
����������
�������

Citation: Leiva, M.A.; García, A.J.;

Shakarian, P.; Simari, G.I.

Argumentation-Based Query

Answering under Uncertainty with

Application to Cybersecurity. Big

Data Cogn. Comput. 2022, 6, 91.

https://doi.org/10.3390/

bdcc6030091

Academic Editors: Peter R.J. Trim

and Yang-Im Lee

Received: 26 July 2022

Accepted: 22 August 2022

Published: 26 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

Argumentation-Based Query Answering under Uncertainty
with Application to Cybersecurity
Mario A. Leiva 1,2 , Alejandro J. García 1,2 , Paulo Shakarian 3 and Gerardo I. Simari 1,2,3,*

1 Department of Computer Science and Engineering, Universidad Nacional del Sur (UNS),
Bahia Blanca 8000, Argentina

2 Institute for Computer Science and Engineering (UNS–CONICET), Bahia Blanca 8000, Argentina
3 School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA
* Correspondence: gis@cs.uns.edu.ar

Abstract: Decision support tools are key components of intelligent sociotechnical systems, and their
successful implementation faces a variety of challenges, including the multiplicity of information
sources, heterogeneous format, and constant changes. Handling such challenges requires the ability
to analyze and process inconsistent and incomplete information with varying degrees of associated
uncertainty. Moreover, some domains require the system’s outputs to be explainable and interpretable;
an example of this is cyberthreat analysis (CTA) in cybersecurity domains. In this paper, we first
present the P-DAQAP system, an extension of a recently developed query-answering platform based
on defeasible logic programming (DeLP) that incorporates a probabilistic model and focuses on
delivering these capabilities. After discussing the details of its design and implementation, and
describing how it can be applied in a CTA use case, we report on the results of an empirical evaluation
designed to explore the effectiveness and efficiency of a possible world sampling-based approximate
query answering approach that addresses the intractability of exact computations.

Keywords: intelligent sociotechnical systems; human-in-the-loop computing; structured probabilistic
argumentation; cybersecurity

1. Introduction

Sociotechnical systems [1] are an important class of applications of artificial intelligence
(AI) tools, since many deployments of technology built on their foundations are at the
core of decision processes at the individual and the organizational levels. An inherent
problem in this area is that of explainability and interpretability, topics that were not
central in earlier “AI booms” characterized by expert systems and rule-based models.
The issues underlying this problem are within the domain of explainable AI (XAI) [2],
which is now widely recognized as a crucial feature for the practical deployment of AI
models [3]. The importance of this aspect can be appreciated by pointing to the Explainable
Artificial Intelligence (XAI) program launched by the Defence Advanced Research Projects
Agency (DARPA) [4], which aims to create a set of new artificial intelligence techniques
that allow for end users to understand, properly trust, and effectively manage the emerging
generation of artificial intelligence systems [5]. The danger is that complex black-box
models (some of which can comprise hundreds of layers and millions of parameters) [6] are
increasingly used for important predictions in critical contexts, and these models generate
outputs that may not be justified or simply do not allow for detailed explanations of their
behavior [4]. In this direction, recent work focused on addressing these problems from
different points of view [7–9]. In this paper, we focus on cybersecurity as a salient example
of a sociotechnical domain [10] in which the availability of explanations that support the
output of a model are crucial. Transparency, together with a human-in-the-loop (HITL)
scheme, leads to more robust decision-making processes whose results can be trusted by
users [8]. Achieving this is challenging, since many domains involve information arriving

Big Data Cogn. Comput. 2022, 6, 91. https://doi.org/10.3390/bdcc6030091 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc6030091
https://doi.org/10.3390/bdcc6030091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0003-4812-8268
https://orcid.org/0000-0002-2680-9903
https://orcid.org/0000-0002-3159-4660
https://orcid.org/0000-0003-3185-4992
https://doi.org/10.3390/bdcc6030091
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc6030091?type=check_update&version=2

Big Data Cogn. Comput. 2022, 6, 91 2 of 17

from multiple heterogeneous sources with different levels of uncertainty due to gaps in
knowledge (incompleteness), overspecification (inconsistency), or inherent uncertainty.

In cybersecurity domains, a clear example is the task of real-time security analysis, a
complex process in which many uncertain factors are involved, given that analysts must
deal with the behavior of different actors and entities, the dynamic nature of exploits, and
the fact that the observations of potentially malicious activities are limited. Cyberthreat
analysis (CTA) [11] is a highly technical intelligence problem in which (human) analysts
take into consideration multiple sources of information, with possibly varying degrees of
confidence or uncertainty, with the goal of gaining insight into events of interest that may
represent a threat to a system. When building AI tools to assist such a process, knowledge
engineers face the challenge of leveraging uncertain knowledge in the best possible way [12].
Due to the nature of these analytical processes, an automated reasoning system with human-
in-the-loop capabilities would be best suited for the task. Such a system must be able to
accomplish several goals, among which we distinguish the following main capabilities [13]:
(i) reason about evidence in a formal, principled manner; (ii) consider evidence associated
with probabilistic uncertainty; (iii) consider logical rules that allow for the system to draw
conclusions on the basis of certain pieces of evidence and iteratively apply such rules; (iv)
consider pieces of information that may not be compatible with each other, deciding which
the most relevant are; and (v) show the actual status of the system on the basis of the above-
described features, and provide the analyst with the ability to understand why an answer is
correct, and how the system arrives at that conclusion (i.e., explainability and interpretability).
In this context, there is a specific literature to the study of techniques and methodologies for
providing explanations in cybersecurity domains [14–17]. The model that we develop in
this work is based on argumentation-based reasoning, an approach that is designed to mimic
the way humans with which rationally arrive at conclusions by analyzing arguments for
and against them, and is especially well-suited for accommodating desirable features, such
as reasoning about possibly uncertain evidence in a principled manner, handling pieces of
information that may not be compatible with each other, and showing the actual status of
the system to analysts along with the ability to understand why an output is produced.

Contributions. We contribute to the area of intelligent systems applied to cybersecu-
rity in the following ways:

• A use case for the application of a structured probabilistic argumentation model
(DeLP3E) [18] based on publicly available cybersecurity datasets.

• Design of the P-DAQAP framework, an extension of DAQAP [19], to work with
DeLP3E, and the proposal of different classes of queries in the context of applications
related to CTA.

• A preliminary empirical evaluation of an approximation algorithm for probabilis-
tic query answering in P-DAQAP, showing the potential for the system to scale to
nontrivial problem sizes, arriving at solutions efficiently and effectively.

To the best of our knowledge, this is the first system of its kind. In particular, being
able to consider the internal structure of arguments allows for the platform to be extended
to work with other defeasible argumentation formalisms, and offers greater transparency
to adapt classical approaches that do not consider probabilistic information.

