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Abstract: The retinal afterimage is a widely known effect in the human visual system, which has been
studied and used in the context of a number of major art movements. Therefore, when considering
the general role of computation in the visual arts, this begs the question whether this effect, too, may
be induced using partly automated techniques. If so, it may become a computationally controllable
ingredient of (interactive) visual art, and thus take its place among the many other aspects of
visual perception which already have preceded it in this sense. The present moment provides
additional inspiration to lay the groundwork for extending computer graphics in general with the
retinal afterimage: Historically, we are in a phase where some head-mounted stereoscopic AR/VR
technologies are now providing eye tracking by default, thereby allowing realtime monitoring of the
processes of visual fixation that can induce the retinal afterimage. A logical starting point for general
investigation is then shape display via the retinal afterimage, since shape recognition lends itself
well to unambiguous reporting. Shape recognition, however, may also occur due to normal vision,
which happens simultaneously. Carefully and rigorously excluding this possibility, we develop
computational techniques enabling shape display exclusive to the retinal afterimage.

Keywords: arts and humanities; visual arts; visual perception; retinal afterimage; parsimonious
mathematical modeling; computational techniques; rendering and visualization; shape display

1. Introduction
1.1. Automated Computation Facilitates Artistic Control over Perceived Visual Complexity

When aiming to broadly compare processes of artistic creation in the visual arts before
and after the advent of digital computers, some useful examples to think of may be those
where the people involved are graphical artists, and the outcome of the process is the
representation of moving 3D imagery. Concretely, we might think of some favorite recent
example of computer-generated imagery—be it a cinematically released animated movie, a
scientific visual simulation, or a work of visual art completely different altogether—and
then try to imagine its accurate reproduction, in all its visual complexity, using only the tools
and practices from the era before electronic digital computers became available. Clearly,
typically, the nature of the unautomated, manual processes involved in this would now
make completion of the work, if at all possible, at the very least much more time-consuming.

This illustrates a broader point, not limited to a specific kind of artwork or aspect
of visual perception: A visual artist, by choosing to produce some type of visual effect
using partly automated means, may create works based on it that offer a controlled visual
complexity which would not be realizable, within the same time frame, if using only
unautomated means.

This fundamental advantage has, however, not yet been extended to all aspects of
visual perception where it might apply. Here, we will consider the question whether this
could be done for the visual phenomenon often known as the retinal afterimage.
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1.2. The Retinal Afterimage and Its Use in Techniques for the Visual Arts

Humans perceive light via the retina, the layer inside of the eye containing light-
sensitive cells. The retinal afterimage is a well-known phenomenon in the human visual
system, where the preceding exposure to light influences its ongoing perception. The
cause for this is thought to be adaptation: While, say, staring at a white background with
a red figure on it, the retinal cells will adapt to the incoming light, with those cells that
respond to green and blue light adapting to relatively lower light levels if they are being
exposed to the figure shape. If, after some time, the gaze is then suddenly directed to an
entirely white area, the cells adapted to the red shape will respond to light that remains at
a constant intensity in the red frequency range, but that has just increased in the green and
blue ranges. This can then cause the figure to be perceived again, but now in a color that is
complementary to the original red.

To actually perform the above example is to experience the classic afterimage effect,
described as a part of human color perception by the opponent-process model [1–3].

Certainly during relatively recent history, various groups of visual artists have devel-
oped and used techniques that consciously incorporated the retinal afterimage.

The 19th century, for example, saw the rise of the Neo-impressionist movement in paint-
ing. Here, Georges Seurat was the seminal figure, for the movement as well as the related
techniques of pointillism and divisionism. As a basis for his own work, Seurat used color
theories developed and advocated by Michel Eugène Chevreul and other contemporary sci-
entists [4,5]. These color theories were concerned with various observable types of contrast,
as well as their presence and use in the visual arts. The retinal afterimage was considered
as a part of this, discussed in [6] as “successive” and “mixed contrast” (for a translation,
see [7]). Motivated by a desire to achieve maximally brilliant colors, Neo-impressionism
took the view that colors should not be mixed as paints on the painter’s palette. Instead,
color mixing should occur only during the process of viewing [8]. To do this, divisionism
was developed: a technique where paint is applied in separate dots, in such a way that
where adjacent, chosen colors pair up as complementary. The idea is then that for areas
where colors are paired in this way, the viewer may perceive a given color in a more bright
or intense way, due to retinal afterimages induced by the respective complementary color.
This assumption is still held in recent educational materials [9].

Moving to the 20th century, during its second half, a different art movement also gave
special attention to the process of viewing, while exploring and employing many illusory
phenomena in the human visual system: the Optical art or Op art movement [10,11]. The
illusory phenomena included the retinal afterimage, for example in works by the painters
Bridget Riley [12], Richard Anuszkiewicz [13], and Larry Poons [14]. More generally, the
retinal afterimage is part of the techniques associated with Op art [15]. Where countless
demonstrations, from Goethe [16] to the 21st century [17], have used afterimage shape
figuratively, Op art has often used it to show abstract forms.

Also, going back to earlier in the 20th century, one of the people teaching at Germany’s
original Bauhaus school was Josef Albers. Over time, his artistic and educational work came
to have a strong influence in design and visual art (see e.g., [18]). In Albers’ educational
materials, the retinal afterimage is presented as something to generally take into considera-
tion when using color in design and visual art, as a fundamental phenomenon in human
color perception [19].

Finally, an influential figure in film was Stan Brakhage, who produced his experimental
oeuvre partly by painting directly on the frames of analog film strips. At one point, he
considered afterimage colors the only true colors [20].

1.3. Two-Dimensional Shape Display as a Test Case for Computing the Retinal Afterimage

Could we partly automate techniques for inducing the retinal afterimage? The above
discussion has only further motivated a return to this question, having made concrete how,
over time, various individuals and movements in visual art have considered the retinal
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afterimage to be a significant phenomenon—one to be studied as well as incorporated into
the artistic techniques being developed and used.

To then make the central question itself and the process of finding an answer to
it more concrete, we should first make a basic choice regarding the algorithms to be
developed: What specific aspects of the afterimage should these offer to the visual artist for
specification? This could include for example shape, color, and textural effects. Out of these,
we choose to pursue 2D shape display first, because when testing new techniques with test
subjects, the recognition of shapes seems especially well-suited to unambiguous reporting.

1.4. Fundamental Problem: Avoiding Shape Recognition Outside the Afterimage

Our choice for 2D shape display via the retinal afterimage does present a fundamental
problem however, which is directly illustrated by the afterimages that can be induced using
Figures 1a and 1b. Already beforehand, the shapes of sinusoid bands can be recognized
in the first Figure, and the representation of a face in the second. Because of the repeating
symmetry of Figure 1a, its afterimage will show the already-seen sinusoid shapes, in what
seems to be a nearly identical, but shifted version of the original image. The afterimage
induced by Figure 1b, on the other hand, will resemble its predecessor in a much less
obvious way, briefly showing a representation of the face now inverted back to a positive.
This diminished resemblance is reflected in the greater element of surprise associated with
perceiving the second afterimage.

