of eleven experts on machine learning models,
which selected two pertinent research questions to this systematic review address, namely:

Q1: What is the state of the art on the identification and mitigation of bias and
unfairness in ML models?

Q2: What are the challenges and opportunities for identifying and mitigating bias and
unfairness in ML models?

The literature search step involves exploring the databases specified in the planning
step in a way that aims to solve the questions defined in the scope [39].

Initially, the keywords were used to search the knowledge bases noted in Figure 2.
In addition to studies on bias or sensitive attributes using fairness or mitigation strategies for
machine learning, it should include studies using the AIF360, Aequitas or FairLearn tools
for ML. This inclusion in the initial search aims to relate tools for identifying and mitigating
bias and unfairness to the optimized search criteria, including the most important tools in
the literature. These criteria defined the initial search, with 99 publications selected. Only
review works, research, and conferences were considered.

Figure 2. Process of selecting works with the resulting amount.

https://ieeexplore.ieee.org/
https://www.scopus.com/
https://webofscience.com/
https://scholar.google.com.br/
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These works were used to optimize the search criteria using the litsearchr [40] li-
brary, which assembles a word co-occurrence network to identify the most relevant words.
The optimized search yielded 16 selected works, which can also be seen in Figure 2.

In addition, a Google Scholar search was performed, and 29 publications were selected
based on their title and abstract fields. The search was based on the string used in the
databases, applying the same keywords in the advanced search criteria, as can be seen
in Figure 2. The search in Google Scholar aims to select works that might not have been
indexed in the knowledge bases.

The assessing the evidence base step selects the most relevant articles based on biblio-
metric analysis and reading the article abstracts.

Initially, searches in the four knowledge bases retrieved 128 articles, with the fields title,
abstract, and keywords serving as search criteria, as can be seen in Figure 3. Only review
articles, research articles, and conference proceedings published between 2017 and 2022
were included, as shown by the bibliometric analysis in Figure 1. The black line indicates
the number of references each year, and the red line represents the average difference in
the number of articles over the previous five years, with a decrease in the final year due to
the time span covered by the search.

Figure 3. Systematic review flow diagram, adapted from PRISMA 2020.

The relationship between the keywords obtained in the search was plotted using the
biblioshiny tool [41], from the bibliometrix package [42] in the R programming language.
Figure 4 illustrates some clusters that exemplify themes addressed in the SR works. The red
cluster relates to “machine learning” and decision-making in models, the green cluster
considers fairness and its economic and social impacts. It is worth highlighting aspects
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related to transparency, interpretability, and the relationship of these keywords with the
state of the art.

The 128 works were screened for their abstracts, identifying key aspects that relate
to the proposed research, and were thus selected as important for the present work. Each
work was screened by three reviewers, which annotated key aspects to be discussed among
each other and decide whether the work was eligible.

As a result of the final search, 45 articles were selected for discussion as shown in
Figure 2.

The synthesis and analysis step consists of reading and evaluating the selected articles
to identify patterns, differences, and gaps that might be studied in future research on bias
and unfairness in machine learning models.

Figure 4. Keyword co-occurrence network.

3. Results

In this section, we present and analyze the 45 selected studies, which are included
in Table 1, according to the research questions Q1 and Q2 set in the scope definition step.
The results are organized into five sections: types of bias, identified datasets, mitigation
techniques and models, technique for identification of the sensitive attribute, and fairness
metrics. Those sections represent fundamental aspects of the discussion of bias and fairness.
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Table 1. Works retrieved by the search string.

Author Year Category Datasets Fairness Metrics Tech. Ref.

Ammar 2019 Case study - - - [9]

Koning 2021 Case study - - - [43]

Jalal 2021 Case study FlickrFaces, AFHQ, Cats and Dogs DP, EO in [44]

Mitchell 2021 Identification COMPAS - - [2]

Schuman 2020 Identification - - - [8]

Seymour 2018 Identification COMPAS - - [10]

Lee 2021 Identification - - - [45]

D’Mello 2022 Identification - - - [46]

Booth 2021 Identification AVIs - - [7]

Li 2022 Identification Compas, Student, Credit, Crime,
Adult, Weight, Drug

EOO, DP in [47]

Das 2019 Identification VQA, VizWiz, CLEVR Acc, Precision, Recall, F1-score, ROC post [48]

Fontana 2022 Identification Adult, Synthetic DP, EO, EOO post [49]

Bryant 2019 Identification Bank,Adult DI, KNNC, NIP, NIN, BR, SPD pre [50]

Chiappa 2018 Identification COMPAS DP, PP, FNR, FPR pre [51]

Sun 2020 Identification, Case
study

MovieLens, synthetic Acc - [52]

Yang 2020 Identification, Mitiga-
tion

COMPAS, Adult FPR, FNR pre [53]

Paviglianiti 2020 Identification, Mitiga-
tion

MIMIC II - pre [54]

Martinez 2021 Mitigation - - - [55]

Adel 2019 Mitigation COMPAS, Adult DI, FNR, FPR in [56]

Paassen 2019 Mitigation COMPAS DP in [57]

Quadrianto 2017 Mitigation COMPAS, Adult TPR, FPR, DP, EO, EOO, Acc in [58]

Amend 2021 Mitigation Adult EOO, DP, Acc in [59]

Cerrato 2020 Mitigation COMPAS, Bank, German, Adult - in [60]

Grari 2019 Mitigation COMPAS, Adult, Bank Marketing DP, EO, FPR, FNR in [61]

Jain 2019 Mitigation FDOC, FDLE FPR, FNR, Acc in [62]

Georgopoulous 2021 Mitigation LFW, CelebA, MOPRH TPR, EO, in [63]

Jang 2021 Mitigation Compas, German, Adult, MEPS ABAD, AAOD, AEORD, SPD in [64]

Radovanovic 2020 Mitigation Compas, Adult EO, EOO in [65]

Ashokan 2021 Mitigation MovieLens SP, EO Difference, EO in [28]

Mengnan Du 2021 Mitigation Adult, MEPS, CelebA DP, EO in [66]

Gitiaux 2019 Mitigation COMPAS, Communities, German,
Adult, synthetic

DI post [67]

Pessach 2021 Mitigation Recruitment, COMPAS EO all [68]

Zheng 2021 Mitigation ILSVRC57, CAR196, SUN, DD, F194 Acc, Precision pre [69]

Shi 2020 Mitigation, Case study RFW Acc, Race-Blind, EOO, EO, DP pre/in [70]

Feijoo 2020 Responsible AI - - - [71]

Gambs 2018 Responsible AI - - - [72]

Di Noia 2022 Responsible AI - - - [6]

Stoyanovich 2020 Review - - - [73]

Dwivedi 2019 Review - - - [1]

Mehrabi 2019 Review - - - [31]

Mengnan Du 2021 Review - - - [74]

Kordzadeh 2022 Review - - - [18]

Reddy 2021 Review Adult, CI-MNIST EO, EOO, DP, Accuracy in [75]

Jinyin 2021 Review COMPAS, Bank, German, Adult,
Boston, MEPS, Heart

- pre [76]

Kozodoi 2022 Review, Case study - - - [77]
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The studies revealed issues that support concerns about bias and impartiality in
ML models. One work addressed issues such as the lack of transparency of ML models,
organizations such as Facebook and Telegram’s lack of commitment to disclose the steps
being taken and even the limitations, whether human or computer [9]. The authors also
criticize the complexity of understanding ML models, which can only be examined by the
team that developed them, and which often does not understand most of the features and
judgments of the model. Moreover, the more complex the model, the more difficult it is
to analyze its decision-making process. At the same time, the importance of responsible
AI is highlighted [6], although there is still no clear and globally accepted definition of
responsibility for AI systems. This should include fairness, safety, privacy, explainability,
security, and reproducibility.

The authors of Mitchell et al. [2] corroborates the argumentation of Ammar [9], empha-
sizing that when dealing with people, even the finest algorithm will be biased if sensitive
attributes are not taken into consideration. One of the first issues raised is that bias and
fairness literature is often confined to addressing the situation of a group or individual
experiencing unfairness in the present time. In this case, one must broaden the search
and analyze how the individual’s effect impacts his or her community and vice versa.
Dataset and people behavior is fluid and can diverge dramatically over a few years, but the
algorithm may retain a bias in its training and be unable to adapt to this shift. A group
that is mistreated in the actual world would almost certainly be wronged by the algorithm,
and that this type of bias just reflects reality rather than being a biased dataset.

Transparency in machine learning models, defining bias and fairness is extremely dif-
ficult to obtain, given the millions of parameters analyzed by a machine [10]. Transparency
must be analyzed and understood without having to understand every step taken by the
algorithm. To define transparency, two categories have been defined: process transparency
and result transparency [10]. The term process transparency refers to an understanding
of the underlying characteristics of the algorithm, such as the attributes it weighs in its
decisions. The term results transparency refers to the ability to understand the decisions
and patterns in the responses of the classification process. In addition, the model must
meet two requirements: global and local explanation. Local explanation includes a detailed
examination of which features were most important in arriving at a particular decision,
while global explanation evaluates all decisions based on certain metrics. The author suggests
a mental model of the main system for this evaluation, and if he can predict what the rating
of the main model is, he is on the correct path to transparency. Finally, models can contain
implicit and explicit features, in the chaos of being white-box or black-box, making it easier
for auditors [10].