2. Preliminaries

Tools developed in the area of argumentation-based reasoning offer the possibility of
analyzing complex and dynamic domains by studying the arguments for and against a
conclusion. Specifically, defeasible argumentation leverages models that contain inconsistency,
evaluating arguments that support contradictory conclusions and deciding which ones to
keep [20]. An argument supports a conclusion from a set of premises [20]; a conclusion C

constitutes a piece of tentative information that an agent is willing to accept. If the agent
then acquires new information, conclusion C, along with the arguments that support it,
could be invalidated. The validity of a conclusion C is guaranteed when there is an argument
that provides justification for C that is undefeated. This process involves the construction of

Big Data Cogn. Comput. 2022, 6, 91 3 of 17

an argument A for C, and the analysis of counterarguments that are possible defeaters of A;
as these defeaters are arguments, it must be verified that they are not themselves defeated.
There are several formalisms that are based on this idea, such as ABA [21], ASPIC+ [22],
defeasible logic programming (DeLP) [23], and deductive argumentation [24], which consider the
structure of the arguments that model a discussion. The DAQAP platform [19] on which
the presented system is based uses DeLP as its central formalism. We now briefly present
the necessary background, starting with DeLP and its probabilistic extension.

2.1. Defeasible Logic Programming (DeLP)

DeLP combines logic programming and defeasible argumentation. A DeLP program
P , also denoted as (Π, ∆), is a set of facts and strict rules (Π), and defeasible rules (∆).
Facts are ground literals representing atomic information (or its negation using strong
negation “∼”), strict rules represent nondefeasible information, and defeasible rules represent
tentative information. Here, we consider the extension that incorporates presumptions to set
∆, which can be thought of as a kind of defeasible fact [25].

The dialectical process used in deciding which information prevails as warranted
involves the construction and evaluation of arguments that either support or interfere with
the query under analysis. An argument A is a minimal set of defeasible rules that, along
with the set of strict rules and facts, are not contradictory and derive a certain conclusion α,
denoted as 〈A, α〉. Arguments supporting the answer for a query can be organized using
dialectical trees. A query is issued to a program (Π, ∆) in the form of a ground literal α.

A literal α is warranted if there exists a nondefeated argument A supporting α. To
establish if 〈A, α〉 is a nondefeated argument, defeaters for 〈A, α〉 are considered, i.e., coun-
terarguments that by some criteria are preferred to 〈A, α〉. An argument A1 is a counter-
argument for A2 iff A1 ∪ A2 ∪Π is contradictory. Given a preference criterion, and an
argument A1 that is a defeater for A2, A1 is called a proper defeater if it is preferred to A2,
or a blocking defeater if it is equally preferred or is incomparable with A2. Since there may
be more than one defeater for a particular argument, many acceptable argumentation
lines could arise from one argument, leading to a tree structure. This is called a dialectical
tree because it represents an exhaustive dialectical analysis for the argument in its root;
every node (except the root) represents a defeater of its parent, and leaves correspond
to nondefeated arguments. Each path from the root to a leaf corresponds to a different
acceptable argumentation line. A dialectical tree provides a structure for considering all
possible acceptable argumentation lines that can be generated for deciding whether an
argument is defeated.

Given a literal α and an argument 〈A, α〉 from a program P , to decide whether α is
warranted, every node in the tree is recursively marked as D (defeated) or U (undefeated),
obtaining a marked dialectical tree TP (A): (1) all leaves in TP (A) are marked as “U”s; and
(2) let B be an inner node of TP (A); then, B is marked as U iff every child of B is marked as
D. Thus, node B is marked as D iff it has at least one child marked as U. Given an argument
〈A, α〉 obtained from P , if the root of TP (A) : is marked as U, then TP (A) warrants α, and
α is warranted from P . The DeLP interpreter takes a program P and a DeLP query L, and
returns one of the following four possible answers: YES if L is warranted from P , NO if the
complement of L regarding strong negation is warranted from P , UNDECIDED if neither
L nor its complement are warranted from P , or UNKNOWN if L is not in the language of
the program P .

2.2. Probabilistic DeLP: DeLP3E Framework

We now provide a brief introduction to DeLP3E; for full details, we refer the reader
to [18]. A DeLP3E KB P = (AM, EM, af) consists of three parts that correspond to two
separate models of the world, and a function linking the two; these components are illustrated
in Figure 1.

Big Data Cogn. Comput. 2022, 6, 91 4 of 17

Environmental Model (EM)Analytical Model (AM)

Ω ∪ Θ ∪ Δ ∪ Φ ⋯⋯
Rules, Facts

and
Presumptions

Arguments Dialectical
Process

b

d

h

a

gf

i

c

e

j

Worlds a b c ... j 𝑷𝒓(𝝀𝒊)𝜆1 T T T … T 0.47𝜆2 T T T … F 0.15𝜆3 T T T … T 0.05

… … … … … … …𝜆1024 F F F … F 0.003

Probabilistic Model

DeLP3E Knowledge Base

Annotation Function (af)𝑎𝑓:Ω ∪ Θ ∪ Δ ∪Φ → 𝑓𝑜𝑟𝑚𝐸𝑀𝑎𝑓 𝑟1 = 𝑎 𝑎𝑛𝑑 𝑏𝑎𝑓 𝑟2 = 𝑇𝑟𝑢𝑒𝑎𝑓 𝑓1 = 𝑔 𝑜𝑟 ℎ…

𝜆𝑖 𝑎𝑓↝ 𝑟1 𝑟2𝑝2 𝑓1𝑝1 𝑝3… …
⋯𝑃𝑟 𝜆𝑖

AM output:
All literals with their

warrant status

EM output:
Probability Distribution
over all possible worlds

DeLP3E output:
Literals with their

probability intervals in
the DeLP3E KB𝜆1 …𝜆2 𝜆3 𝜆𝑗 𝜆𝑘 𝜆𝑛

Figure 1. Overview of the DeLP3E framework.

The environmental model (EM) is used to describe background knowledge that is proba-
bilistic in nature, while the analytical model (AM) is used to analyze competing hypotheses
that can account for a given phenomenon. The EM must be consistent, while the AM al-
lows for contradictory information as the system must have the capability to reason about
competing explanations for a given event. In general, the EM contains knowledge such
as evidence, intelligence reporting, or uncertain knowledge about actors, software, and
systems, while the AM contains elements that the analyst can leverage on the basis of
information in the EM. AMs correspond to DeLP programs, while EMs in this paper are
abstracted away, assuming that the well-known Bayesian network model is used.