As these examples clearly show, the contents of the retinal afterimage may, to a varying
extent, already be recognizable via normal viewing of the imagery used to induce the effect.
Because of this, any technique claiming to offer 2D shape display via the retinal afterimage
must carefully and rigorously exclude the possibility that it is normal vision that is actually
(in part) responsible for shape recognition by the viewer.

In order to keep clear of this kind of false positive, we will require that outside of the
afterimage effect, results for shape recognition will be explicitly negative.
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Figure 1a. Example afterimage shapes. For viewing, first enlarge this image, and increase its visual 

contrast as much as is possible and comfortable. Then, from close by, focus on the crosshair in the 

middle for about one minute. After this, close your eyes. Briefly, an afterimage will appear. Subse-

quent blinking may bring it back, as it becomes less and less distinct. 

 

Figure 1b. A second example afterimage shape. (See Figure 1a for viewing directions.). 

  

Figure 1a. Example afterimage shapes. For viewing, first enlarge this image, and increase its visual
contrast as much as is possible and comfortable. Then, from close by, focus on the crosshair in
the middle for about one minute. After this, close your eyes. Briefly, an afterimage will appear.
Subsequent blinking may bring it back, as it becomes less and less distinct.
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2. Materials & Methods: Computing Shapes Exclusive to the Retinal Afterimage

Besides requiring explicitly negative results for shape recognition outside of the
afterimage effect, we will limit our automated approach to the greyscale case, and not use
different perceived light intensities for different types of retinal color receptors. Also, we
will induce the retinal afterimage using the minimum amount of images: one bias image
for retinal adaptation, followed by one trigger image triggering the effect. Having two such
greyscale images produce an afterimage showing the specified 2D shape, while this shape
is not recognizable in either of the images separately, then corresponds to visualization
exclusive to the retinal afterimage.

Below, the construction of a method for computing 2D shapes in the retinal afterimage
will be discussed. This will be illustrated by figures in the text, and by video examples
that can be found in the Electronic Appendix. All development was done using the TFT
LCD display of a Packard Bell R3450 laptop computer, which has a resolution of 98 dpi.
This display was used during daytime (set to maximum brightness), in an indoors setting
otherwise without artificial lighting. Image sequences were viewed from a distance of
approximately 60 cm, chosen as a typical and comfortable viewing distance. Bias images
were displayed for 20 s, and immediately followed by their trigger images.

Software implementing the method has also been included in the Electronic Appendix,
allowing direct experimentation with various aspects of the method. These include input
patterns, visualization parameters, and rule sets, discussed below. It may be necessary to
use the software to recreate video examples, for playback on other display devices than the
one used here: Differences in color gamut between various display types and technologies
can be considerable, and may initially prohibit an effective reproduction of the greyscale
intensities used. The solution in such cases would be to repeat construction as described,
but using the specific display in question.

2.1. Controlling Induced Afterimage Intensity: Visual Fixation

Our basic means for facilitating well-defined, predictable retinal adaptation will be to
have the viewer fixate visually. This will be done much like in the traditional examples that
employ shapes put on paper. However, unlike those examples, subsequent eye movement,
necessary to view the retinal afterimage, will be eliminated from the process. Instead, once
retinal adaptation has occurred, the digital display technology used will seamlessly switch
the image already being looked at to another one, and thereby trigger the afterimage effect.
Then, within the images used, a specific crosshair shape will be placed as a visual aid for
fixating. It will have black and relatively thick edges, to make it easier for the viewer to
focus on its center regardless of the varying contents of the images around it. The center
itself will be defined by the intersection of two hairlines, drawn in green to further stand
out from the greyscale imagery. The width of the hairlines will be one pixel, and their
length 40 pixels. The resulting crosshair shape is shown in Figure 2.
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Figure 2. The crosshair for visual fixation.

During a typical image sequence, the viewer will be asked to focus constantly on the
crosshair’s center, which in practice will probably mean constantly correcting for small
fixational errors. This can be facilitated by supporting the head with both hands while the
elbows are resting on some surface, as suggested in [21].

2.2. Simultaneously Inducing Different Afterimage Intensities: A Rasterization Method

To display 2D shapes, the retinal afterimage will have to create the simultaneous
perception of different light intensities at different locations. To do this, we will simply
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divide the bias and trigger images into square areas of m × m pixels. Through visual
fixation, each square in a bias image will correspond to a square in the following trigger
image, creating a separate sequence of greyscale intensities. We will use a total image size
of 800 × 600 pixels, which allows full-size playback on many different types of displays.

If we try this out for m = 50 however, using a chequered black and white pattern (see
Figure 3, to the left) followed by a similar image where black is replaced by a light grey (of
90% intensity), we find that unintended lighter and darker shades appear along the square
edges in the trigger image. This can be seen in the first sequence of Video Example I.
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Figure 3. Example sequence. Left: cropped middle section, around the crosshair, of a bias image.
Middle: the corresponding section of a trigger image. Right: a more detailed comparison, illustrating
convolution of the trigger image (n = 13).

A possible explanation is that we do not succeed in projecting adaptation patterns
precisely over those due to the trigger image. This is not surprising when recalling the
afterimages produced before, which were not exact inversions, but blurred variations of
the original images. In addition, the already blurred pattern of retinal adaptation cannot
be placed exactly and steadily over the trigger image, because of continuous, involuntary
small eye movements [22].

We may, however, try to alleviate the effects of this, by blurring the edges in the trigger
image. The idea here is that the middle sections of squares, which do overlap, produce
the desired afterimage intensities; while the borders in between those intensities, although
unstable, can be made into smooth transitions, by having the light differences resulting
from small eye movement be more gradual.

The contents of a pixel matrix, such as a trigger image, can be blurred by convolving
them with the contents of another matrix, which specifies how each pixel’s greyscale value
is to be recomputed as a weighted sum of the values of itself and its neighbours. We will
use n × n convolution matrices, with all elements equal to 1/n2, so that in general the
replacement of the value px, y of a pixel at location (x, y) will be the mean

1
n2 ∑n−1

i=0 ∑n−1
j=0 px−bn/2c+i, y−bn/2c+j

(Here, pixels lying outside the pixel matrix are assigned the value of the nearest pixel
inside the matrix.) For small n, this results in bands of n - 1 pixels wide between the square
areas, linearly traversing the difference in greyscale intensity. For odd n, the middle of such
a band will be at the location of the original sharp edge (see Figure 3 for an example). Now,
as n increases from n = 1, the perception of unintended shades along the square edges in
the trigger image decreases; around n = 13 it may seem largely gone, and replaced by an
impression of squares of even intensity, with fuzzy borders between them. This can be seen
in the second sequence of Video Example I, where the trigger image has been convolved
for n = 13.