Also in an attempt to elucidate these issues, security and transparency issues with
automated decision systems are addressed and data engineers are warned and urged to
develop a more fair and inclusive procedure [73]. For the authors, automated decision
systems must be responsible in areas such as development, design, application and use,
as well as strict regulation and monitoring, so as not to perpetuate inequality.

Regulation should emphasize obligations to “[...] minimize the risk of erroneous
or biased decisions in critical areas [...]” [6], such as education and training [47,55], em-
ployment [46,68], important services [77], law enforcement, and the judiciary [43,47,58].
The author points out that fairness in recommender systems [6,27] requires a variety of
methodologies and studies, the most essential factors being gender, age, ethnicity, or personality.

A systemic overview addresses recent criteria and processes in the development of
machine learning and conduct empirical tests on the use of these for credit scoring [77].
The authors selected the fairness metrics that best fit these scores and cataloged state-of-
the-art fairness processors, using them to identify when loan approval processes are met.
Using seven credit score datasets, they performed empirical comparisons for different
fairness processors.

ML models, whether classification or regression, can be of type white-box or black-box,
depending on their availability and constraints:
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• White-box: these are machine learning models that deliver easy-to-understand out-
comes for application domain specialists. Typically, these models provide a fair
balance between accuracy and explainability [78] and hence have less constraint and
difficulties for structural adjustments. The structure and functioning of this model
category are simple to grasp.

• Black-box: ML models that, from a mathematical perspective, are extremely difficult
to explain and comprehend by specialists in practical areas [78]. Changes to the
structure of models in this category are restricted, and it is difficult to grasp their
structure and functioning.

Some works examine the use or nonuse of ML models for decision-making, empha-
sizing the existence of advantages and disadvantages, assisting in strategic governance
aspects with concern about ethical aspects to the use of sensitive attributes of individu-
als [1,7,43,46,57,71,72].

There is a concern about a model that uses automated video interviews to assess
patients’ personalities [46]. If men score higher than women, this could be considered a
bias; on the other hand, if the concordance notes indicate higher scores for men than for
women, the model reproduces this pattern and cannot be considered biased. There is an
ambiguity that the model would be fair because its measures reflect observable reality
and simultaneously unfair because it gives unequal results to the group. This confusion
occurs because of the lack of knowledge about identifying the group bias of the model,
which uses right and wrong prediction criteria on the target provided by the data set.
Therefore, the right and wrong rates of the model should be the same for different groups.

With a similar concern, there is opposition on the use of models for decision-making [43],
defining the use of tools for risk assessment in models for prejudgment as a justification.
The authors argue that the implementation of these tools can introduce new uncertainties,
disruptions, and risks into the judgment process. By conducting empirical experiments
with unfair models, the authors conclude that the process of implementing these tools
should be stopped.

Furthermore, while there are various fair models for classification tasks, these are
restricted to the present time, and because they embed the human bias, there is a propensity
to repeat and escalate the segregation of particular groups through a vicious cycle [57].
Whereas a classifier that gives a group a higher number of good ratings will give it an
advantage in the future, and vice versa for negative ratings. Meanwhile, claims were
also made that algorithms frequently disregard uncommon information [9], framing the
act as censorship, such as Islamism and terrorist content. Because of this issue, decision-
making algorithms tend to be biased toward more common occurrences in their case-
specific databases.

Finally, the perspectives of various experts were presented by the authors of Ref. [1],
emphasizing opportunities from the usage of AI, evaluating its impact, challenges, and the
potential research agenda represented by AI’s rapid growth in various fields of industry and
society in general. Tastes, anxieties, and cultural proximity seem to induce bias in consumer
behavior, which will impact demand for AI goods and services, which is, according to
the study, an issue that is yet under research. Inferring patterns from large datasets in an
unbiased environment and developing theories to explain those patterns can eliminate the
need for hypothesis testing, eradicating the bias in the analysis data and, consequently,
in the decisions.

The literature address general issues around ML, where governments are increasingly
experimenting with them to increase efficiency in large-scale personalization of services
based on citizen profiles, such as predicting viral outbreaks and crime hotspots, and AI
systems used for food safety inspections [1]. Bias in this context implicates governance
issues, which pose dangers to society because algorithms can develop biases that reinforce
historical discrimination, and undesirable practices, or result in unexpected effects due
to hidden complexities. Other related themes include ethics, transparency and audits,
accountability and legal issues, fairness and equity, protection from misuse, and the digital
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divide and data deficit. The discussion should expand to include technology diplomacy
as a facilitator of global policy alignment and governance, for developing solutions to
avian flu, for example [71]. It also discusses the importance of implementing fundamental
ethical concepts in AI, such as beneficence, nonmaleficence, decision-making, fairness,
explainability, reliable AI, suggested human oversight, alternative decision plans, privacy,
traceability, nondiscrimination, and accountability.

Finally, there is key concern about data privacy, as well as other ethical challenges
related to big data research, such as transparency, interpretability, and impartiality of
algorithms [72]. It is critical to explore methods to assess and quantify the bias of algorithms
that learn from big data, particularly in terms of potential dangers of discrimination
against population subgroups, and to suggest strategies to rectify unwarranted bias. It also
addresses the difference between individual fairness and group fairness, where the former
states that individuals who are similar except for the sensitive attribute should be treated
similarly and receive similar decisions.

This issue relates to the legal concept of unequal treatment when the decision-making
process is based on sensitive attributes. However, individual fairness is only relevant when
the decision-making process causes discrimination and cannot be used when the goal is to
address biases in the data. Group fairness, on the other hand, depends on the statistics of
the outcomes of the subgroups indexed in the data and can be quantified in various ways,
such as DP and EO metric, and thus can have bias addressed in the data [72]. Group fairness
considers that groups contain useful information to adjust predictions, making them more
accurate, highlighted that the metrics statistical parity, group fairness, and adverse impact
are all concerned with equality of acceptance rates across groups [7].

3.1. Types of Bias

Pre-existent bias exist independently of an algorithm itself and have their origin in
society, referring to the data that reflect the inequalities absorbed by the algorithm [73].
Technical bias, on the other hand, occurs due to the systems developed, and can be treated,
measured, and its cause understood, as to internal decision processes of the algorithm. He
also defined the so-called emergent type of bias, which occurs when a system is designed
for different users or when social concepts change. For example, if a manager assigns
higher performance to male employees, it is likely that the algorithm will start favoring
them and/or incorrectly ranking women in the same division of the organization.

Bias can be classified into data bias, algorithm bias, and user interaction [31]. The first
considers that bias is present in the data, such as unbalanced data, for example. The sec-
ond one addresses the bias caused exclusively by the algorithm, caused by optimization
functions, and regularization, among other causes. The third type of bias is caused by
the interaction with the user since the interface allows it to impose his/her behavior for a
self-selected biased interaction.

Iterated algorithmic bias, which is a feature of RecSys, is defined as filtering bias,
active learning bias, and random-based bias. The first occurs when the goal is to provide
relevant information or preferences [52]. The second occurs when it aims to predict the
user’s preferences. The last one is based on an unbiased approach and used as a baseline
for no user preference.

Going further in this concept, the 23 most common sources of bias are listed and
divided into three categories organized in order to consider the feedback loop, they are:
data, algorithm, and user interaction [31]. Here are some examples of biases:

• Historical and social: coming from the data;
• Emerging and popularity: coming from the algorithm;
• Behavioral and presentation bias: caused by interaction with the user.

A framework is proposed to analyze bias and concluded that filtering bias, prominent
in personalized user interfaces, can limit the discoverability of relevant information to
be presented [52]. In addition, they address the importance and damage caused by feed-
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back loops and how algorithm performance and human behavior influence each other by
denying certain information to a user, impacting long-term performance.

Another work proposed a methodology to identify the risks of potentially unintended
and harmful biases in ML [45]. The authors, therefore, developed a practical risk assess-
ment questionnaire to identify the sources of bias that cause unfairness and applied it
to cases such as criminal risk prediction, health care provisions, and mortgage lending.
The questionnaire was validated with industry professionals, and 86% agreed it was useful
for proactively diagnosing unexpected issues that may arise in the ML model. Note that
this work allows you to identify causes that may theoretically bias the models.

3.2. Identified Datasets

A survey of the datasets used in the works was conducted, listed in Table 2. These
datasets mostly are known to include demographic annotations, allowing for assessing
unfairness and bias in their data, and can be used to test and validate techniques aimed at re-
solving these issues. Other datasets do not have demographic data, as it aims to identify bias
and unfairness in image generation, reconstruction, enhancement, and super-resolution,
not necessarily associated with demographic sensitive issues [44]. Some datasets address
crime-related issues such as Propublica Correctional Offender Management Profiling for
Alternative Sanctions (COMPAS), Communities and Crime (Communities), and Florida
Department of Corrections (FDOC).