Finally, the third component is the annotation function, which links components in the
AM with conditions over the EM (the conditions under which statements in the AM can
potentially be true). We use GEM to denote the sets of all ground atoms for the EM; here,
we concentrate on subsets of ground atoms from GEM, called worlds. Atoms that belong to
the set are true in the world, while those that do not are false (Therefore, there are 2|GEM|

possible worlds in the EM). This set is denoted withWEM. Logical formulas arise from
the combination of atoms using the traditional connectives (∧, ∨, and ¬); we use formEM
to denote the set of all possible (ground) formulas in the EM. Annotation functions then
assign formulas in formEM to components in the AM to indicate the conditions (probabilistic
events) under which they hold. In this way, each world λ ∈ WEM induces a subset of the
AM, comprised of all elements whose annotations are satisfied by λ; for DeLP3E program P,
we denote the subset of the AM induced by λ with PAM(λ) (cf. Figure 1). Exact probabilistic
query answering is carried out via Algorithm 1.

Big Data Cogn. Comput. 2022, 6, 91 5 of 17

Algorithm 1: Exact probabilistic query answering

1 def compute_answer(query)
Data: P = (AM, EM, af)
Result: [`, u]

2 begin
3 Initialize ` = 0 and u = 1 /* the limits of the interval */
4 for EM worlds λi do
5 Compute the induced AM subprogram PAM(λi)
6 if the query is warranted in that program then
7 `← `+ Pr(λi)
8 else if the negation of the query is warranted then
9 u← u− Pr(λi)

10 end
11 return [`, u]
12 end
13 end

Since the number of worlds in WEM is exponential in the number of EM random
variables, this procedure quickly becomes intractable. However, a sound approximation of
the exact interval can be obtained by simply selecting a subset ofWEM and executing the
same procedure. We refer to this algorithm as approximate query answering via world
sampling. It is easy to see that this approximation scheme is sound since it always yields
intervals [`′, u′] ⊆ [`, u]. Section 5 is dedicated to studying the effectiveness and efficiency
of this approach.

A Simple Illustrative Example

In order to clearly illustrate the model and query-answering procedure in DeLP3E, we
present the following simple example of knowledge base P = (AM, EM, af):

Analytical Model

θ1 : L1
θ2 : L2
θ3 : ∼L1

Annotation Function

af(θ1) : a ∧ ¬b
af(θ2) : b
af(θ3) : b

Environmental Model

World a b Pr(λi)
λ1 T T 0.25
λ2 T F 0.20
λ3 F T 0.05
λ4 F F 0.50

We have an AM consisting of three literals, an EM consisting of two variables, and
an annotation function that relates these two models; suppose we query for the literal L1.
To compute the exact probability interval, we go world by world as described above,
generating the corresponding subprogram and querying each one of them for the status of
the query. Lastly, in order to arrive at the probability interval with which L1 is warranted
in P, we keep track of the probability of the worlds where the query is warranted (for
the lower limit of the interval) and the probability of the worlds where the complement of

Big Data Cogn. Comput. 2022, 6, 91 6 of 17

the query is warranted (for the upper limit). In our example, the result for query L1 is
[0.20, 0.70]; the details of this calculation are as follows:

• Subprograms induced in each possible world:

– PAM(λ1) = {L2,∼L1}
– PAM(λ2) = {L1}
– PAM(λ3) = {L2,∼L1}
– PAM(λ4) = {∅}
Query L1 is, thus, clearly warranted only in world λ2, while its complement (∼L1) is
warranted in λ1 and λ3.

• Probability interval calculation:[
` = ∑ Pr(λ2), u = 1− ∑

i=1,3
Pr(λi)

]

• Result: 0.20 ≤ Pr(L1) ≤ 0.70

The resulting probability interval represents two kinds of uncertainty: the first, called
probabilistic uncertainty, arises from the environmental model since we have a probability
distribution over possible worlds; the second, epistemic uncertainty, arises from the fact that
we we generally have a probability interval instead of a point probability, which happens
when there are worlds in which neither the query nor its complement are warranted (as is
the case of world λ4 above).

Having presented the preliminary concepts, in the next section, we illustrate the
application of DeLP3E in a cybersecurity domain.

3. Cyberthreat Analysis with DeLP3E

We now present a use case leveraging several datasets developed and maintained
by the MITRE Corporation (a not-for-profit organization that works with governments,
industry, and academia) and National Institute of Standards and Technology (NIST) (MITRE
datasets: ATT&CK (https://attack.mitre.org, accessed on 21 August 2022), CAPEC (https:
//capec.mitre.org, accessed on 21 August 2022), and CWE (https://cwe.mitre.org, accessed
on 21 August 2022). NIST manages the National Vulnerability Database (NVD) (https:
//nvd.nist.gov, accessed on 21 August 2022) that includes CVE and CPE). Figure 2 shows
an overview of our approach. We first describe the basic components and then show
how the DeLP3E components are specified, along with two queries for addressing specific
problems in the CTA domain.

The ATT&CK model is a curated knowledge base and model geared towards adversar-
ial behavior in cybersecurity settings; it contains information on the various phases of an
attack and the platforms that are most commonly targeted. The behavioral model consists
of several core components:

(i) Tactics, denoting short-term tactical adversary goals during an attack.
(ii) Techniques, describing the means by which adversaries achieve tactical goals.
(iii) Subtechniques, describing more specific means at a lower level than that of techniques

by which adversaries achieve tactical goals.
(iv) Documented adversary usage of techniques, their procedures, and other metadata.

The supporting datasets provide information on attack patterns (Common Attack
Pattern Enumeration and Classification—CAPEC), software and hardware weakness types
(Common Weakness Enumeration—CWE), and the National Vulnerability Database (NVD).
The latter is a rich repository of data; here, we distinguish two subsets including data about
vulnerabilities (Common Vulnerabitlities and Exposures—CVE) and platforms (Common
Platform Enumeration—CPE).

https://attack.mitre.org
https://capec.mitre.org
https://capec.mitre.org
https://cwe.mitre.org
https://nvd.nist.gov
https://nvd.nist.gov

Big Data Cogn. Comput. 2022, 6, 91 7 of 17

Adversary
Group

Software Platform

(Sub)
Technique

Mitigation

Tactic

In-object Structure
Description

TechniquesSubTech

Software

In-object Structure
Platform

Description

TechniquesSubTech

Groups

In-object Structure
Description

CAPEC_ID

ProcedureExample

Detection

Mitigation

In-object Structure
Description

TechniquesSubTech

CAPEC
Attack-pattern

Mitigation

Description

LikelihoodOfAttack

Severity

ExecutionFlow

Prerequisites

SkillsRequired

ResourcesRequired

RelatedWeaknesses

(CWE)

Common Weaknesses (CWE)
Description

MitigationExamples

ApplicablePlatforms

ObservedExamples (CVE)

National Vulnerability Database (NVD)

Common
Vulnerability and
Exposures (CVE)
Description

References

MITRE ATT&CK
Accomplishes

Operates_in

Prevents

Implements

Uses

Uses

[Defeasible]

[Defeasible]

[Strict]

[Defeasible]

[Strict]

[Strict]

[Strict]

[Strict]

[Strict]

Known_mit

Known_tech

Known_tech

Common Platform
Enumeration (CPE)

Vendor

Product

Version

Sw_edition

Target_sw

Target_hw

Severity

SolutionTools

KnownAffectedSwConf

Described_in

[Strict]

Figure 2. Designing a DeLP3E KB for cyberthreat analysis from a variety of publicly available cyber
security datasets.