This sequence also shows another effect, however: squares in the afterimage may
sometimes seem to join their neighbours, resulting in areas of even intensity which break the
regular chequering pattern. We might have anticipated that different sequences of greyscale
intensities could be used to create similar afterimage intensities, but these irregularities
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seem surprising in that they show that apparently similar causes—the regular structures
in the bias and trigger images—do not always lead to similar results in the afterimage.
In [23], a range of potential factors influencing the complete or partial disappearance and
reappearance of structured afterimages is examined. In [24], the influence of selective
attention in this is highlighted and studied, including an effect of filling-in of enclosed
regions. The irregularities that can be observed in the chequering pattern might provide an
example of related effects.

Still, it seems possible that these squares with fuzzy borders could be used to construct
the display of 2D shapes in the retinal afterimage. For this, it would be desirable to increase
shape resolution by decreasing square size m. A minimum for this would be m = n, since
below this value, convolution would not leave the original greyscale intensities of trigger
image squares present. Going down from m = 50, there initially (m = 38, m = 32, m = 25) is
the impression of fuzzy squares as described before—imperfect, but apparently similarly
so. For lower values (m = 22, m = 19, m = 13) the squares give an increasingly unstable
impression, distorted by large diagonal patterns. The third sequence of Video Example I
again shows the chequered sequence, now with square size decreased to m = 25 (and n = 13
as before).

Above, we have determined n and m only tentatively; the software included in the
Electronic Appendix allows free experimentation with both parameters.

2.3. A Naive but Formal Model of Induced Afterimage Intensity

In the previous Section, the retinal afterimage of Figure 3 and Video Example I seemed
to give an overall impression according with our initial discussion of the afterimage: The
light grey squares preceded by black ones appeared to light up, which can be explained by
retinal adaptation to lower light levels. In order to realize a general method for 2D shape
display, we would like to explore these effects of adaptation in a formal way. We will do
this by making a number of naive assumptions, giving us a simple model to work with—
explicitly not intended as a model for the retinal afterimage in any general sense. Factors
influencing afterimage color perception which will not explicitly be taken into account
here yet for example include post-adaptation contour alignment [25] and the presence of
induced contrast, both during and after adaptation [26].

Before formulating assumptions, we have to make explicit a distinction between bias
and trigger intensity on the one hand, and afterimage intensity on the other. The former
will mean actual light levels produced by screen pixels, corresponding to greyscale values
stored in display memory. The latter, a perceived intensity, will indicate a scale between
dark and light based on the subjective impression created in the viewer.

The first naive assumption we will use, then, is that using one particular sequence
of bias and trigger intensities will normally result in the perception of one particular
afterimage intensity. Denoting the set of possible pixel display intensities as a finite subset
I ⊂ [0, 1] (where 0 means black and 1 means white), we model afterimage intensity as a
real-valued function fa: I × I→ R of pixel display intensities (while assuming environment
light, exposure times and retinal sensitivity to be constant).

Then, if bias intensity b and trigger intensity t both have the same value for a sequence
(as e.g., for the white squares in Figure 3), we denote the resulting afterimage intensity by
this value, and assume that changing the bias intensity would cause it to change as well:

b = t⇔ fa (b, t) = t

From the earlier discussion of retinal adaptation, we would expect such a change in
bias intensity to be associated with either a decrease or an increase in afterimage intensity
(as e.g., for the light grey squares in Figure 3):

b > t⇔ fa (b, t) < t
b < t⇔ fa (b, t) > t
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Our final assumption (which will be exemplified by Figure 4) is that one particular
trigger intensity will give a darker impression in the afterimage if and only if there has
been retinal adaptation to a lighter bias intensity:

b1 > b2 ⇔ fa (b1, t) < fa (b2, t) (1)
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2.4. Visualization Exclusive to the Retinal Afterimage: Rule Sets

Having made these assumptions, suppose now we would want to produce after-
images using some set A = {a1, a2, . . . , an} ⊂ R of n > 1 afterimage intensities, with
a1 < a2 < . . . < an. There would probably be various ways to arrive at such a set, but in any
case, we would have to select pairs of bias and trigger intensities with which to produce it.
We define an afterimage rule set for producing A as a partial function fr : I × I→ A which
is surjective, so that it produces all of A:

∀a ∈ A ∃ b, t ∈ I : fr (b, t) = a

and which respects the afterimage function fa:

∀a ∈ A : fr (b, t) = a⇒ fa (b, t) = a (2)

Now, given a rule set and a particular pattern of afterimage intensities to be produced,
we can determine the contents for corresponding bias and trigger images by applying
the rule set to the pattern. In the following subsections, we will define various types of
rule sets (accompanied by concrete examples), with properties in favor of shape display
exclusive to the afterimage. For this, it is important to mention first that rule sets will be
used non-deterministically: If more than one (b, t) pair may produce a given a = fr (b, t), one
of them will be chosen at random.

2.4.1. Ambiguous Rule Sets

First, we will focus on the subgoal that a pattern of afterimage intensities should not
be recognizable in the trigger image used to produce it. A certain way to achieve this would
be to use a rule set in which any trigger intensity can lead to any afterimage intensity: We
could then freely choose our pattern of trigger intensities, regardless of the afterimage that
is to be produced. We say a rule set fr is trigger-ambiguous if:

fr (b, t) = a⇒ ∀a′ ∈ A ∃ b′ ∈ I : fr (b′, t) = a′

The simplest examples of such rule sets would use a single trigger intensity to produce
the minimum two afterimage intensities. Consider for example the rule set f1, shown in
the diagram of Figure 4. (In the diagram, B and T indicate the subsets of I containing f 1

′s
bias and trigger intensities, respectively. These subsets are formally defined below.) Rule
set f1 is based on a dark grey trigger intensity, which is either darkened by a preceding
white intensity, giving a1 = f1 (1, 0.25), or lit up by a preceding black intensity, giving a2 = f1
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(0, 0.25). This will not allow a choice in trigger intensity, but the ambiguity requirement
still guarantees that shapes in the afterimage will not be recognizable in the always evenly
grey trigger images.

This is illustrated by the image sequence depicted in Figure 4, and demonstrated
in Video Example II, which is the result of applying f1 to an example afterimage pattern
consisting of a symbol and a simple regular pattern. This sequence also shows how, by
generating negative bias images and neutral trigger images, rule set f1 implements the
classic afterimage effect.