Table 2. Datasets present in each work.

Datasets References
COMPAS [2,10,47,51,53,56–58,60,61,64,65,67,68,76]
Communities [67]
FDOC [62]
FDLE [62]
Student [47]
Bank [50,60,61,76]
German [60,64,67,76]
Credit [47]
Crime [47]
Adult [47,49,50,53,56,58–61,64–67,75,76]
Boston [76]
MEPS [64,66,76]
Heart [76]
MIMIC II [54]
Weight [47]
Drug [47]
FlickrFaces [44]
AFHQ Cats
and Dogs

[44]

LFW [63]
CelebA [63,66]
MOPRH [63]
MovieLens
1M

[28,52]

CI-MNIST [75]
VQA [48]
VizWiz [48]
CLEVR [48]
Synthetic [49,52,67]
RFW [69]
ILSVRC57 [69]
CAR196 [69]
SUN [69]
DD [69]
F194 [69]
Recruitment [68]
AVIs [7]

The COMPAS [79] dataset describes a binary classification task, which shows whether
an inmate will re-offend within two years, has sensitive attributes such as race, age, and gen-
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der. This is one of the most widely used datasets for bias and fairness experiments, with a
controversial and relevant topic.

Similar to COMPAS, the Communities dataset [80] compares socioeconomic situations
of US citizens in the 1990s and crime rate, identifying the per capita rate of violent crime in
each community.

The FDOC [62] dataset, on the other hand, contains sentences with the types of charges,
which can be violent charges (murder, manslaughter, sex crimes, and other violent crimes);
robbery; burglary; other property charges (including theft, fraud, and damage); drug-
related charges; and other charges (including weapons and other public order offenses).
The dataset uses Florida Department of Law Enforcement (FDLE) criminal history records
for recidivism information within 3 years. They have the attributes such as the major crime
category, the offender’s age of admission and release, time served in prison, number of
crimes committed prior to arrest, race, marital status, employment status, gender, education
level, and if recidivist whether they were supervised after release.

Addressing issues concerning the selection process and approval of individuals,
the Student [81] dataset has the data collected during 2005 and 2006 in two public schools
in Portugal. The dataset was built from two sources: school reports, based on sheets of
work including some tributes with the three grades of the period and number of school ab-
sences; and questionnaires, used to complement the previous information. It also includes
demographic data with mother’s education, family income, social/emotional situation,
alcohol consumption, and variables that can affect student performance.

Another theme found in the selected datasets involves financial issues of bank credit
such as Bank marketing (Bank), German credit (German), and Credit. Wage forecasting
was found with the Adult dataset and product pricing was found with the Boston housing
price (Boston) dataset.

The Bank dataset is related to the marketing campaigns of a Portuguese bank between
the years 2008 to 2013. The goal of the classification is to predict whether a customer will
make a deposit subscription [50].

Similarly, the German [80] dataset has 1000 items and 20 categorical attributes. Each
entry in this dataset represents an individual who receives credit from a bank. According
to the set of attributes, each individual is evaluated on his or her credit risk.

The Credit [82] dataset, on the other hand, contains payment data from a Taiwanese
bank (a cash and credit card issuer) for identifying the bank’s credit card holders who
would potentially receive a loan, including demographic annotations such as education
level, age, and gender.

One of the most prominent datasets, Adult [80] includes 32,561 full cases representing
adults from the 1994 US census. The task is to predict whether an adult’s salary is above or
below $50,000 based on 14 characteristics. The sensitive attribute ’gender’ is embedded in
the samples.

For real estate pricing, the Boston dataset has data extracted from the Boston Standard
Metropolitan Statistical Area (SMSA) in 1970 and each of the 506 samples represents data
obtained on 14 characteristics for households. The classification of this model aims to
predict the property value of the region using attributes such as crime rate, proportion of
residential land, and average number of rooms per household, among others [76].

The datasets found also highlights applications in the health domain, either to predict
patients’ financial expenses, as in the dataset Medical Expenditure Panel Survey (MEPS),
or to identify possible health risks for patients as in the datasets: MEPS, Heart Disease
(Heart), Multiparameter Intelligent Monitoring in Intensive Care (MIMIC II), Weight,
and Drugs.

The MEPS [83] dataset contains data on families and individuals in the United States,
with their medical providers and employers, with information on the cost and use of health
care or insurance.

To identify and prevent diseases, the Heart [76] dataset contains 76 attributes, but all
published experiments refer to the use of a subset of 14 of them. The target attribute refers
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to the presence of heart disease in the patient and can be 0 (no presence) to 4. Experiments
aim to classify the presence or absence of heart disease.

Similarly to Heart, the MIMIC II [54] dataset contains vital signs captured from
patient monitors and clinical data from tens of thousands of Intensive Care Unit (ICU)
patients. It has demographic data such as patient gender and age, hospital admissions and
discharge dates, room tracking, dates of death (in or out of hospital), ICD-9 codes, unique
code for healthcare professional and patient type, as well as medications, lab tests, fluid
administration, notes, and reports.

The Weight [84] dataset contains data for estimating obesity levels in individuals from
the countries of Mexico, Peru, and Colombia, based on their eating habits and physical
condition. It has 17 attributes and 2111 samples, labeled with the level of obesity which
can be Low Weight, Normal Weight, Overweight Level I, Overweight Level II, Obesity
Type I, Obesity Type II and Obesity Type III. The sensitive attributes are gender, age, weight,
height, and smoking, among others.

To predict narcotic use, the Drug [85] dataset was collected from an online survey
including personality traits (NEO-FFI-R), impulsivity (BIS-11), sensation seeking (ImpSS),
and demographic information. The dataset contains information on the use of 18 central
nervous system psychoactive drugs such as amphetamines, cannabis, cocaine, ecstasy, legal
drugs, LSD, and magic mushrooms, among others, including demographic attributes such
as gender, education level, and age group.

In the image enhancement and face recognition domain, bias may not be associated
with demographic features, the datasets that have demographic information were identified,
among them: Labeled Faces in the Wild (LFW), Large-scale CelebFaces Attributes (CelebA),
MORPH Longitudinal Database (MORPH), MovieLens 1M and Visual Question Answering
(VQA). The dataset Animal FacesHQ (AFHQ) deals with the identification of animals,
and the bias is associated with implicit features of the images, as well as the dataset
Correlated and Imbalanced MNIST (CI-MNIST). Synthetic datasets were also found as
an alternative.

The LFW [63] dataset contains 13,233 images of faces of 5749 distinct people and
1680 individuals are in two or more images. LFW is applied to face recognition problems
and the images were annotated for demographic information such as gender, ethnicity, skin
color, age group, hair color, eyeglass wearing, among other sensitive attributes.

The CelebA [86] dataset contains 202,599 face images with 10,177 individuals and
40 annotated attributes per image such as gender, Asian features, skin color, age group,
head color, and eye color, among other sensitive attributes, just as LFW is also used for face
recognition problems.

The MORPH dataset contains over 400,000 images of almost 70,000 individuals.
The images are 8-bit color and sizes can vary. MORPH has annotations for age, sex,
race, height, weight, and eye coordinates.

The MovieLens 1M [28] dataset contains a set of movie ratings from the Movie-
Lens website, a movie recommendation service of 1 million reviews from 6000 users for
4000 movies, with demographics such as gender, age, occupation, and zip code, plus data
from the movies and the ratings.

The VQA [48] dataset contains natural language questions about images. It has
250,000 images, 760,000 questions, and about 10 million answers. The questions have a
sensitive criterion from the point of view of the questioner and can be a simple question or
a difficult one, creating a bias. The images can also be very complex, making it difficult to
identify the question element. The VizWiz dataset has the same proposal as the VQA for
object recognition and assistive technologies, collected from users with visual impairment.
CLEVR has a similar proposal to VQA and VizWiz but was generated automatically by
algorithms containing images with three basic shapes (spheres, cubes, and cylinders) in
two different sizes (small and large) and eight different colors and includes questions and
answers with the elements contained in the images. The combination of VQA, VizWiz,
and CLEVR gave origin to another dataset of questions and answers, annotated with the
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sensitive attribute of the visual conditions of the user who asked the question, which could
be normal vision, visually impaired, or robot.

The AFHQ [44] dataset consists of 15,000 high-quality images of animal faces at
512 × 512 resolution. It includes three domains of cat, dog, and wildlife, each providing
5000 images, it also contains three domains and several images of various breeds (larger
than eight) for each domain. All images are aligned vertically and horizontally to have the
eyes in the center. Low-quality images were discarded. The work by Jalal et al. [44] used
only images of cats and dogs.

The CI-MNIST [75] dataset is a variant of the MNIST dataset with additional artificial
attributes for eligibility analysis. For an image, the label indicates eligibility or ineligibility,
respectively, given that it is even or odd. The dataset varies the background colors as a pro-
tected or sensitive attribute, where blue denotes the nonprivileged group and red denotes
the privileged group. The dataset is designed to evaluate bias mitigation approaches in
challenging situations and address different situations. The dataset has 50,000 images for
the training set, 10,000 images for validation and testing, with the eligible images represent-
ing 50 percent of each of these. Various background colors, colored boxes added at some
top of the image of varying sizes were used to allow the impact of the colors, positions, and
sizes of the elements contained in the image to be analyzed.