Figure 2 shows the information provided by each dataset, and how they are related to
each other via foreign keys. For instance, attack techniques included in ATT&CK link to
entries in CAPEC, which in turn link to CWE and NVD. We augmented this structure with
two features towards deriving a DeLP3E KB. First, we labeled connections between datasets
(and components within ATT and CK) with either “[strict]” or “[defeasible]”, indicating the
type of knowledge being encoded. For instance, observed examples of a weakness included
in CWE are linked to CVEs included in the NVD as strict, since this is well-established
knowledge. On the other hand, mitigation strategies are linked to techniques as defeasible
knowledge, since the relationship between the two is tentative in nature. The second
feature, which appears in the figure as a small icon depicting a pair of dice, indicates
relationships that are subject to probabilistic events. For the purposes of this use case, we
label all defeasible relations in this way.

We used all this information to create the AM, EM, and annotation function, and
create a DeLP3E KB; an introductory example is shown in Listing 1. On the left-hand side,
we have the elements of the AM that can be used to create arguments for and against
conclusions; for instance:

〈A1, tech_in_use(account_discovery)〉, with

A1 = {δ3, θ1(adv_group(apt29))}
〈A2, ∼impl_techsub(os_credential_dumping)〉, with

A2 = {δ6, δ1(prev_techsub(os_credential_dumping)),
φ1(mitigation(credential_access_protection))}.

Big Data Cogn. Comput. 2022, 6, 91 8 of 17

Listing 1. Left: DeLP program that comprises the AM. Right: Annotation function.

Θ θ1 : adv_group(G)
θ3 : platform_available(P)
θ2 : software(S)
θ4 : tech_subtech(T_ST)

Ω ω1 : accomp_tactic(Tactic) ← tech_subtech(T_ST)
ω2 : op_in_platform(Platform) ← tech_subtech(T_ST)
ω3 : impl_techsub(T_ST) ← software(S)
ω4 : capec_rel_weaknesses(CWE_List) ← capec_id(T_ST)
ω5 : cwe_observed(CVE_List) ← capec_rel_weaknesses(CWE_List)
ω6 : nvd_cve(Vuln_info) ← cwe_observed(CVE_List)
ω7 : known_techst(T_ST) ← accomp_tactic(T)
ω8 : known_techst(T_ST) ← platform_available(P)

Φ φ1 : mitigation(M) —<

φ2 : likelihoodAttack(CAPEC_ID, Value) —<

∆ δ1 : prev_techsub(T_ST) —< mitigation(M)
δ2 : known_mit(M) —< tech_subtech(T_ST)
δ3 : tech_in_use(T_ST) —< adv_group(G)
δ4 : soft_in_use(S) —< adv_group(G)
δ5 : pos_threat(T_ST, S) —< tech_in_use(T_ST), soft_in_use(S)
δ6 : ∼impl_techsub(T_ST) —< prev_techsub(T_ST)
δ7 : intensify_mit(M) —< known_mit(M), tech_in_use(T_ST),

likelihoodAttack(T_ST, high)

af(φ1) = e1
af(φ2) = e2

af(δ1) = e3
af(δ2) = e4
af(δ3) = e5
af(δ4) = e6
af(δ5) = e7
af(δ6) = e8
af(δ7) = e9

The former indicates that account discovery is used as an attack technique, since the
advanced persistent threat group 29 (APT29, also known as Cozy Bear) is active and uses it.
The latter refers to the use of credential access protection as a mitigation technique to prevent
the use of OS credential dumping. This is a clear example of an argument that involves
uncertainty, since credential access protection is not a foolproof endeavor. An example
of this is the well-known Heartbleed vulnerability (CVE-2014-0160) that affected OpenSSL
implementations, leaving them open to credential dumping. For reasons of space, in this
simple example, we only label AM components with probabilistic events (e1–e9; elements
with no annotation are simply labeled with true) and do not describe how they are related
in the EM. One example could be to simply assume pairwise independence (as in many
probabilistic database models [26]), or a Bayesian network [27], as described in Section 5.

Queries. We lastly present two queries that we revisit in the next section:

• pos_threat(T1134, SO344):
What is the probability that access token manipulation (technique T1134) uses leveraging
the Azorult malware (software id SO344) to attack our systems?

• intensify_mit(M1026):
What is the probability that privileged account management (mitigation strategy M1026)
should be deployed? M1026 mitigates T1134.

In the next two sections, we discuss the design of a software system for implement-
ing this kind of functionalities based on DeLP3E, and a preliminary evaluation of query
answering in DeLP3E via sampling techniques.

4. P-DAQAP Platform

In an early version of the platform called DAQAP [19], we developed a web-based
client-server platform that offers an interface to visualize the interaction of the arguments
generated from an input DeLP program via dialectical trees and graphs, as well as the
abstract defeat relationships in a Dung-like graph environment. In this section, we present
the extension that incorporates probabilistic reasoning based on DeLP3E knowledge bases,
first briefly discussing the platform’s architecture and workflow, and then moving on to

Big Data Cogn. Comput. 2022, 6, 91 9 of 17

presenting a set of features that could eventually support human-in-the-loop reasoning
and XAI functionalities.

4.1. Architecture and Workflow

Figure 3 shows an overview of the tool’s architecture and workflow that is a mock-up
of a possible user interface that we are currently developing. The architecture is divided into
two main modules, the front end and the back end. Within the former, there are two main
sections: the DeLP and abstract argumentation section manages classical (nonprobabilistic)
models and is described in detail in [19]; we focus on the DeLP3E section, which is the
extension presented here. The back end is organized analogously, with the addition of three
other submodules that implement the probability model (for the EM), sampling methods,
and approximation algorithms.