Since we would like shapes in the afterimage to go unrecognized in the bias image
also, we introduce a second concept, analogous to trigger ambiguity. We say a rule set fr is
bias-ambiguous if:

fr (b, t) = a⇒ ∀a′ ∈ A ∃ t′ ∈ I : fr (b, t′) = a′

Our example for this type of rule set will introduce the simultaneous use of different
bias-trigger intensity pairs to produce the same afterimage intensity. The starting point
here will be the fact that black and white bias intensities can lead to two distinct afterimage
intensities by simply remaining constant. This corresponds to a rule set f2, shown in the
diagram of Figure 5, of which the first half is given by a1 = f2 (0, 0) and a2 = f2 (1, 1).
To satisfy the ambiguity requirement, the second half will then have to allow each bias
intensity to lead to both of the afterimage intensities.
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Figure 5. Bias ambiguity. Left: diagram of rule set f2, with arrows linking the intensities that are
used. Middle, left: the random bias image from an image sequence generated by rule set f2. Middle,
right: the slightly distorted trigger image. Right: the target afterimage pattern, with a1 and a2 shown
as before.

In the case of black, for example, we have to find a t for which a2 = f2 (0, t). This can be
done by varying t and judging how well the combination of f2 (0, t) and f2 (1, 1), applied
to an all-a2 afterimage pattern, succeeds in creating an even impression in the afterimage.
Three ranges will then be distinguishable for t: a high range where f2 (0, t) will seem lighter
than f2 (1, 1); a low range where the opposite is true; and a range inbetween, where the
afterimage intensities will seem similar, but still may flicker or otherwise remain visually
separate. The most stable results in this middle range seemed to be around t = 0.87, so that
we will use a2 ≈ f2 (0, 0.87).

Analogous steps taken for the white case, while testing with an all-a1 pattern, then
yielded a1 ≈ f2 (1, 0.15), finishing rule set f2.

The next step, of using f2 on a concrete target pattern, will mean that for each afterim-
age intensity within that pattern, a random choice will be made out of those bias-trigger
intensity pairs that could produce it. Overall, the resulting bias image will therefore also
be a random black-and-white pattern. This pattern will then by the same process also be
present in the trigger image, distorting it in a limited way. This is demonstrated in Figure 5
and Video Example III, which use the same example afterimage pattern as before.

The two examples above have concretely demonstrated how viewers will not be able
to recognize the target afterimage pattern where an ambiguity requirement applies—be
this in the trigger or bias image, respectively. However, it is also true for each example
that in the image where ambiguity did not apply, the afterimage shape could easily be
recognized. This leads us to wish for a rule set fr that has both bias and trigger ambiguity



Big Data Cogn. Comput. 2022, 6, 97 10 of 21

simultaneously. However, regrettably, such a fully ambiguous rule set cannot exist, and we
can prove this within our framework.

Proof. Suppose a rule set fr is bias-ambiguous.
Define the sets B and T of fr’s bias and trigger intensities:

B = { b | b ∈ I ∧ (∃ t ∈ I, a ∈ A : fr (b, t) = a) }
T = { t | t ∈ I ∧ (∃ b ∈ I, a ∈ A : fr (b, t) = a) }

Then choose
bmax ∈ B so that ∀b ∈ B : b ≤ bmax
amax ∈ A so that ∀a ∈ A : a ≤ amax
amin ∈ A so that ∀a ∈ A : a ≥ amin .

Due to bias ambiguity, there must exist a t′∈ T with
fr (bmax, t′) = amax.

However, for this t′, trigger ambiguity will not hold, because
¬ ∃ b′ ∈ B : fr (b′, t′) = amin .
Proof. Suppose ∃ b′ ∈ B: fr (b′, t′) = amin .

Then fa (b′, t′) < fa (bmax, t′) by Prop. (2),
since n > 1 guarantees amin < amax .
It then follows by Prop. (1) that b′ > bmax ,
which is impossible by definition.

Therefore fr cannot be both bias- and trigger-ambiguous. �

This does not have to mean that ambiguity is completely useless to our purposes
however: we may still realize a decrease in recognizability in both the bias and the trigger
image by informally relaxing requirements to the level of a partial ambiguity, where it
suffices that each bias or trigger intensity can lead to more than one of the afterimage
intensities.

This idea is implemented in rule set f3 which, while using the same two bias intensities
as rule set f2, will target three instead of two afterimage intensities (see Figure 6). We begin
its construction by attempting to find a t1 and t2 with fa (0, t1) = fa (1, t2). Trying to identify
such a match can be done using the same procedure as was followed when constructing
f2—now, while varying an additional parameter d: t1 = 0.5 – d and t2 = 0.5 + d, with d
being raised from zero, thereby moving the trigger intensities away from a middle grey.
While doing this, the results produced near d = 0.13 appeared to have the greatest stability,
yielding a2 ≈ f3 (0, 0.37) and a2 ≈ f3 (1, 0.63).

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 11 of 22 
 

Proof. Suppose a rule set fr is bias-ambiguous. 
  

Define the sets B and T of fr’s bias and trigger intensities: 

 B = { b | b  I ∧ (∃ t  I, a  A :  fr (b, t) = a) } 

 T = { t | t  I ∧ (∃ b  I, a  A :  fr (b, t) = a) } 
  

Then choose 

 bmax  B so that ∀b  B : b ≤ bmax 

 amax  A so that ∀a  A : a ≤ amax 

 amin  A so that ∀a  A : a ≥ amin . 
  

Due to bias ambiguity, there must exist a t' T with 

 fr (bmax, t') = amax . 
  

However, for this t', trigger ambiguity will not hold, because 

 ¬ ∃ b'  B : fr (b', t') = amin . 
  

 Proof. Suppose ∃ b'  B : fr (b', t') = amin . 

   Then fa (b', t') < fa (bmax, t') by Prop. (2), 

   since n > 1 guarantees amin < amax . 

   It then follows by Prop. (1) that b' > bmax , 

   which is impossible by definition. 
  

Therefore fr cannot be both bias- and trigger-ambiguous. □ 

 

This does not have to mean that ambiguity is completely useless to our purposes 

however: we may still realize a decrease in recognizability in both the bias and the trigger 

image by informally relaxing requirements to the level of a partial ambiguity, where it suf-

fices that each bias or trigger intensity can lead to more than one of the afterimage inten-

sities. 

This idea is implemented in rule set f3 which, while using the same two bias intensi-

ties as rule set f2, will target three instead of two afterimage intensities (see Figure 6). We 

begin its construction by attempting to find a t1 and t2 with fa (0, t1) = fa (1, t2). Trying to 

identify such a match can be done using the same procedure as was followed when con-

structing f2—now, while varying an additional parameter d: t1 = 0.5 – d and t2 = 0.5 + d, 

with d being raised from zero, thereby moving the trigger intensities away from a middle 

grey. While doing this, the results produced near d = 0.13 appeared to have the greatest 

stability, yielding a2 ≈ f3 (0, 0.37) and a2 ≈ f3 (1, 0.63). 

Although the above has, so far, only provided us with the medium afterimage inten-

sity a2, we can now quickly finalize f3 into a partially ambiguous rule set by having a3 = f3 

(0, 0.63) and a1 = f3 (1, 0.37). 