The dataset might also be generated synthetically [67] using a normal distribution of
the data. It created an attribute that was binary-sensitive and had the Bernouilli distribution.

The use of the datasets examined in this Section can be seen in the Section 3.5 associated
with mitigation techniques.

3.3. Fairness Metrics

Machine learning models increasingly provide approaches to quantify bias and in-
equality in classification operations as a methodology for measuring bias and fairness [57].
While many metrics have been developed, when it comes to long-term decisions, the mod-
els and scientific community have produced poor outcomes. Some existing metrics for
measuring model bias are insufficient, either because they only evaluate the individual or
the group, or because they are unable to predict a model’s behavior over time. The authors
offer the metric DP as a solution, which, when applied to a model, ensures that the average
classification of individuals in each group converges to the same point, achieving a balance
between accuracy, bias, and fairness for the groups classified by the model.

One of the metrics used to evaluate the model was DP, which assures that decisions
are unrelated to sensitive attributes [58]. EO metric was used to guarantee parity between
positive and negative evaluations, and Equality of Opportunity metric was employed to en-
sure that individuals meet the same criteria and are treated equally. Each of these metrics
assures that groups are treated fairly and that the model’s quality does not deteriorate or
become biased over time [57].

The metrics for assessing fairness should apply the same treatment to multiple groups;
however, if one of the metrics identifies bias, other metrics can charge that the model is fair.

Five metrics for assessing fairness were established from the review of the works: EO,
Equality of Opportunity, DP, Individual Differential Fairness, and MDFA.

As a basis for the fairness metrics, it is important to define true positive (TP), false
positive (FP), true negative (TN), and false negative (FN). These values are obtained from
the rights and wrongs of the model’s prediction relative to the target or ground truth
provided by the dataset. Positive values are defined as the positive class that the model
should predict, as opposed to negative values. For example, if the model should predict
whether an individual will reoffend, the positive class will be 1, which indicates that the
individual will reoffend, and the negative class will be 0. Therefore, if the positive classes
are correct, they will be computed in TP, while the errors will be computed in FP. On the
other hand, hits for negative classes will be computed in TN and errors in FN.

For a multiclass problem there is no positive and negative class, just consider the
values for each individual class, observe Figure 5.
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Figure 5. Confusion Matrix Multiclass.

In the example, the scenario for calculating the values of Class 1 is illustrated, TP is
the value of the correct prediction, consistent with the target. The TN are the sum of the
classes that do not involve Class 1, neither in the prediction nor in the target. The FP is
the sum of the classes falsely predicted as Class 1, while the FN are the sum of the classes
predicted as other classes that should have been predicted as Class 1.

This process should be performed for all classes and the overall TP, FP, TN, and FN of
the model should be averaged over the individual values.

To understand the fairness metrics, which use the TP, FP, TN, and FN, the statistical
metrics must also be defined as per Table 3.

Table 3. Statistical metrics.

Statistical Metrics References Equation

Positive Predictive Value (PPV) [3] PPV = TP/(TP + FP)
False Discovery Rate (FDR) [3] FDR = FP/(TP + FP)
False Omission Rate (FOR) [3] FOR = FN/(TN + FN)
Negative Predictive Value (NPV) [3] NPV = TN/(TN + FN)
True Positive Rate (TPR) [3,58,63] TPR = TP/(TP + FN)
False Positive Rate (FPR) [3,51,53,56,58,61,62] FPR = FP/(FP + TN)
False Negative Rate (FNR) [3,51,53,56,61,62,62] FNR = FN/(TP + FN)
True Negative Rate (TNR) [3] TNR = TN/(FP + TN)

The objective of the metric EO is to ensure that the probability that an individual in a
positive class receives a good result and the probability that an individual in a negative
class wrongly receives a positive result for the protected and unprotected groups are the
same. That is, the TPR and FPR of the protected and unprotected groups must be the
same [31].

EO =
1
2
∗
(
|

FPp

FPp + TNp
− FPu

FPu + TNu
|+ |

TPp

TPp + FNp
− TPu

TPu + FNu
|
)

(1)

In contrast, the metric Equality of Opportunity must satisfy equal opportunity in a
binary classifier (Z). As a result, the probability of an individual in a positive class receiving
a good outcome must be the same for both protected and unprotected groups. That is,
the TPR for both the protected and unprotected groups must be the same [31].

EOO =
TPp

TPp + FNp
− TPu

TPu + FNu
(2)



Big Data Cogn. Comput. 2023, 7, 15 17 of 31

According to the fairness metric Demographic Parity (DP), also known as Statistical
Parity, the probability of an outcome being positive [31]. For this, the formula below should
be applied.

DP =
TP + FP

N
(3)

The Disparate Impact (DI) fairness metric compares the proportion of individuals who
receive a favorable outcome for two groups, a protected group and an unprotected group.
This measure must equal to 1 to be fair.

DI =

TPp+FPp
Np

TPu+FPu
Nu

(4)

The K-Nearest Neighbors Consistency (KNNC) fairness metric, on the other hand,
is the only individual fairness metric used by the authors of Ref. [64]; it measures the
similarity of sensitive attribute labels for similar instances [50].

KNNC = 1− 1
n

n

∑
i=1

∣∣∣∣∣∣ŷi −
1
k ∑

j∈Nk(xi)

ŷj

∣∣∣∣∣∣ (5)

Different metrics were used as fairness metrics by the authors of Ref. [64], includ-
ing Absolute Balanced Accuracy Difference (ABAD), Absolute Average Odds Difference
(AAOD), Absolute Equal Opportunity Rate Difference (AEORD) and Statistical Parity Dif-
ference (SPD). The Differences metrics are calculated from the difference of the ’Disparity’
metrics between two classes.

The ABAD is the difference in balanced accuracy in protected and unprotected groups,
defined by Equation (6).

ABAD =

∣∣∣∣1
2
[
TPRp + TNRp

]
− [TPRu + TNRu]

∣∣∣∣ (6)

The AAOD is the absolute difference in TPR and FPR between different protected
groups, defined by Equation (7).

AAOD =

∣∣∣∣∣
(

FPRu + FNRp
)
−

(
TPRu + TPRp

)
2

∣∣∣∣∣ (7)

AEORD is the difference in recall scores (TPR) between the protected and unprotected
groups. A value of 0 indicates equality of opportunity, defined by Equation (8).

AEORD =
∣∣TPRp − TPRu

∣∣ (8)

Finally, SPD is the difference in SD between a protected and an unprotected group,
defined by Equation (9).

SPD =
TPp + FPp

Np
− TPu + FPu

Nu
(9)

In addition to fairness metrics, some works use classification metrics such as accuracy,
precision, recall and F1-score [48] as criteria for identifying bias. In addition to fairness
metrics, some works use classification metrics such as accuracy, precision, recall and F1-
score [48] as criteria for identifying bias. Measures of bias linked to the accuracy of model
predictions are designed to check for unexpected differences in accuracy between groups.
A less accurate prediction for one group compared to another contains systematic error,
which disproportionately affects one group over the other [7].
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Accuracy is the ratio between the number of true negatives and true positives to the
total number of observations. Precision is the proportion of correct positive identifications.
Recall is the proportion of true positives correctly identified. The F1-score is the weighted
average of Precision and Recall. The formulas for each can be seen in Equations (10)–(13)

accuracy =
TN + TP

TN + TP + FN + FP
(10)

precision =
TP

TP + FP
(11)

recall =
TP

TP + FN
(12)

F1-score =
2 ∗ (recall ∗ precision)
(recall + precision)

(13)

Other cases used the number of positive (NIP) and negative (NIN) instances as the
criteria for fairness metrics, as well as the base rate (BR) also known as prior probabilities
are the unconditional probabilities, it is a probability with respect to all samples (N) [50].
The formulas for each can be seen in Equations (14)–(16)

NIP = TP + FP (14)

NIN = TN + FN (15)

BR = NIP/N (16)

All reported fairness metrics can be seen in Table 4.

Table 4. Metrics used as fairness criteria.

Fairness Metrics References
EO [31,63,65,66,75]
EOO [31,47,59,65,75]
DP [31,44,47,59,66,75]
DI [50]
KNNC [50]
ABAD [64]
AAOD [64]
AEORD [64]
SPD [50,64]
accuracy [48,59,75]
precision [48]
recall [48]
F1-score [48]
NIP [50]
NIN [50]
BR [50]

3.4. Techniques for Bias Analysis

For bias analysis and identification, is proposed a method for models trained with
federated learning with the HOLDA architecture, checking the influence of biased individ-
uals on unbiased individuals [49]. Whenever a user updates its internal state by replacing
the previous best model, when that model has a better generalization performance on
the local validation data, the system evaluates the fairness of that new model. The au-
thors performed an experiment training an ANN with 200 neurons in the hidden layer.
The sensitive attribute used was Gender. They concluded that local models trained with
unbiased customers have little influence on the model, while biased customers impact
the model unfairness. In this way, the biased customers end up influencing the unbiased
ones, but local models trained only with an unbiased customer tend to be slightly unfair.
The dataset used was Adult and the fairness metrics used were DP, EO, and EOO.
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Also aiming to identify unfairness and promote explainability of model decisions,
another technique includes a model that combines white-box and black-box features for
local and global explanations, respectively [10]. Local explanation involves determining
which features contributed the most to the classification of a given data sample, which
can be achieved with a visualization tool or algorithm that can simulate and explain the
decisions of the original model. In terms of overall explanation, the model decisions
perform comparisons with the classifications obtained by each group, using decile risk
scores to demonstrate whether there is bias in the model. The experiments were performed
with the COMPAS dataset.