DeLP3E Section DeLP3E KB

Front-end

W
eb

 S
erver

Back-end
DeLP and Abstract Argumentation section

DeLP
Core

Abstract Argumentation
Solver

jArgSemSat
(web service)

Sampling Methods

Approximation Algorithms

𝜆𝑖
𝑎𝑓
↝

𝑟1 𝑟2
𝑝2 𝑓1
𝑝1 𝑝3
… …

𝑃𝑟 𝜆𝑖

⋯

𝜆𝑖 ⊆ 𝑃𝐸𝑀 | 𝑃𝐴𝑀(𝜆𝑖) ⊆ 𝑃𝐴𝑀

𝑃𝐴𝑀 𝜆𝑖 "𝑌𝑒𝑠"

𝑃𝐴𝑀 𝜆𝑖 “No”

𝑃𝐴𝑀 𝜆𝑖 𝑛𝑜𝑡 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑

𝑃𝐴𝑀 𝜆𝑖 "𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑"

𝑃𝐴𝑀 𝜆𝑖 "𝑈𝑛𝑘𝑛𝑜𝑤𝑛"

Ω = 𝑆𝑡𝑟𝑖𝑐𝑡 𝑅𝑢𝑙𝑒𝑠

Θ = 𝐹𝑎𝑐𝑡𝑠

Δ = 𝐷𝑒𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑟𝑢𝑙𝑒𝑠

Φ = 𝑃𝑟𝑒𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠

AM Annotation
Function

EM

𝑎𝑓 𝜔1 = 𝑎 𝑎𝑛𝑑 𝑏
𝑎𝑓 𝜙2 = 𝑇𝑟𝑢𝑒
𝑎𝑓 𝛿1 = 𝑔 𝑜𝑟 ℎ

…

b

d

h

a

gf

i

c

e

j

annotations

Dashboard
Registered Queries:

[0.76 − 0.89]

[0.23 − 0.70]

(1) (A)

(B)(2)

What if Analysis:

Scenario 2:
new_mitigation(M1018)

[0.23 − 0.50]

[0.76 − 0.89]

Scenario 1:
likelihoodAtt(CAPEC-633,high)

[0.85 − 0.95]

[0.90 − 1.00]

𝑎𝑓
↝

𝑟1 𝑟2
𝑝2 𝑓1
𝑝1 𝑝3
… …

𝑃𝑟 𝜆9

𝜆9
𝑎𝑓
↝

𝑟1 𝑟2
𝑝2 𝑓1
𝑝1 𝑝3
… …

𝑃𝑟 𝜆1

𝜆1

𝑎𝑓
↝

𝑟1 𝑟2
𝑝2 𝑓1
𝑝1 𝑝3
… …

𝑃𝑟 𝜆𝑛

𝜆𝑛
𝑎𝑓
↝

𝑟1 𝑟2
𝑝2 𝑓1
𝑝1 𝑝3
… …

𝑃𝑟 𝜆𝑗

𝜆𝑗
pos_threat(T1134,SO344)

intensify_mit(M1026)

pos_threat(T1134,SO344)

pos_threat(T1134,SO344)

intensify_mit(M1026)

intensify_mit(M1026)

Figure 3. P-DAQAP platform architecture, including a mock-up of a dashboard for displaying
query-answering results related to our use case.

Table 1 describes the workflow focused on DeLP3E tasks in the order of the steps
labeled at the interaction between the two main modules in Figure 3 (1 → A → B →
2). This workflow is iterative in nature, and implements the human-in-the-loop model
mentioned in Section 1. In Step B, an anytime algorithm approach may be applied, in which
results are iteratively improved, and the user can decide when to stop the job depending
on the amount of time available and/or the quality of the result currently being obtained.
After Step 2, the analyst can now interact through the dashboard in response to the results
received, for example by choosing to modify the DeLP3E KB, modifying the query issued
in the first step, or a combination of such actions.

Big Data Cogn. Comput. 2022, 6, 91 10 of 17

Table 1. P-DAQAP Workflow.

Front-end

Step 1 Loads a DeLP3E knowledge base and specifies a task.

Back-end

Step A Web server sends the job to be executed by the Probabilistic Argumentation
module.

Step B Generate data structures and executes the job; when results become
available, it returns the output data in JSON format to the web server.

Front-end

Step 2 Client receives the response, and the data are presented to the user.

In the next section, we explore some of these functionalities, illustrating them via the
use case presented in Section 3.

4.2. P-DAQAP Functionalities

We begin by describing the design of two functionalities based on our use case, which
are illustrated in the Dashboard section of Figure 3, and then discuss the next steps to be
developed.

4.2.1. Current State: Registered Queries

The values of a subset of the EM variables are set depending on the current state of
the system (observed evidence). The analyst registers a set of queries of interest in order to
monitor the associated probabilities. Consider the queries presented in Section 3; the user
is interested in monitoring a possible threat and degree of application of a corresponding
mitigation strategy. In Figure 3 (bottom left), we can see that in the current state the query

pos_threat(T1134, SO344)

(referring to the probability that access token manipulation is used, levaraging Azorult)
is currently warranted by the KB with probability interval [0.23, 0.7]; this interval is quite
wide, which points to a large amount of uncertainty and lack of actionable insight.

On the other hand, the query

intensify_mit(M1026)

(which refers to the probability that privileged account management should be deployed
as a mitigation strategy) yields an interval of [0.76, 0.89], which signals a high probability
of the need to intensify mitigating actions associated with technique T1134.

Having this kind of insight is valuable for analysts, who can register queries regarding
mitigation strategies and attack techniques of current interest. The results can inform, for
instance, security alert levels and patching effort priorities for system administrators. As
we discuss in Section 5, approximations can be computed whenever the cost of obtaining an
exact answer is too high. In this case, the system can allow for the user to input the number
of samples to be used or, given an explicit upper bound on the time that is available, decide
on a budget for the sampling process.

4.2.2. “What-If” Scenarios

On the basis of the same setup as above, the user may wish to perform counterfactual
reasoning, also known as what-if scenarios. In this case, instead of taking facts and EM
variable settings from direct observations, the system allows for specifying scenarios as
desired and shows the resulting probabilities.

Big Data Cogn. Comput. 2022, 6, 91 11 of 17

Figure 3 illustrates this functionality with the same registered queries as before, show-
ing how their associated probability intervals change under two scenarios. In the first, the
analyst wants to know how the probabilities associated with the above queries change in
case that the token impersonation technique is very likely to be implemented successfully, as
reported by CAPEC:

likelihoodAttack(CAPEC-633, high).

The most drastic change is in the first query, which now yields a probability between 85
and 95%, while the other query’s probability increases somewhat to 90–100%. This is
because token impersonation (CAPEC-633) is a technique that, if it has a high likelihood of
success, is directly linked to privileged account management (mitigation strategy M1026).

In the second scenario, the analyst wants to know how the probabilities would change
if user account management is added as a new mitigation strategy (new_mitigation(M1018)).
Now, the query:

pos_threat(T1134, SO344)

becomes less probable (23–50%, since the new mitigation strategy helps in preventing the
T1134 technique), while for this scenario, the answer to the other query remains unchanged,
since the two mitigation strategies are unrelated.

4.2.3. Next Steps: Explainability

In addition to being able to calculate query probabilities, it is possible to accompany
such results with an explanation as to how the system arrived at that answer; explainability
was recently identified as a key feature in cybersecurity domains [28]. We discuss two
proposals for providing such insights into the kind of results presented in the previous
sections. The first is centered on the probabilistic model (EM), while the second focuses on
the rules used to derive query answers (AM).