 

Figure 6. Partial ambiguity. Left: diagram of rule set f3, with arrows linking the intensities that are 

used. Middle, left and right: the randomly distorted bias and trigger images from an image sequence 

generated by rule set f3. Right: the target afterimage pattern, with a1, a2 and a3 shown as increasingly 

bright greys. 

Now completed, rule set f3 does seem to create a risk regarding recognizability when 

considering its afterimage intensities a1 and a3: Tracing these back within the diagram of 

Figure 6, we can see how sections of the afterimage pattern that use these intensities will 

Figure 6. Partial ambiguity. Left: diagram of rule set f3, with arrows linking the intensities that are
used. Middle, left and right: the randomly distorted bias and trigger images from an image sequence
generated by rule set f3. Right: the target afterimage pattern, with a1, a2 and a3 shown as increasingly
bright greys.

Although the above has, so far, only provided us with the medium afterimage intensity
a2, we can now quickly finalize f3 into a partially ambiguous rule set by having a3 = f3
(0, 0.63) and a1 = f3 (1, 0.37).

Now completed, rule set f3 does seem to create a risk regarding recognizability when
considering its afterimage intensities a1 and a3: Tracing these back within the diagram
of Figure 6, we can see how sections of the afterimage pattern that use these intensities
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will reoccur, in unambiguously differing greyscale levels, in both the trigger and bias
images. However, given that the other areas of these images, leading to a2, will use the
same greyscale values randomly, recognition will still be hampered. In Figure 6 and Video
Example IV, this is demonstrated using a three-tone variant of the previously used example
afterimage pattern.

2.4.2. Scrambling Rule Sets

A basic property of human visual perception is that adjacent areas of a similar shade
tend to be grouped together and perceived as a shape. We will now introduce another
approach to defining rule sets, using this tendency in a subversive manner. As before, the
goal is to have shapes recognized in the afterimage not be recognized by normal viewing
of the image sequence producing the afterimage.

First, we will need a tool to look at how rule sets reorder intensities, when compar-
ing the bias images they generate to the target afterimage patterns. Given a rule set fr,
we can enumerate the set B of its bias intensities (defined in Section 2.4.1) according to
b1 < . . . < b|B|—just as we have done for the set A of afterimage intensities from the outset.
We then define fr’s mapping scheme as a tuple of |B| subsets from the set {1, . . . , |A|},
where the i-th subset consists of all j for which ∃ t ∈ I : fr (bi, t) = aj.

This means that, reading a mapping scheme from left to right, we find for each bias
intensity, from dark to light, the ranks of the afterimage intensities to which it is linked.
For example, the mapping scheme for rule set f1 is given by ({2}, {1}), meaning that firstly,
its darkest bias intensity is mapped to its lightest afterimage intensity; and that secondly,
its lightest bias intensity is mapped to its darkest afterimage intensity (see the diagram of
Figure 4). As another example, the mapping scheme for rule set f2 is ({1, 2}, {1, 2}); just as
it will be for any other bias-ambiguous rule set which uses two bias and two afterimage
intensities (see the diagram of Figure 5).

Now, suppose we have a target afterimage pattern displaying a shape on a background,
with each in one intensity. Both will be repeated in the bias image, in bias intensities
according to the rule set used. Arbitrarily choosing one of the bias intensities present for
the shape, suppose that it is nearer in brightness to one of the bias intensities present for
the background than to all other intensities also present for the shape. Where adjacent,
these two bias intensities will tend to visually group together, distorting the perception
of the original shape. A rule set fr will have this property for all possible combinations of
uniformly tinted shapes if:

fr (b, t) = a⇒ ∀a′∈ A, a′ 6= a : ∃ b′, t′∈ I :
[ fr (b′, t′) = a′ ∧ ∀b”, t”∈ I, b” 6= b :

fr (b”, t”) = a⇒ | b - b′ | < | b - b” | ]
(3)

However, given a rule set fr, it may be more intuitive to look at its mapping scheme:
if in it, multiple occurrences of the same afterimage intensity are always separated by
occurrences of all other afterimage intensities lying strictly inbetween, the above property
will hold. Consider for example the mapping schemes ({1}, {2}, {1}) and ({1}, {2}, {1}, {2}).
(For an example illustrating the use of ({1}, {2}, {1}, {2}), please preview how the rule set
shown in the diagram of Figure 8 links its trigger intensities to its afterimage intensities.)
Both of the above mapping schemes correspond to rule sets satisfying the property, and
both have a scrambling effect on the shapes of the afterimage, as is illustrated in Figure 7.
However, the effect of the first mapping scheme is crippled by the fact that it has afterimage
intensity a2 preceded by bias intensity b2 only, which greatly aids shape recognition. We
still need to make explicit that a rule set fr should produce each afterimage intensity using
multiple bias intensities:

fr (b, t) = a⇒ ∃ b′, t′∈ I, b′ 6= b : fr (b′, t′) = a (4)
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Figure 7. Scrambling effects. Right: the target afterimage pattern. Left: a correspond-
ing bias image using the mapping scheme ({1}, {2}, {1}). Middle: a stronger result using
mapping scheme ({1}, {2}, {1}, {2}).

Having Props. (3) and (4) now at our disposal, we consider a rule set fr that satisfies
both of them to be bias-scrambling. We can then arrive at a very similar definition of trigger-
scrambling rule sets (and trigger intensity mapping schemes) simply by reiterating the above
discussion while replacing bias images with trigger images.

The next example rule set will then satisfy the scrambling requirement for both the
bias and trigger images that it generates. These will each be constructed in four different
intensities, starting with black and white bias intensities that are combined in such a way
with two trigger intensities near middle grey as to produce two afterimage intensities that
are ordered the other way around: a1 = f4 (1, 0.52) and a2 = f4 (0, 0.48), and see Figure 8. To
this we then add two inner bias intensities and two outer trigger intensities, by searching
for two pairs of identical intensities that will also yield a1 and a2 in the afterimage. Here,
iteratively testing with all-a1 and all-a2 patterns (like before in Section 2.4.1) seemed to give
the most stable results when choosing a1 ≈ f4 (0.39, 0.39) and a2 ≈ f4 (0.62, 0.62).
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Figure 8. Bias-scrambling, trigger-scrambling. Left: diagram of rule set f4, with arrows linking the
intensities that are used. Middle, left and right: the scrambled bias and trigger images from an image
sequence generated by rule set f4. Right: the target afterimage pattern, with a1 shown as black and a2

shown as white.

This means that both 0.39 and 0.62 will play double roles in f4: on the one hand, as the
inner bias intensities, resulting in the bias intensity mapping scheme ({2}, {1}, {2}, {1}); and
on the other hand, as the outer trigger intensities, resulting in the trigger intensity mapping
scheme ({1}, {2}, {1}, {2}).