3.5. Mitigation Techniques and Models

As previously noted, bias and unfairness mitigation techniques can be of the types:
preprocessing, in-processing, and postprocessing. While preprocessing mitigation tech-
niques focus on rebalancing the data, in-processing mitigation focuses on the model and its
regularization with a bias correction term in the loss function or implicit in the model as
with adversarial networks, where the model predicts the sensitive attribute [6].

The preprocessing mitigation technique aims to alter the dataset in a way that posi-
tively impacts the fairness metrics, and FairDAGs library is proposed as an acyclic graph
generator that describes the data flow during preprocessing [53]. The purpose is to identify
and mitigate bias in the distribution and distortions that may arise with protected groups,
while allowing direct observation of changes in the dataset. The four types of treatment are:
bias by filtering the data, standardizing missing values, changes in the proportion of the
dataset after replacement of NaN values, and, for NLP systems, filtering out extraneous
names or words that the computer may not recognize. The results showed that DAG was
able to identify and represent differences in the data that occurred during preprocessing,
as well as correct imbalances in the datasets examined.

Preprocessing may have a different purpose, such as removing sensitive data from
the model for a banking system, ensuring the removal of customer data after the output
without affecting the ML model [50]. The goal is the generation of synthetic data from
the representation of the original data in order to preserve privacy while maintaining the
usefulness of that original data. The synthetic data is generated by the Trusted Model
Executor (TME), which is an AIF360 tool. At the end, the bias in the synthetic dataset was
evaluated by comparing it with the original datasets in order to validate the TME.

Also using AIF360 to perform preprocessing operations, a study examined that smart-
watches distinguish between men and women in the identification of cardiovascular prob-
lems, evaluating more characteristics of the former group than the latter [54]. In view of the
above, there should be a correction to fit the needs of both genders the removal of sensitive
data, with the rebalancing of the dataset distribution and processing operations. It also
adjusts nonrepresentative data for accurate assessment of user health. The mitigation tech-
nique in preprocessing used was Reweighting. At the end, the Vital-ECG was developed,
a watchlike device that detects heart rate, blood pressure, skin temperature and other body
variables without distinction of gender and with superior predictions.

Still in the area of data generation, another study generated a new dataset that has no
disparity of distribution, quality or noise, ensuring that all classes are treated equally [64].
To do this, it used the VAE-GAN architecture which, although it showed great improve-
ments in model impartiality, the use of synthetic data during training limited its ability to
generalize real data, reducing accuracy and precision. To minimize the trade-off, the model
trained with artificial data used transfer learning techniques to perform an adjustment of
the weights with real data.

In the area of computer vision, face recognition and analysis models generally exhibit
demographic biases, even in models where accuracy is high [63]. The reason is usually
due to datasets with under-represented categories, whether for identifying identity, gen-
der, or expressions of the human face. Biases can be in relation to age, gender, and skin
tone. Therefore, a bias mitigation technique was proposed with a dataset of facial images,
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where to increase demographic diversity, a style transfer approach using Generative Ad-
versarial Networks (GANs) was used to create additional images by transferring multiple
demographic attributes to each image in a biased set. Two literature reviews highlighted
preprocessing techniques to mitigate data bias, such as Synthetic Minority Oversampling
Technique (SMOTE) and uses Data Augmentation [63,76]. The authors defined open ques-
tions on the topic, such as the fact that metrics can be conflicting, indicating a model that
is fair in one metric and unfair in another. Also dealing with bias in face recognition,
another research assessed the performance of diversity in Lenovo’s internal facial recog-
nition system, named LeFace [70]. The algorithm developed is a semiautomatic data
collection, cleaning, and labeling system. The training data is diverse in terms of race,
age, gender, poses, lighting, and so on. This data system cleans and labels the face data
with an algorithm that evaluates data balancing before applying data augmentation to
obtain a balanced training dataset. Furthermore, LeFace employs an attention method to
provide balanced data to the network during the training phase. The Racial Faces in the
Wild (RFW) database was used to assess the algorithm’s capacity to recognize different
races. It is divided into four classes: African, Asian, Caucasian, and Indian.

Also in the domain of computer vision, the authors of Ref. [44] present several intuitive
notions of group fairness, applied to image enhancement problems. Due to the uncertainty
in defining the clusters, since, for the author, there are no ground truth identities in the
clusters, and the sensitive attributes are not well-defined.

Concerning the impacts of fairness metrics on the preprocessing mitigation process,
the metric Demographic Parity is strongly dependent on clusters, which is problematic
for generating images of people in the data augmentation process, because the classes
of the sensitive attribute ’race’ are ill-defined [44]. In CPR, implemented using Langevin
dynamics, this phenomenon does not occur, and it can be seen in the results obtained that,
for any choice of protected clusters, the expected properties are displayed.

The fairness metrics identified in the works that addressed preprocessing are in Table 5,
as are the datasets in Table 6.

Table 5. Fairness metrics used in preprocessing techniques.

Fairness Metrics References

FPR [51,53]
FNR [51,53]
DP [51,70]
EO [68,70]
SPD [50]
DI [50]
KNNC [50]
NIP [50]
NIN [50]
BR [50]

The in-processing mitigation technique was identified in a larger number of
works [28,55,56,58–60,62,65,75].

One study proposes an in-processing solution in the holistic and often subjective
methods that may contain biases in the student selection process in schools [55]. From this
perspective, learning algorithms capable of admitting a diverse student population were
developed, even for groups with historical disadvantages. The study examined the impact
of characteristics such as income, color, and gender on student admission rates.

Another in-process mitigation solution for group bias used the logistic regression
technique to develop the model [65]. The solution used was Pareto Optimal, which aims to
ensure a better accuracy loss function while keeping the fairness metrics at the threshold set
at 80%. The author states that the in-processing solution, where the algorithm is adjusted
during learning, would be a natural solution, because the preprocessing algorithms would
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be altering the original data, hurting ethical norms; however, it is possible to work with
data balance without altering the users’ data.

Table 6. Datasets used in preprocessing techniques.

Datasets References

Heart [76]
Adult [50,53,64,76]
Bank [50,76]
Boston [76]
COMPAS [53,64,76]
German [64,76]
MEPS [64,76]
FlickrFaces [44]
AFHQ Cats and Dogs [44]
LFW [63]
CelebA [63]
MOPRH [63]
MIMIC II [54]

One in-processing mitigation model used a new classification approach for datasets
based on the sensitive attribute ’race’, with the aim of increasing prediction accuracy
and reducing racial bias in crime recidivism [62]. The recidivism prediction models were
evaluated by the type of crime, including ’violent crimes’, ’property’, ’drug’, and ’other’.
For the ’all crimes’, ’Caucasian data set’, and ’African American data set’ groups, the results
still contained bias, although lower than the baseline data. The ratios obtained were 41:59,
34:66, and 46:54.

A study focused on bias mitigation in deep learning models for classification and the
need for a systematic analysis of different bias mitigation techniques in-processing with
MLP and CNN [75]. Using a dataset that allows the creation of different bias sets, the
authors performed an analysis of the mitigation models recently proposed in the literature.
Then, they showed the correlation between eligibility and sensitive attributes, the possible
presence of bias even without sensitive attributes, and the importance of the initial choice
of architecture for model performance.

In contrast, another work focused on the ways in which bias can occur in recommender
systems, while addressing the lack of systematic mapping to address unfairness and bias
in the current literature [28]. In the experiments, sources of unfairness that can occur in
recommendation tasks were mapped, while evaluating whether existing bias mitigation
approaches successfully improve different types of fairness metrics. It also presents a
mitigation strategy in which the algorithm learns the difference between predicted and
observed ratings in subgroups, identifying which is biased and correcting the prediction.
The results show that fairness increased in most use cases, but performance for MSE and
MAE vary in each case.