Most Probable Scenarios. As a combination of the previous two functionalities, the
system can compute a set of the k most probable scenarios given the current set of ob-
servations. In the current implementation, which uses Bayesian networks to specify the
probability distribution in the EM, this set can be computed by the probabilistic model
module by returning the most probable explanations (MPEs) of the BN given the current
evidence in the EM. Then, the result of this first step can be combined with the counter-
factual analysis described above and each scenario can be explored taking into account its
probability of occurrence and its consequences.

Though this kind of analysis is centered on the probabilistic model, knowing the most
probable scenarios is a first step towards explaining why a given query is entailed with a
certain probability interval. For instance, an analyst may be interested in knowing why the
upper bound is lower than expected, and being shown a high-probability scenario in which
the negation of the query is entailed would be a first explanation. If further details are
needed, explanations can also be derived by analyzing the rules and arguments involved
in the derivations, as discussed next.

Rule-based Explanations. Another possibility is to show the arguments that support
the query in the subprogram generated by a particular scenario or set of scenarios. This
provides the analyst with the set of rules and facts involved in the derivation, and precisely
what role they played, which may highlight the need to revise one or more of these
components (for example, facts coming from an outdated data source); an approach in
this direction was recently reported in [29]. Another benefit of rule-based approaches is
that they can be rendered more interpretable by, for instance, using templates to translate
rules into natural language, as proposed in [30]. Lastly, it is also possible to show the user
minimal sets of EM elements (BN variables or worlds) that allow for the generation of
supporting arguments for the query, thus pointing to the uncertain elements that play a
role in the logical derivations of interest.

As a concluding remark, taking into account the general considerations of explainable AI
approaches [2], we consider that adding a probabilistic module to a platform like DAQAP

Big Data Cogn. Comput. 2022, 6, 91 12 of 17

provides additional possibilities for building explanations. On the one hand, as explained
in Section 2.2, the answers in P-DAQAP consist of probability intervals that represent two
types of uncertainty (probabilistic and epistemic), which allows for us to provide more
information about the nature of knowledge that is being processed. On the other hand,
as previously detailed, it is possible to accompany the answers with different types of
explanations, which demonstrates the potential of involving the probabilistic component
when generating explanations. All this accompanying information provides analysts with
tools that allow for them to confidently accept the obtained answer, or revise pieces of
information or knowledge that do not apply to the current situation.

5. Empirical Evaluation

We now report on the results of a preliminary empirical evaluation designed to
test the effectiveness and efficiency of a world sampling-based approximation to query
answering in DeLP3E. We used Bayesian networks for the EM and sampled directly from
the distributions they encode. The experiments focus on varying three key dimensions:
number of random variables (which determines the number of possible worlds), number of
sampled worlds, and the entropy of the probability distribution associated with the EM.
Intuitively, entropy is a measure of disorder. For probability distributions, it measures
how “spread out” the probability mass is over the space of possible worlds, so a low value
indicates a highly concentrated mass. Extreme cases thus range from a single world having
probability one, to all worlds having the same probability.

All runs were performed on a computer with an Intel Core i5-5200U CPU at 2.20GHz
and 8GB of RAM under the 64-bit Debian GNU/Linux 10 OS. Probability computations
were carried out using the pyAgrum (https://agrum.gitlab.io, accessed on 21 August 2022)
Python library.

5.1. Experimental Setup

All problem instances (DeLP3E knowledge bases and queries) were synthetically
generated to be able to adequately control the independent variables in our analysis. To
obtain an instance, we first randomly generate the AM as a classical DeLP program with
a balanced set of facts and rules; rule bodies and heads are generated in such a way as
to ensure overlap, in order to yield nontrivial arguments (see [31] for details on such a
procedure). The general design of the program generator consists of the following steps:

1. Generating the basic components on which the more complex structures are created,
that is, facts and assumptions are generated first.

2. Arguments are organized in levels, where each level indicates the maximal number of
rules used in its derivation chain until a basic element is reached.

3. Dialectical trees are generated only for top-level arguments because they have a
greater number of possible points of attack, given that they have more elements in
their body.

For the Bayesian networks in the EM, we randomly generated a graph on the basis of
the desired number of EM variables (and a random number of edges set to the number of
nodes as a maximum) using the networkx library (https://networkx.github.io, accessed on
21 August 2022). To control the entropy of the encoded distribution, we took each node
probability table entry and randomly choose between true and false; then, we randomly
assigned a probability to that outcome in the interval [α, 1], where α is a parameter varied
in {0.7, 0.9}.

Annotation functions are lastly randomly generated by assigning to each element
in the AM an element randomly chosen from the set of (possibly negated) EM variables
plus “true” (AM elements annotated with true hold in all worlds).

https://agrum.gitlab.io
https://networkx.github.io

Big Data Cogn. Comput. 2022, 6, 91 13 of 17

Quality Metric.Given a probability interval i1 = [a, b], we used the following metric to
gauge the quality of a sound approximation i2 = [c, d] (that is [a, b] ⊆ [c, d] always holds):

Qi1(i2) =
1− (d− c)
1− (b− a)

Intuitively, this metric calculates the probability mass that is discarded by one interval in
relation to another. The resulting value is always a real number in [0, 1], where a value
of zero indicates the poorest possible approximation ([0, 1], which is always a sound ap-
proximation for problem instance), and a value of 1 yields the best possible approximation,
which corresponds precisely with the exact interval. Thus, we generally apply this metric
by using the result of the exact algorithm in the numerator and an approximation in the
denominator.

5.2. Results

Figure 4a shows the average running time taken per sample over all configurations
based on a set of 100 runs. We calculated the running time in this manner to adequately
compare the times for the different EM sizes. Even though the impact of this dimension
on individual running time is not significant, it may become so when sampling hundreds
of thousands of worlds. For example, consider the difference between running time per
sample for 1 billion worlds vs. 1 million worlds: 0.0289420− 0.0289165 = 0.0000255 s; for
a sample size of 100,000 worlds, this difference amounts to 2.55 s. In the third column,
we include an estimation of running times of the brute-force algorithm based on these
values. Both running times are worst-case since optimization is possible (for instance, in
our system we avoid recomputing warrant statuses of induced subprograms for which
these values had been computed).

Figure 4b shows results concerning approximation quality; the metric was calculated
with respect to the exact result for up to 20 EM variables (≈1M worlds). For the case of
30 EM variables (≈1B worlds), we approximated the metric using 250,000 worlds (which
amounts to approximately 0.023% of the set of possible worlds), since the exact algorithm
becomes intractable for instances of this size.