Visual outcomes of this are demonstrated by the image sequence of Video Example
V, also presented in Figure 8. When trying to assess how well the afterimage pattern
is being scrambled, we can see that this is impaired in the trigger image by something
documented in the rule set diagram: Each of the outer trigger intensities will visually group
together with both of the inner trigger intensities almost equally well, due to their relative
closeness. Placing the inner trigger intensities further apart involves a trade-off, however,
because this in turn will place the afterimage intensities closer together, and thereby reduce
afterimage contrast.

2.4.3. Hybrid Rule Sets

Reflecting on ambiguity versus scrambling, it is now clear that both have inherent
strengths and weaknesses: Ambiguity is better for really guaranteeing that the afterimage
pattern will not be recognizable—but it restricts this guarantee to either the bias or the



Big Data Cogn. Comput. 2022, 6, 97 13 of 21

trigger image. Scrambling, as we have seen, does allow simultanous use in the bias and
trigger images—but it cannot provide a hard guarantee of unrecognizability. Given these
characteristics, it becomes worthwhile to explore whether the two approaches could be
combined within a single rule set.

The construction of our first example of this can start from the middle two trigger
intensities of rule set f4 (see Figure 8), but with each intensity placed somewhat further
away from medium grey. This for a rule set f5 initially defined by a1 = f5 (1, 0.57) and
a2 = f5 (0, 0.43). Searching for pairs of same-value bias and trigger intensities that would
also produce these afterimage intensities yielded a1 ≈ f5 (0.43, 0.43) and a2 ≈ f5 (0.57, 0.57).
This then completes a rule set which, like rule set f4, on the one hand is bias-scrambling,
using four bias intensities with a bias intensity mapping scheme of ({2}, {1}, {2}, {1});
but which, on the other hand, also is trigger-ambiguous for its two trigger intensities.
This is illustrated in Figure 9, along with an image sequence generated using f5 that is
demonstrated in Video Example VI.
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Figure 9. Bias-scrambling, trigger-ambiguous. Left: diagram of rule set f5, with arrows linking the
intensities that are used. Middle, left: the scrambled bias image from an image sequence generated
by rule set f5. Middle, right: the random trigger image. Right: the target afterimage pattern, with a1,
a2 shown as before. Please note that the actually experienced afterimage may be quite different: see
the text.

It appears, however, that in rule set f5, a1 and a2 are too near eachother to obtain a
good contrast in the afterimage: With the resulting greys seeming quite similar, shape is
hard to separate from background. To improve on this, construction of our next rule set
will ensure from the start that an afterimage contrast comparable to that of f4 will again be
obtained—while switching the scrambling and ambiguity requirements.

Constructing rule set f6 starts by copying from f4, and initially defining its afterimage
intensities as a1 = f6 (1, 0.52) and a2 = f6 (0, 0.48). Then, while testing iteratively using all-a1
and all-a2 afterimage patterns, we look for a t1 that yields a1 ≈ f6 (0, t1) and a t4 that yields
a2 ≈ f6 (1, t4). The most stable impression here seemed to result when choosing a1 ≈ f6
(0, 0.25) and a2 ≈ f6 (1, 0.74). This then completes a rule set that is trigger-scrambling, based
on four trigger intensities with a corresponding mapping scheme of ({1}, {2}, {1}, {2}). At the
same time, the two bias intensities satisfy bias ambiguity. This is illustrated in Figure 10,
along with an image sequence generated using f6 that is demonstrated in Video Example VII.
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Figure 10. Bias-ambiguous, trigger-scrambling. Left: diagram of rule set f6, with arrows linking the
intensities that are used. Middle, left: the random bias image from an image sequence generated by
rule set f6. Middle, right: the scrambled trigger image. Right: the target afterimage pattern, with a1,
a2 shown as before.
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Comparing the current rule set to its predecessor, even though f6 does improve on
the contrast between afterimage intensities, f5 will probably produce the more effective
scrambling: Its middle bias intensities are relatively wider apart than the middle trigger
intensities of f6, which suffers even more from the same weakening effect on scrambling
that has already been discussed for rule set f4.

2.4.4. Multi-Trigger Sequences

By their definition, rule sets with bias ambiguity enable a random, but already fixed
bias image to still target any possible pattern in the afterimage. This can now be tested
using the bias-ambiguous, trigger-scrambling rule set f6: As is not possible when mirroring
the same idea using trigger ambiguity, in a single run, one pronounced bias impression
generated by f6 might be combined with more than one trigger image to yield the perception
of multiple afterimage patterns.

One way of implementing this is to simply show two successive trigger images instead
of one. This has been done in Video Example VIII, illustrated in Figure 11, successively
targeting the words “hello” and “world” in the afterimage. Here, the initial trigger image
is shown for 1.5 s, in a tentative compromise: Longer durations would have given the
viewer more time to recognize the initial afterimage shape, while however also diminishing
the quality of the second afterimage; and shorter durations would have had the opposite
effect. In another trade-off, showing the bias image for progressively longer time periods
would on the one hand help here—by yielding a better contrast in especially the second
afterimage—but it would also decrease viewing comfort and afterimage stability. The
tentative compromise for bias viewing duration was then to increase it by 10 s, to 30 s. The
above parameters, like the others before them, can be freely experimented with using the
software in the Electronic Appendix.
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Figure 11. Multiple trigger images for a “hello world” example. A sequence generated by rule set f6.
Left: the middle section of the bias image (shown twice). Middle: the corresponding sections of the
first and second trigger images. Right: the target afterimage patterns (a1, a2 as before). This sequence
also demonstrates the effects of scrambling when using finer target shapes.

3. Results of Experimental Evaluation

Before the main experiment that will be discussed below, the approach was tested in a
pilot experiment. Here, two image sequences were used that were each generated from, as
their afterimage targets, word shapes consisting of 5 letters. This was done using rule sets
f3 and f6, respectively. Showing these image sequences to 5 test subjects resulted in none of
them recognizing any word shapes in the separate bias and trigger images, and all of them
reporting the target 5-letter word shapes in the afterimage effect.

3.1. General Overview and Construction

Like the pilot, the follow-up main experiment was a controlled experiment, similarly
comparing afterimage viewing to normal viewing. Some key differences, however, were
a greater number of test subjects (n = 14), a balanced two-samples rather than a paired
design, and a greater emphasis on randomization.

The aim of the experiment was to assess whether the automated approach presented in
Section 2 is indeed capable of displaying, via the retinal afterimage, predefined 2D shapes
which are verified to not be recognized by test subjects due to normal viewing. The test
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subjects who took part in the experiment were of course naive to the target patterns, as
well as to the visualization method itself.