Some studies have in common the fact that their models were trained in order to mitigate
bias from only adjusting the weights of their proposed models [28,55,62,65,69,75]. An attempt to
mitigate the bias by neutralizing the sensitive attribute in the model showed to be possible
to make a classification model fairer by removing bias only in its output layer, in a process
that occurs during its construction [66]. To this end, a technique was developed where
training samples with different sensitive attributes are neutralized, causing the model’s
dependence on sensitive attributes to be reduced. The main advantage demonstrated
by the method is the small loss of accuracy in exchange for improved fairness metrics,
without requiring access to the sensitive attributes in the database. In addition, the authors
argue that it is possible to increase the quality of the technique by combining it with others,
for example, by using a fairer basis than the one used in the experiments.
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In another work, the classification detects the item with the highest probability of
belonging to the ’target’ class of the model; however, there are cases where numerous items
have very close probabilities and bias the model, causing an error to propagate across
multiple levels [69]. To avoid this, there is a need for a threshold with a minimum degree
for the data to be classified and triggers a recalculation of the maximum node probability.
The sensitive cost then performs its own probability calculation on the data with the highest
degree of membership. These calculations avoid bias caused by using a single probability or
overoptimal adjustment caused by using data with no prior context. Hierarchical Precision
and Hierarchical Precision, which evaluates the relationship between all descendants of the
class and includes Hierarchical F1, Hierarchical Recall, and Hierarchical Precision, were
used as metrics. The threshold is adaptive, without requiring user parameters, since metrics
exist throughout the classification. Even with fewer samples, it produced results that were
superior to the state of the art.

In other works, the neutralization of sensitive attributes in an attempt to mitigate
model bias is more direct [56,58–60] by identifying it beforehand, similar to the investigation
of the authors Chiappa and Isaac [51], which addresses a new perspective on the concept
of fairness by determining whether an attribute is sensitive by evaluating it in a Causal
Bayesian Networks model. This model examines the direct effects of one characteristic
on another and determines whether a sensitive attribute ’A’ influences the output ’Y’ of a
model, producing correlation plots that strive to understand whether decisions made were
made fairly.

A pre-existing biased model must be updated to become fair, minimizing unfairness
without causing abrupt structural changes [56]. The study uses an adversarial learning
technique with the distinction that the generating model is the original network; however,
the adversarial model comprises an extra hidden layer, rather than a second model, to pre-
dict which sensitive attribute influenced the generator’s decision. The main element of this
competition model is that if the discriminator finds the sensitive attribute that influenced
the decision the most, it demonstrates dependence on the generator model, suggesting
bias. The generator moves away from the sensitive attributes and performs a classification
that does not depend on them, eventually lowering the discriminator’s hit rate until it
completely loses its predictive ability. The network architecture has three parts: adding
an adversarial layer on top of the network, balancing the distribution of classes across the
minisets, and adapting sensitive attributes until they are no longer present.

The technique was developed for classification tasks but can be used for any neural
network with biases starting with sensitive attributes [56], and it achieved better results
compared to the state of the art with the metrics addressed.

In the same way as Adel et al. [56], Amend and Spurlock [59] also uses adversarial
network for sensitive attribute identification and examines metrics and combinations of
techniques for bias mitigation. The study was conducted using basic ANN models and
a Split model, which forms the basic model by permuting attribute classes as training
criteria in order to identify which one is sensitive. Another model is based on the Classifier-
Adversarial Network (CAN) architecture; in that model, the adversarial network predicts
the sensitive attribute based on the output of the basic model. Finally, there is the CAN with
Embedding (CANE) architecture, which takes as input the output of the basic model as well
as the weights created in the penultimate layer. They demonstrated that the models from
the Basic RNA architecture can improve accuracy, but not bias. Meanwhile, the models of
the CAN and CANE architectures improved accuracy and reduce bias, with CANE being
better than CAN.

Still involving adversarial network, the Adversarial Fairness Local Outlier Factor
(AFLOF) method is proposed for outlier detection, combining adversarial algorithms with
the Local Outlier Factor (LOF) algorithm, which returns a value indicating whether an
instance is an outlier, aiming to achieve a fairer and more assertive result than LOF and
FairLOF [47]. It works with the sensitive attributes Gender, Age, and Race. It also uses
the AUC-ROC score to measure outlier detection. It results in a fairer and more assertive
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performance for outlier detection than the previous methods cited, thus achieving a break-
through in the study of fairness. Research on fairness and bias in machine learning focuses
only on neural networks, with few publications for other classification techniques [61]. As a
result, the author investigated Adversarial Gradient Tree Boosting to rank data and noted
that while the adversary progressively loses the reference of the sensitive attribute that led
to that prediction.

Another contribution is the adversarial learning method for generic classifiers, such as
decision trees [61]. Comparing numerous state-of-the-art models with the one provided
in the work, which covers two fairness metrics. They used varied decision trees in the
model given that they make rankings, which are then sent through a weighted average to
an adversary, who predicts which sensitive attribute was significant to the final decision.
While the adversary is able to detect the sensitive attribute, a gradient propagation occurs,
updating the weights in the decision trees and trying to prevent the sensitive attribute from
having a direct impact on the ranking.

The model called FAGTB performed well on accuracy and fairness metrics for the
COMPAS, Adult, Bank, and Default datasets, outperforming other state-of-the-art models
on several of them and considerably outperforming the network adversary Grari et al. [61].
The study leaves certain questions unanswered for future research, such as an adversary
using Deep Neural Decision Forests. If this method were used to retrieve the gradient,
theoretically, the transparency of the model for the algorithm’s decision would be apparent
because it consists only of trees. As a final caveat, they acknowledge that the algorithm
handles distinct groups well, but the EO and DP fairness metrics do not measure bias
between individuals, and is an aspect for improvement.

Following varied work with adversarial learning, the model Privileged Information
is a technique that trains the model with all the features of the original dataset, including
sensitive attributes, and then tests it without these attributes [58]. The model is an in-
processing type adjusted with the goal of mitigating unfairness and independent of sensitive
attributes, while maintaining its ability to produce accurate predictions, thus respecting the
protected information for decision-making. Note that in this case, the model fully fits the
dataset in an attempt to mitigate bias. The author emphasizes the strength of his model in
identifying the best predictor relative to other state-of-the-art work, having the sensitive
attributes as optional, and still using Privileged Information.

In contrast, model bias is avoided by using only data with minimal or, if possible, no
sensitive attributes by applying a noise conditioning operation to the data provided in the
model, inducing the model to ignore sensitive attributes, reducing bias [60]. The goal of the
model is to create as accurate a representation as possible in the prediction, with fairness.
The models used the techniques of logistic regression and Random Forest.

The fairness metrics identified in the works that addressed in-processing are in Table 7,
as are the datasets in Table 8.

Mitigation solutions for post-processing were also found [48,67]. A study proposes a
solution for an already formed model, seeking to identify whether certain groups receive
discriminatory treatment due to their sensitive attributes [67]. With the identification of
discrimination for a group, it is verified whether the sensitive attributes are impacting the
model, even if indirectly. The model has a neural network with four fully connected layers
of 8 neurons, expressing the weights as a function of the features in order to minimize the
maximum average discrepancy function between the sensitive attribute classes promoting
unfairness mitigation. He applied his mitigation model to a Logistic Classification model.
The work allows black-box type models to be mitigated for unfairness, but there is also
understanding of the assigned treatment.

Other study uses the identification of biases in models developed to recognize the
user, where the user can be a human with normal vision, a blind person, or a robot [48].
The identification takes place when answering a question, so NLP is applied. Its bias can
be seen in the most frequently asked question what is this object?, as well as the low image
quality compared to the others. Initially, annotations were assigned to the content of the
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images such as boy, package, grass, airplane, and sky. Random Forest, KNN, Nave Bayes,
and Logistic Regression techniques were used to develop the models. Logistic Regression
produced the best results, with 99% on all metrics. The authors found that the algorithms
readily recognized the bias in each dataset and provided a means of tracing the origin of
the questions and images.

Table 7. Fairness metrics used in in-processing techniques.

Fairness Metric References

DP [44,47,58,59,61,66,70,75]
EOO [47,58,59,65,70,75]
EO [28,44,58,61,63,65,66,68,70,75]
Accuracy [58,59,62,70,75]
DI [56]
TPR [58,63]
FPR [56,58,61,62]
FNR [56,61,62]
Race-Blind [70]
AAOD [64]
ABAD [64]
AEORD [64]
SPD [64]
SP [28]
Equal Opportunity Difference [28]

Table 8. Datasets used in the in-processing techniques.

Datasets References

CI-MNIST [75]
Adult [47,56,58–60,65,66,75]
COMPAS [56,58,60,65]
German [60]
Bank [60]
FDOC [62]
FDLE [62]
MovieLens 1M [28]
MEPS [66]
CelebA [66]
Weight [47]
Drug [47]
Crime [47]
Student [47]
Credit [47]

The fairness metrics identified in the works that addressed postprocessing are in
Table 9, as are the datasets in Table 10.

Table 9. Fairness metrics used in postprocessing techniques.

Fairness Metric References

DI [67]
precision [48]
recall [48]
accuracy [48]
F1-score [48]
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Table 10. Datasets used in postprocessing techniques.

Datasets References

Synthetic (normal distribution) [67]
COMPAS [67]
VQA [48]
VizWiz [48]
CLEVR [48]

4. Discussion

All 45 studies examined addressed comparable techniques, case studies, datasets,
metrics, and applications.

Adult datasets and COMPAS were used to address the most frequently reported bias
identification and unfairness mitigation.