The following general observations arise from these results:

• First, sampling larger sets of worlds leads to higher quality approximations. Though
this is expected, there are two interesting details:

1. For the 20 EM variable case, the quality obtained by 5000 vs. 10,000 samples was
not statistically significant (two-tailed two-sample unequal variance Student’s
t-tests yielded p-values greater than 0.08 for α = 0.7 and greater than 0.16
for α = 0.9), which means that only 5000 samples sufficed to obtain a good
approximation.

2. The proportion of repeated samples (i.e., wasted effort) was quite high for both
entropy levels; for α = 0.7 (higher entropy) on average 52% of samples were
repeated, while for α = 0.9 (lower entropy), an average of 87% were not unique.
For the 20 EM variable case, the quality levels were achieved with only 2293
and 469 unique samples, respectively. Larger sample sizes also lead to lower
variation in quality (shorter error bars).

• Next, entropy noticeably impacted solution quality (except for 10 EM variables, the
smallest setting). Since our approximation algorithm samples worlds directly from the
BN’s distribution, it is natural to observe better effectiveness with lower (less spread
out) entropy distributions. A smaller number of worlds represents a larger portion of
the probability mass.

• Lastly, even for higher values of entropy, we observed adequate quality levels for
modest numbers of samples compared to the size of the full sample space.

Big Data Cogn. Comput. 2022, 6, 91 14 of 17

These results shed light on the applicability of P-DAQAP on real-world problems
such as the CTA use case, given that relatively low numbers of effective (i.e., nonrepeated)
samples yield good approximations of the exact values.

#EM Variables Run. Time/Sample (seconds) Est. Brute Force Run. Time (hours)
10 (1K worlds) 0.0286015 0.008
15 (32K worlds) 0.0288155 0.262
20 (1M worlds) 0.0289165 8.422
30 (1B worlds) 0.0289420 8632 (≈360 days)

(a)

0.0

0.2

0.4

0.6

0.8

1.0

100 200 300

Q
u

a
li

ty
 M

e
tr

ic

#Samples

10 EM variables (≈1K Worlds)

alpha = 0.7 (H = 5.40) alpha = 0.9 (H = 2.68)

0.0

0.2

0.4

0.6

0.8

1.0

100 500 1,000

Q
u

a
li

ty
 M

e
tr

ic

#Samples

15 EM variables (≈32K Worlds)

alpha = 0.7 (H = 8.30) alpha = 0.9 (H = 4.19)

0.0

0.2

0.4

0.6

0.8

1.0

1,000 5,000 10,000

Q
u

a
li

ty
 M

e
tr

ic

#Samples

20 EM variables (≈1M Worlds)

alpha = 0.7 (H = 11.40) alpha = 0.9 (H = 5.39)

0.0

0.2

0.4

0.6

0.8

1.0

10,000 50,000 100,000

Q
u

a
li

ty
 M

e
tr

ic
 (

*
)

#Samples

30 EM variables (≈1B Worlds)

alpha = 0.7 (H not computed) alpha = 0.9 (H not computed)

(b)

Figure 4. (a) Average running times per world sampled (n = 100 runs). For each case, we estimate the
running time (in hours) required to run the exact (brute force) algorithm. (b) Average solution quality
varying #EM variables (log of #worlds), #samples, and the parameter that controls the entropy (H) of
the probability distribution. For 30 EM variables (1B worlds, bottom right), quality is approximated on
the basis of a sample of 250,000 worlds. Error bars correspond to standard deviation (n > 50 for the
top charts, n > 15 for the bottom charts).

5.3. Results in the Context of Practical Applications

We now analyze the results we obtained in these experiments in the context of the
MITRE ATT and CK data that we focused on for our use case in Section 3. For the
purposes of this brief analysis, let us consider the Enterprise segment of the dataset, which
contains 191 techniques and 385 subtechniques, and this translates into a large number of
constants that would certainly lead to an intractable probabilistic model if tackled directly.
Fortunately, there is a well-understood independence relation among such techniques, and
they can, thus, be effectively pruned depending on the tactics to which they are associated.
For instance, the Privilege Escalation tactic (TA0004) that we refer to in the use case has
13 associated techniques, while the rest of the techniques in the dataset associated at most 30
(with the exception of Defense Evasion (TA0005) that has 42, though additional filtering
according to the specific operating system in question allows to bring this number down
significantly). Our preliminary results therefore show that having the capacity to scale
to 30 EM variables is within the realm of this kind of application, though further efforts are
required to effectively arrive at submodels derived from the general one that can be used
to solve specific query answering tasks. In this same vein, there are multiple research and

Big Data Cogn. Comput. 2022, 6, 91 15 of 17

development efforts to manipulate, adapt, and export data and knowledge from the ATT
and CK dataset [32–35].

6. Conclusions and Future Work

We presented an extension of the DAQAP platform to incorporate probabilistic knowl-
edge bases, giving rise to the P-DAQAP system, which is, to the best of our knowledge, the
first system of its kind for probabilistic defeasible reasoning. After discussing the details of
its design and describing applications to cybersecurity, we performed an empirical evalua-
tion whose goal it was to explore the effectiveness and efficiency of world sampling-based
approximate query answering. Our study showed that the entropy associated with the
probability distribution over worlds has a large impact on expected solution quality, but
even a modest number of samples suffices to reach good-quality approximations. Com-
pared to classical (nonprobabilistic) approaches, the results of our experiments show that
P-DAQAP allows for representing, effectively and efficiently reasoning with different types
of uncertainty, modeling complex domains in more detail, and providing more informed
answers that can be accompanied by explanations. In critical environments, having outputs
of this kind increases credibility and trust in the system by its users.

Future work involves carrying out a broader evaluation investigating other sampling
methods, avoiding repeated samples, and testing other probabilistic models. One of the
goals of this research line is to develop a method to guide knowledge engineering efforts
on the basis of domain features, requirements in terms of expressive power, approximation
quality, and query response time.

Author Contributions: Conceptualization, M.A.L., A.J.G., P.S. and G.I.S.; methodology, M.A.L., P.S.
and G.I.S.; validation, M.A.L., P.S. and G.I.S.; formal analysis, G.I.S.; investigation, M.A.L. and G.I.S.;
writing—original draft, M.A.L.; writing—review and editing, M.A.L., A.J.G., P.S. and G.I.S.; project
administration, G.I.S.; supervision and funding acquisition, A.J.G. and G.I.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Universidad Nacional del Sur (UNS) grant numbers PGI
24/ZN34 and PGI 24/N046, Universidad Nacional de Entre Ríos grant number PDTS-UNER 7066,
and Agencia Nacional de Promoción Científica y Tecnológica, Argentina grant number grants PICT-
2018-0475 (PRH-2014-0007). P.S. is supported by internal funding from the ASU Fulton Schools of
Engineering.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AM Analytical Model
CAPEC Common Attack Pattern Enumeration and Classification
CPE Common Platform Enumeration
CTA Cyberthreat Analysis
CVE Common Vulnerabilities and Exposures
CWE Common Weakness Enumeration
DeLP Defeasible Logic Programming
DeLP3E Defeasible Logic Programming with Presumptions and Probabilistic Environments
EM Environmental Model
KB Knowledge Base
P-DAQAP Probabilistic Defeasible Argumentation Query Answering Platform
NVD National Vulnerability Database
XAI Explainable Artificial Intelligence

Big Data Cogn. Comput. 2022, 6, 91 16 of 17

References
1. Mumford, E. The story of socio-technical design: Reflections on its successes, failures and potential. Inf. Syst. J. 2006, 16, 317–342.