Regarding visual fixation and rasterization, the visualization method was tentatively
parametrized according to the outcomes discussed in Sections 2.1 and 2.2. The next
question was then to choose such rule sets from Section 2.4 as would be representative for
the approach as a whole. The first two rule sets f1 and f2, being trigger- and bias-ambiguous,
respectively, clearly allow for easy visual recognition of the target shape, in the images
where ambiguity does not apply. Therefore, these rule sets would not be used. Then
comparing bias- and trigger-scrambling rule set f4 to rule set f6, the latter, while also being
trigger-scrambling, is bias-ambiguous, thereby guaranteeing unrecognizability where f4
cannot do so. Rule set f6 was therefore preferred over f4, and subsequently, also over
f5, the bias-scrambling, trigger-ambiguous rule set, because f6 was designed to induce a
stronger contrast in the retinal afterimage than that of f5. Finally, since the remaining rule
set, partially ambiguous f3, did not seem necessarily worse than f6, both were selected for
use in the experiment.

The next decisions were then about what kind of target pattern to try to visualize
via the retinal afterimage. In any case, to avoid distraction, backgrounds of a single
uniform target level would be used. The foreground for each afterimage would then
consist of a single word, since words are a familiar kind of 2D shape that can be rapidly
recognized. Informed by a result that during regular viewing, strings of letters are more
rapidly recognized as words when placed in the center of visual fixation rather than in its
periphery [27], these word shapes would then be placed around the fixation crosshair.

Within the shapes, the lines used were mostly two square units thick. This is because
it became apparent, when using lines one unit thick, that the distortion of individual letters
would sometimes make them unreadable in the afterimage (see also Section 2.2).

Using this type of stimuli, the general idea was then to create two experimental
conditions, differing only on very specific points. In both conditions, test subjects would
view the exact same visual stimuli, i.e., pairs of bias and trigger images. However, under
the control condition, these image pairs would be viewed in a normal, everyday fashion;
while under the alternative condition, they would be viewed in such a way as to induce an
afterimage effect. From here on, these two conditions will be referred to as normal viewing
and afterimage viewing. Under afterimage viewing, each bias image naturally was followed
by its trigger image; while under normal viewing, the trigger image was shown first, then
the corresponding bias image. The order was reversed here to avoid the possibility of
accidental visual fixation actually effectively yielding the other experimental condition.

Another important design choice was that test subjects would be split into two equally
sized subgroups, with each subgroup being exposed to only one of the experimental
conditions. This in order to help secure the independence of measurements, by eliminating
any possibility that visual recognition by a subject, on exposure to a specific image pair,
might somehow be influenced by having been exposed to the same image pair before,
under a different experimental condition.

Given that test subjects would be completely new to the afterimage viewing method,
learning effects were to be expected for it, and therefore, initial viewing dry runs were
included in the experiment. Similarly but separately, subjects would also be new to at-
tempting visual recognition during the experimental afterimage effect itself, and therefore,
additional recognition dry runs were included as well. Given that preliminary experimen-
tation had indicated that 3-letter word shapes were harder to recognize in the afterimage
than 5-letter word shapes, the former were used in recognition dry runs, and the latter in
actual experimental runs. Both in recognition dry runs and experimental runs, the order in
which different image pairs were shown was randomized for each individual test subject.

3.2. Procedure

The 14 test subjects for the experiment were 16 to 29 years of age, 3 male, 11 female.
All were new to the visual stimuli and to the afterimage viewing method in general. Due
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to near-sightedness, far-sightedness and astigmatism, 9 test subjects needed correction by
glasses or contact lenses. For the remaining 5, this was not the case. One subject reported
having dyslexia. All reported not being color blind; not having other visual recognition
issues; and having been comfortable during the experiment. All test subjects except one
reported being able to concentrate well during the experiment, while two reported being
not well-rested.

The Electronic Appendix, which is viewable using any standard browsing software,
offers, among other things, playback of the images and image sequences used in the
experiment. It was held indoors during daytime, with no artificial light, and indirect
daylight. In general, the experimental circumstances were kept similar as in Section 2,
although now, a MacBook Pro laptop (Retina, 13-inch, early 2015) running macOS 12.2.1
was used to show the image sequences. Its display was set to maximum brightness and
yielded an ~ 18 by 13 cm display area for the experimental images, which were viewed
from a distance of ~ 50 cm. Separate images were each shown for 20 s; and during the
sequences, a bias image was always shown for 20 s and then followed immediately by the
trigger image, shown for 5 s.

For the test subjects assigned to afterimage viewing, during the initial viewing dry
runs, the third, chequered sequence shown in Video Example I was used to familiarize
them with the visualization method (see also Figure 3). Once seated in front of the display,
the subjects were informed that they would be shown a series of two images, with the
first changing into the second. They were asked to concentrate on the instant when this
change would occur, and instructed beforehand to place their elbows on a stable surface;
to rest their head on both hands; and then, throughout the sequence, to focus visually on
the center of the crosshair. When the sequence had finished, they were asked a question
which would return again and again during the rest of the session: Had they recognized a
pattern, and if so, what was it? Also, the test subjects were alerted to how the light grey
fuzzy squares preceded by black ones seemed to light up during the sequence, which was
then repeated one or more times until the test subjects signalled that they had gotten used
to the effect.

For the test subjects assigned to normal viewing, during the initial viewing dry run,
the separate trigger image of the same chequered sequence was shown, and then its bias
image. The test subjects were asked to look at the stimuli as if at ordinary photographs or
illustrations. After this, the question on recognition was asked.

Beyond this point in the experiment, image pairs were presented using the same
procedures, only now the subjects wrote down their answers in a form, and did not receive
feedback anymore. They could however indicate uncertainty about their response, in which
case an image pair was repeated until a final answer was settled upon.

Both under normal viewing and afterimage viewing, test subjects then next performed
the recognition dry runs. These, in an individually randomized order, presented two
image pairs: One generated by rule set f3, based on a 3-letter pattern spelling “red”; and
another generated by rule set f6, based on a 3-letter pattern spelling “low”. After these were
completed, the test subjects had the opportunity to write down any general remarks, and
there was a short break. Then, finally, the experimental runs also presented two image pairs
in a randomized order: One generated by rule set f3, based on a 5-letter pattern spelling
“light”; and another generated by rule set f6, based on a 5-letter pattern spelling “hello”.
After this, the answers to some additional questions could be noted down in the form, and
the experimental session was concluded.

3.3. Results

As has been described above, during the experiment, both the test subjects subject to
normal viewing and those subject to afterimage viewing were asked qualitative questions
about each of the stimuli just after their presentation.

Under normal viewing, this resulted in none of the test subjects ever reporting the
recognition of a word pattern, let alone reporting recognition of the target afterimage
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pattern. Subjects would report seeing darker and lighter areas, smudges, protrusions, or
shapes like a “QR code”. Perhaps most imaginatively, one subject reported seeing “trails
of viscous cheese sauce”. In any case, the observation coming closest to word pattern
recognition was that a single subject reported seeing an area somehow seeming “textual”
in the f3-generated image pair. Notably, this was also the only subject who reported
having dyslexia.