The sources and implications of various types of bias, either in the datasets or in the
model, are examined [76]. The study investigates bias, offering methods for eliminating it,
as well as constructing groups and subgroups that help understand the problem, and dis-
cusses general categories such as temporal, spatial, behavioral, posterior, transcendental,
and group bias. Specific cases, such as the Simpsons paradox or social behavior bias, are
grouped within these categories.

The forms of bias observed by the authors of Ref. [76] are categorized as follows:
dataset bias, model bias, and emergent bias, or preprocessing, in-processing, and postpro-
cessing, as previously described. In order to go deeper into these categories, the study
splits them into eight broad and 18 particular categories, as well as providing metrics and
strategies for resolving each of them.

A frequent concern about the individual-group interaction is that few ML models
address it. if a model is biased in rejecting loans to black males, for example, it will increase
its database with rejections for this group, reinforcing the bias and initiating a vicious spiral
that will reassert itself with each loan denial [2].

One work focuses on the topic of vicious loops in machine learning, claiming that
models may be free of bias in the present but may be biased in the future [57]. To overcome
this, he suggests that the model fulfill the DP metric, which ensures that the classification
of varied groups is constantly converging and that no group is disadvantaged over time.

With a few exceptions [10,67], the model proposals were primarily white-box classifi-
cation. The former proposes a model for bias elimination using Multidifferential Fairness
by integrating in-processing and postprocessing, whereas the latter proposes that the focus
of algorithm transparency should be on the output rather than the whole decision-making
process of the algorithm.

According to the works reviewed, sensitive attributes are defined as elements that
should not directly affect the prediction of a model, such as color, race, sex, nationality,
religion, and sexual preference, among others. According to US laws such as the Fair
Housing Act (FHA) and the Equal Credit Opportunity Act (ECOA) [87], sensitive attributes
should never favor, harm, or alter the outcome of individuals and groups in decision-
making processes such as hiring or a court sanction. There is also the fact that all techniques
and tools confirm the importance of sensitive attributes in mitigating biases, because for
the identification of bias there is the need for the indication of a sensitive attribute, and the
mitigation of bias will be based on this identification, remembering that the identification
is done through a fairness metric.

As for the datasets, 25 datasets were identified, most of them with sensitive attributes
such as demographic data, and the ones that did not have any were for studies in the area
of image enhancement, when not associated with face recognition. The datasets address
aspects related to criminality, the selection, and approval process of individuals, financial
issues of bank credit, product pricing, health and medical diagnosis, face recognition and
image enhancement, and synthetic datasets.
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About the fairness metrics, the most used are EO, EOO, and DP, as observed in Table 4.
Highlighting the importance of statistical metrics, difference metrics, and classification
metrics, as several works have used them as criteria for fairness.

Among the bias mitigation and identification tools: FairLearn and AIF360, were not
used in any practical studies. The topic of identifying bias in the data and the model was
also addressed, with the Aequitas tool being the most frequently mentioned.

As for the mitigation techniques, preprocessing techniques for rebalancing the data
were addressed, identifying the sensitive attribute [53] for removal, or canceling its effect
on the model [50], the cancellation may be with a balance of the data in order to favor
fairness [63,64,70]. Bias can also be used to identify the gender of the [54] system user.

In the in-processing techniques, such as regularizing the model [65,75], addressing
levels of elimination of the sensitive attribute [51,66,69], with some possible approaches,
training with all attributes so that the model can adjust itself through a loss function. Some
work has used Adversarial Network for identifying sensitive attributes [56,59], as well
as for adjusting model weights [58,61]. The postprocessing techniques [48,67], on the
other hand, aim to discover which sensitive attribute had an impact on the model result,
rebalancing the prediction.

Some research gaps were highlighted, such as the wide varieties of fairness metrics
as a factor hindering which one best fits each case, lacking a comprehensive formal and
comparative study of the strengths and limitations of each of the metrics [6]. It also
highlights that a formal study of the techniques with the strengths and limitations of
each is lacking. It also addresses the need for state-of-the-art recommendation system
techniques. It highlights that there is still an absence of studies on the economic and
social consequences of biases in high-risk systems. Another work attempts to elucidate
some of these gaps, from the point of view of organizations and individuals, but without
addressing the technical aspects of such solutions, when it highlights the importance of the
sociotechnical nature of biases in algorithms, the need to understand the social processes
and contexts impacted by the use of biased information and algorithmic technologies [18].

Finally, all studies have addressed the algorithm’s transparency, or the capacity to
explain the decision-making process that caused the model to classify a certain individual
or group the way it did. This method must fundamentally explain either the local decision,
which includes the classification of a single individual, or the global decision, which
verifies the whole algorithm process. The relevance of transparency is to make it explicit
to a customer, company, or court that the model does not consider sensitive attributes
and does not discriminate against a specific group, just as it becomes possible to attribute
responsibility to the model’s developers if the model is biased.

5. Conclusions

The findings revelead that there is a focus on bias and unfairness identification meth-
ods for ML technologies, with well-defined metrics in the literature, such as fairness metrics,
featured in tools, datasets, and bias mitigation techniques. This diversity ends up not defin-
ing the most appropriate approach for each context given that different solutions can be
observed for the same problem, leading to a lack of definition about which one would
be the most appropriate, without a generic solution for the identification and mitigation
of biases.

Concerning current opportunities, we observed that there is very limited support
for black-box models, which contrasts with the abundance of information for white-box
models. The need for transparency and explainability of ML algorithms, as well as the
defining and preservation of sensitive attributes was also emphasized, with the selected
datasets acting as a basis for research addressing the identification and mitigation of bias
and unfairness.

As for future research, we suggest that more study is needed to identify the techniques
and metrics that should be employed in each particular case in order to standardize and
ensure fairness in machine learning models. For a definition on which metric should
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be used for each use case, more specific studies should be conducted under different
architectures and sensitive attributes. This analysis would allow the context to define the
most appropriate metric to identify bias in protected groups, and whether the sensitive
attribute can be a relevant element in defining the fairness metric for a given context. It
was observed that, in a given dataset, the metrics do not present uniform results, pointing
to different categories of bias and their context-related particularities.
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PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
COMPAS Correctional Offender Management Profiling for Alternative Sanctions
Communities Communities and Crime
FDOC Florida Department of Corrections
FDLE Florida Department of Law Enforcement
Bank Bank marketing
German German credit
Boston Boston housing price
SMSA Standard Metropolitan Statistical Area
MEPS Medical Expenditure Panel Survey
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Heart Heart Disease
MIMIC II Multiparameter Intelligent Monitoring in Intensive Care
ICU Intensive Care Unit
LFW Labeled Faces in the Wild
CelebA Large-scale CelebFaces Attributes
MORPH MORPH Longitudinal Database
VQA Visual Question Answering
AFHQ Animal FacesHQ
CI-MNIST Correlated and Imbalanced MNIST
TP true positive
FP false positive
TN true negative
FN false negative
PPV Positive Predictive Value
FDR False Discovery Rate
FOR False Omission Rate
NPV Negative Predictive Value
TPR True Positive Rate
FPR False Positive Rate
FNR False Negative Rate
TNR True Negative Rate
DP Demographic Parity
DI Disparate Impact
KNNC K-Nearest Neighbors Consistency
ABAD Absolute Balanced Accuracy Difference
AAOD Absolute Average Odds Difference
AEORD Absolute Equal Opportunity Rate Difference
SPD Statistical Parity Difference
NIP number of positive
NIN number of negative
BR base rate
TME Trusted Model Executor
GANs Generative Adversarial Networks
SMOTE Synthetic Minority Over-sampling Technique
RFW Racial Faces in the Wild
CAN Classifier-Adversarial Network
CANE CAN with Embedding
AFLOF Adversarial Fairness Local Outlier Factor
LOF Local Outlier Factor
FHA Fair Housing Act
ECOA Equal Credit Opportunity Act
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24. Andročec, D. Machine learning methods for toxic comment classification: A systematic review. Acta Univ. Sapientiae Inform. 2020,
12, 205–216. [CrossRef]

25. Liang, P.P.; Wu, C.; Morency, L.P.; Salakhutdinov, R. Towards understanding and mitigating social biases in language models. In
Proceedings of the International Conference on Machine Learning (PMLR), Virtual, 18–24 July 2021; pp. 6565–6576.

26. Cheng, H.T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.; et al. Wide
& deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,
Boston, MA, USA, 15 September 2016; pp. 7–10.

27. Smith, B.; Linden, G. Two decades of recommender systems at Amazon.com. IEEE Internet Comput. 2017, 21, 12–18. [CrossRef]
28. Ashokan, A.; Haas, C. Fairness metrics and bias mitigation strategies for rating predictions. Inf. Process. Manag. 2021, 58, 102646.

[CrossRef]
29. Le Quy, T.; Roy, A.; Iosifidis, V.; Zhang, W.; Ntoutsi, E. A survey on datasets for fairness-aware machine learning. Wiley Interdiscip.

Rev. Data Min. Knowl. Discov. 2022, 12, e1452. [CrossRef]
30. Pessach, D.; Shmueli, E. A Review on Fairness in Machine Learning. ACM Comput. Surv. (CSUR) 2022, 55, 1–44. [CrossRef]
31. Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan, A. A survey on bias and fairness in machine learning. arXiv 2019,

arXiv:1908.09635.
32. Bacelar, M. Monitoring bias and fairness in machine learning models: A review. ScienceOpen Prepr. 2021. [CrossRef]
33. Balayn, A.; Lofi, C.; Houben, G.J. Managing bias and unfairness in data for decision support: A survey of machine learning and

data engineering approaches to identify and mitigate bias and unfairness within data management and analytics systems. VLDB
J. 2021, 30, 739–768. [CrossRef]

34. Chouldechova, A.; Roth, A. The frontiers of fairness in machine learning. arXiv 2018, arXiv:1810.08810.

http://dx.doi.org/10.1109/MSP.2021.3106615
http://dx.doi.org/10.1093/ijlit/eaz006
https://www.cs.ox.ac.uk/files/11108/process-outcome-transparency.pdf
http://dx.doi.org/10.1147/JRD.2019.2942287
https://www.scinapse.io/papers/3030081171
https://www.scinapse.io/papers/3030081171
http://dx.doi.org/10.1109/TVCG.2019.2934619
http://dx.doi.org/10.1080/0960085X.2021.1927212
http://dx.doi.org/10.1051/matecconf/201927702004
http://dx.doi.org/10.3390/info13060273
http://dx.doi.org/10.2478/ausi-2020-0012
http://dx.doi.org/10.1109/MIC.2017.72
http://dx.doi.org/10.1016/j.ipm.2021.102646
http://dx.doi.org/10.1002/widm.1452
http://dx.doi.org/10.1145/3494672
http://dx.doi.org/10.14293/S2199-1006.1.SOR-.PP59WRH.v1
http://dx.doi.org/10.1007/s00778-021-00671-8


Big Data Cogn. Comput. 2023, 7, 15 30 of 31

35. Suresh, H.; Guttag, J. A Framework for Understanding Unintended Consequences of Machine Learning. arXiv 2019,
arXiv:1901.10002.

36. Kraus, S.; Breier, M.; Dasí-Rodríguez, S. The art of crafting a systematic literature review in entrepreneurship research. Int. Entrep.
Manag. J. 2020, 16, 1023–1042. [CrossRef]

37. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71.
[CrossRef] [PubMed]

38. Pagano, T.P.; Santos, V.R.; Bonfim, Y.d.S.; Paranhos, J.V.D.; Ortega, L.L.; Sá, P.H.M.; Nascimento, L.F.S.; Winkler, I.; Nascimento,
E.G.S. Machine Learning Models and Videos of Facial Regions for Estimating Heart Rate: A Review on Patents, Datasets, and
Literature. Electronics 2022, 11, 1473. [CrossRef]

39. Booth, A.; Sutton, A.; Papaioannou, D. Systematic Approaches to a Successful Literature Review; SAGE: Thousand Oaks, CA,
USA, 2016.

40. Grames, E.M.; Stillman, A.N.; Tingley, M.W.; Elphick, C.S. An automated approach to identifying search terms for systematic
reviews using keyword co-occurrence networks. Methods Ecol. Evol. 2019, 10, 1645–1654. [CrossRef]

41. Patil, S. Global Library & Information Science Research seen through Prism of Biblioshiny. Stud. Indian Place Names 2020,
40, 158–170.

42. Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2017, 11, 959–975. [CrossRef]
43. König, P.D.; Wenzelburger, G. When Politicization Stops Algorithms in Criminal Justice. Br. J. Criminol. 2021, 61, 832–851.

[CrossRef]
44. Jalal, A.; Karmalkar, S.; Hoffmann, J.; Dimakis, A.; Price, E. Fairness for image generation with uncertain sensitive attributes. In

Proceedings of the International Conference on Machine Learning (PMLR), Virtual, 18–24 July 2021; pp. 4721–4732.
45. Lee, M.S.A.; Singh, J. Risk Identification Questionnaire for Detecting Unintended Bias in the Machine Learning Development

Lifecycle. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event, 19–21 May 2021;
pp. 704–714.

46. D’Mello, S.K.; Tay, L.; Southwell, R. Psychological measurement in the information age: Machine-learned computational models.
Curr. Dir. Psychol. Sci. 2022, 31, 76–87. [CrossRef]

47. Li, S.; Yu, J.; Du, X.; Lu, Y.; Qiu, R. Fair Outlier Detection Based on Adversarial Representation Learning. Symmetry 2022, 14, 347.
[CrossRef]

48. Das, A.; Anjum, S.; Gurari, D. Dataset bias: A case study for visual question answering. Proc. Assoc. Inf. Sci. Technol. 2019,
56, 58–67. [CrossRef]

49. Fontana, M.; Naretto, F.; Monreale, A.; Giannotti, F. Monitoring Fairness in HOLDA. In Hibrid Human-Artificial Intelligence; IOS
Press: Amsterdam, The Netherlands, 2022; p. 66.

50. Bryant, R.; Cintas, C.; Wambugu, I.; Kinai, A.; Weldemariam, K. Analyzing bias in sensitive personal information used to train
financial models. arXiv 2019, arXiv:1911.03623.

51. Chiappa, S.; Isaac, W.S. A causal bayesian networks viewpoint on fairness. In IFIP International Summer School on Privacy and
Identity Management; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–20.

52. Sun, W.; Nasraoui, O.; Shafto, P. Evolution and impact of bias in human and machine learning algorithm interaction. PLoS ONE
2020, 15, e0235502. [CrossRef]

53. Yang, K.; Huang, B.; Stoyanovich, J.; Schelter, S. Fairness-Aware Instrumentation of Preprocessing Pipelines for Machine Learning.
In Proceedings of the Workshop on Human-In-the-Loop Data Analytics (HILDA’20), Portland, OR, USA, 19 June 2020.

54. Paviglianiti, A.; Pasero, E. VITAL-ECG: A de-bias algorithm embedded in a gender-immune device. In Proceedings of the 2020
IEEE International Workshop on Metrology for Industry 4.0 & IoT, Roma, Italy, 3–5 June 2020; pp. 314–318.

55. Martinez Neda, B.; Zeng, Y.; Gago-Masague, S. Using Machine Learning in Admissions: Reducing Human and Algorithmic Bias
in the Selection Process. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, Virtual, 13–20
March 2021; p. 1323.

56. Adel, T.; Valera, I.; Ghahramani, Z.; Weller, A. One-network adversarial fairness. In Proceedings of the AAAI Conference on
Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 2412–2420.

57. Paaßen, B.; Bunge, A.; Hainke, C.; Sindelar, L.; Vogelsang, M. Dynamic fairness—Breaking vicious cycles in automatic decision
making. In Proceedings of the ESANN, Bruges, Belgium, 24–26 April 2019; pp. 477–482.

58. Quadrianto, N.; Sharmanska, V. Recycling privileged learning and distribution matching for fairness. In Proceedings of the
Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.

59. Amend, J.J.; Spurlock, S. Improving machine learning fairness with sampling and adversarial learning. J. Comput. Sci. Coll. 2021,
36, 14–23.

60. Cerrato, M.; Esposito, R.; Puma, L.L. Constraining deep representations with a noise module for fair classification. In Proceedings
of the 35th Annual ACM Symposium on Applied Computing, Brno, Czech Republic, 30 March–3 April 2020; pp. 470–472.

61. Grari, V.; Ruf, B.; Lamprier, S.; Detyniecki, M. Fair adversarial gradient tree boosting. In Proceedings of the 2019 IEEE International
Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2019; pp. 1060–1065.

http://dx.doi.org/10.1007/s11365-020-00635-4
http://dx.doi.org/10.1136/bmj.n71
http://www.ncbi.nlm.nih.gov/pubmed/33782057
http://dx.doi.org/10.3390/electronics11091473
http://dx.doi.org/10.1111/2041-210X.13268
http://dx.doi.org/10.1016/j.joi.2017.08.007
http://dx.doi.org/10.1093/bjc/azaa099
http://dx.doi.org/10.1177/09637214211056906
http://dx.doi.org/10.3390/sym14020347
http://dx.doi.org/10.1002/pra2.7
http://dx.doi.org/10.1371/journal.pone.0235502


Big Data Cogn. Comput. 2023, 7, 15 31 of 31

62. Jain, B.; Huber, M.; Fegaras, L.; Elmasri, R.A. Singular race models: Addressing bias and accuracy in predicting prisoner recidivism.
In Proceedings of the 12th ACM International Conference on Pervasive Technologies Related to Assistive Environments, Rhodes,
Greece, 5–7 June 2019; pp. 599–607.

63. Georgopoulos, M.; Oldfield, J.; Nicolaou, M.A.; Panagakis, Y.; Pantic, M. Mitigating Demographic Bias in Facial Datasets with
Style-Based Multi-attribute Transfer. Int. J. Comput. Vis. 2021, 129, 2288–2307. [CrossRef]

64. Jang, T.; Zheng, F.; Wang, X. Constructing a Fair Classifier with Generated Fair Data. In Proceedings of the AAAI Conference on
Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 7908–7916.
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