Under afterimage viewing, on the other hand, all test subjects always did report seeing
word shapes—except for one outlier, who did not report word shapes for any of the
image pairs. Reports by this subject of “dark grey roundish shapes” and “waving lines
from lower left to upper right” seem to indicate that something may have gone wrong
with maintaining visual fixation, after most letters had been recognized correctly during
the earlier recognition dry runs. Overall, except for the outlier, all test subjects correctly
recognized the target afterimage pattern for the f3-generated image pair: Here, a word
shape spelling “light” was reported 6 out of 7 times. For the f6-generated image pair, a
word shape spelling “hello” was correctly reported 4 out of 7 times.

As was already expected from the results of the earlier pilot experiment, the clear
contrast present in qualitative reporting described above, between no recognition versus
often correct recognition, provided a good basis for a further quantitative comparison
between the two experimental conditions of normal viewing versus afterimage viewing.

For this comparison, first, the data from the filled-in questionnaires was converted
from qualitative to quantitative for each test subject, using the single measure of “% of
times the afterimage pattern was correctly recognized in the image pair”. It should be appreciated
that this is a relatively strict measure, given that we do not count correctly recognized
individual letters or word segments: Anything less than correct recognition of the complete
word counts as zero. This is further strengthened by the fact that under normal viewing, a
counted instance of “the afterimage pattern was not correctly recognized” actually means

“no word pattern was reported whatsoever”. A final factor further increasing the strictness of
this measure is the fact that the rule sets were tested on a different display than that for
which they had been fine-tuned, leading to suboptimal afterimage visualization.

Overall—i.e., for both of the tested rule sets taken together, and even when also
including the data from the outlier test subject—this then yielded an observed difference
in group means of 71% under afterimage viewing relative to 0% under normal viewing.
To assess the reliability of this large observed difference, a t-test was used. Performing a
two-samples, heteroskedastic t-test yielded p = 0.0030. Figure 12 gives an overview of the
results of the experiment.
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Figure 12. Results of the experiment: word shape recognition under normal viewing versus under
afterimage viewing. Left and right: under normal viewing, none of the test subjects ever reported
recognizing any word pattern, let alone the correct target afterimage patterns. Left: under afterimage
viewing, only a single test subject did not report recognizing word patterns. This was the same
test subject for both rule sets f3 and f6. Right: all other test subjects correctly recognized the target
afterimage pattern when using rule set f3.

4. Discussion

As was mentioned before, preliminary testing before the experiment indicated that
3-letter word shapes were harder to recognize in the induced afterimage than 5-letter word
shapes. This might be explained by word shapes of 3 letters being less robust against
irregularities during afterimage display (see Section 2) than shapes consisting of 5 letters.

If so, this could motivate the development of a more sophisticated working model of
how perceived afterimage intensity is induced, and of an improved rasterization method
based on the model. Such development could be based on results from the literature,
including [23] which, for structured afterimages that completely or partially disappear
and reappear, studies what factors may influence this; as well as [24], which studies how
selective attention influences this process, including how enclosed regions become filled-
in; and also [25], which studies how the geometrical contours of an afterimage (induced
beforehand) aligning retinally with the contours in an image being subsequently viewed
may lead to an afterimage that appears more stable and more intense; and also [28], which
studies the influence of post-adaptation contours on effects of color spreading and filling-in.

During adaptation as well as after, the phenomenon of induced simultaneous contrast
influences how colors and greys appear to the viewer [26]. This, too, should be considered
explicitly when further refining how to computationally induce the retinal afterimage.
Adaptation itself could be made more rapid by using surroundings that are darker and/or
stimuli that are brighter than those used here. To allow for eye movements that are more
natural during phases of adaptation, the output via visual display technologies could
become closely based also on real-time input from eye tracking technologies.

5. Future Work

An important point to make, however, is that it cannot be within the scope of this
paper to determine which possible steps for further development of the approach should
be taken first, and in what order. This will depend on how visual artists will choose to
view the retinal afterimage as a medium: e.g., primarily as a means for illusory display; as
an approach yielding idiosyncratic visual experiences; or as an addition to existing forms of
computer graphics.

For example, the approach presented in Section 2 can be readily expanded in order to
also induce colored afterimages. Here, if the artist in question is interested in conveying
information by purely illusory means, it will be important to start from and expand on
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the formally defined and empirically tested constraints that enabled display exclusive to
the retinal afterimage. However, if the same artist primarily is interested in working with
the visual experience of perceiving shapes and patterns via the retinal afterimage, it may be
smarter to simplify any immediate further development of the approach by first relaxing
the formal constraints for exclusive display, e.g., beyond what was done at the end of
Section 2.4.1 and in Sections 2.4.2 and 2.4.3.

Another good example here is the choice whether or not to immediately add visual
fixation as an input when further developing the approach. If a visual artist intends to
work using fixed pairs of bias and trigger images, it may suffice to replace the fixation
crosshair by a visual element that triggers fixation in the context of the art work [29].
However, if an artist intends to work with multiple triggers that each may support visual
fixation, monitoring the series of actually occurring fixations may become desirable, and
this implemented within the work itself. As has been demonstrated in Section 2.4.4, a
visual artist may apply bias-ambiguous rule sets to enable the perception of different
possible afterimage shapes using a single, random initial bias image. The choice here may
be left to the viewer, who by eye movement and subsequent fixation alone might select the
actual trigger image from a number of simultaneously offered alternatives. Here, if display
technology with integrated eye tracking would be used, the visualization software could
keep track of these choices, as they are being made, thereby enabling the visual artist to
prepare an overall afterimage experience for the viewer that is interactive.

Also, regardless of whether the visual artist will intend to use the retinal afterimage
itself verbally or non-verbally, figuratively or abstractly—it may well be in combination
with existing forms of computer graphics. If this is the case, it may be an effective choice to
continue development of the approach using the display technologies of Virtual Reality
(VR) and Augmented Reality (AR) devices, as these will allow exploring addition of the
retinal afterimage to a wide range of different forms of interactive 3D computer graphics.
A common starting point here may often be the careful texture mapping of bias and trigger
images into 3D environments.

In light of the earlier points made above, it is then especially relevant to also note that
high-end AR/VR headsets with integrated eye tracking have recently become commercially
available [30].

6. Conclusion

Finally, more immediately reflecting on the outcome of the experiment described in
Section 3, its results indicate that the computational method we have developed can be
used to successfully induce a subset of all specifiable, recognizable 2D shapes specifically
via the retinal afterimage. Therefore, and in this sense, the method seems to constitute a
positive answer to the research question: Techniques for producing the retinal afterimage
can become partly automated. For visual artists interested in the effect this yields the
benefit that controlled visual complexity using the retinal afterimage can be created in
less time.

The supplementary Electronic Appendix to this paper also contains a publicly licensed
software toolkit, provided in source format and running on the Max programming envi-
ronment in widespread use among contemporary artists [31]. The toolkit can be used to
completely reproduce the approach, and to freely experiment with it.

Supplementary Materials: The Electronic Appendix is available online at https://www.mdpi.com/
article/10.3390/bdcc6030097/s1.
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