[CrossRef]
2. Miller, T. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 2019, 267, 1–38. [CrossRef]
3. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins,

R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf.
Fusion 2020, 58, 82–115. [CrossRef]

4. Gunning, D. Explainable Artificial Intelligence (XAI). Defense Advanced Research Projects Agency (DARPA). 2017. Avail-
able online: https://nsarchive.gwu.edu/sites/default/files/documents/5794867/National-Security-Archive-David-Gunning-
DARPA.pdf (accessed on 21 August 2022).

5. Viganò, L.; Magazzeni, D. Explainable security. In Proceedings of the 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), Genoa, Italy, 7–11 September 2020; pp. 293–300.

6. Castelvecchi, D. Can we open the black box of AI? Nat. News 2016, 538, 20. [CrossRef]
7. Mahdavifar, S.; Ghorbani, A.A. DeNNeS: Deep embedded neural network expert system for detecting cyber attacks. Neural

Comput. Appl. 2020, 32, 14753–14780. [CrossRef]
8. Kuppa, A.; Le-Khac, N.A. Black Box Attacks on Explainable Artificial Intelligence (XAI) methods in Cyber Security. In Proceedings

of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.
9. Szczepański, M.; Choraś, M.; Pawlicki, M.; Kozik, R. Achieving explainability of intrusion detection system by hybrid oracle-

explainer approach. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24
July 2020; pp. 1–8.

10. Malatji, M.; Sune, V.S.; Marnewick, A. Socio-technical systems cybersecurity framework. Inf. Comput. Secur. 2019, 27, 233–272.
[CrossRef]

11. Alsmadi, I. The NICE Cyber Security Framework: Cyber Security Management; Springer Nature: Cham, Switzerland, 2020.
12. Leiva, M.A.; Simari, G.I.; Simari, G.R.; Shakarian, P. Cyber threat analysis with structured probabilistic argumentation. In Pro-

ceedings of the AI3. CEUR-WS, Rende, Italy, 19–22 November 2019; Volume 2528, pp. 50–64.
13. Shakarian, P.; Simari, G.I.; Moores, G.; Parsons, S.; Falappa, M.A. An Argumentation-based Framework to Address the Attribution

Problem in Cyber-Warfare. In Proceedings of the CyberSecurity, ASE, Stanford, CA, USA, 27–31 May 2014.
14. Kuppa, A.; Le-Khac, N.A. Adversarial xai methods in cybersecurity. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4924–4938.

[CrossRef]
15. Liu, H.; Zhong, C.; Alnusair, A.; Islam, S.R. FAIXID: A framework for enhancing ai explainability of intrusion detection results

using data cleaning techniques. J. Netw. Syst. Manag. 2021, 29, 1–30. [CrossRef]
16. Srivastava, G.; Jhaveri, R.H.; Bhattacharya, S.; Pandya, S.; Rajeswari; Maddikunta, P.K.R.; Yenduri, G.; Hall, J.G.; Alazab,

M.; Gadekallu, T.R. XAI for Cybersecurity: State of the Art, Challenges, Open Issues and Future Directions. arXiv 2022,
arXiv:2206.03585.

17. Hariharan, S.; Velicheti, A.; Anagha, A.; Thomas, C.; Balakrishnan, N. Explainable Artificial Intelligence in Cybersecurity: A Brief
Review. In Proceedings of the 2021 4th International Conference on Security and Privacy (ISEA-ISAP), Dhanbad, India, 27–30
October 2021; pp. 1–12.

18. Shakarian, P.; Simari, G.I.; Moores, G.; Paulo, D.; Parsons, S.; Falappa, M.A.; Aleali, A. Belief revision in structured probabilistic
argumentation. AMAI 2016, 78, 259–301. [CrossRef]

19. Leiva, M.A.; Simari, G.I.; Gottifredi, S.; García, A.J.; Simari, G.R. DAQAP: Defeasible Argumentation Query Answering Platform.
In Proceedings of the FQAS 2019, Amantea, Italy, 2–5 July 2019; pp. 126–138.

20. Simari, G.R.; Loui, R.P. A mathematical treatment of defeasible reasoning and its implementation. Artif. Intell. 1992, 53, 125–157.
[CrossRef]

21. Toni, F. A tutorial on assumption-based argumentation. Argum. Comput. 2014, 5, 89–117. [CrossRef]
22. Modgil, S.; Prakken, H. The ASPIC+ framework for structured argumentation: A tutorial. Argum. Comput. 2014, 5, 31–62.

[CrossRef]
23. García, A.J.; Simari, G.R. Defeasible logic programming: DeLP-servers, contextual queries, and explanations for answers. Argum.

Comput. 2014, 5, 63–88. [CrossRef]
24. Besnard, P.; Garcia, A.; Hunter, A.; Modgil, S.; Prakken, H.; Simari, G.; Toni, F. Introduction to structured argumentation. Argum.

Comput. 2014, 5, 1–4. [CrossRef]
25. Martinez, M.V.; García, A.J.; Simari, G.R. On the Use of Presumptions in Structured Defeasible Reasoning. In COMMA; Verheij,

B., Szeider, S., Woltran, S., Eds.; IOS Press: Amsterdam, The Netherlands, 2012; Volume 245, pp. 185–196.
26. Suciu, D.; Olteanu, D.; Ré, C.; Koch, C. Probabilistic databases. Synth. Lect. Data Manag. 2011, 3, 1–180.
27. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: San Francisco, CA, USA,

1988.
28. Paredes, J.; Teze, J.C.; Simari, G.I.; Martinez, M.V. On the Importance of Domain-specific Explanations in AI-based Cybersecurity

Systems (Technical Report). arXiv 2021, arXiv:2108.02006.
29. Buron Brarda, M.E.; Tamargo, L.H.; García, A.J. Using Argumentation to Obtain and Explain Results in a Decision Support

System. IEEE Intell. Syst. 2021, 36, 36–42. [CrossRef]

http://doi.org/10.1111/j.1365-2575.2006.00221.x
http://dx.doi.org/10.1016/j.artint.2018.07.007
http://dx.doi.org/10.1016/j.inffus.2019.12.012
https://nsarchive.gwu.edu/sites/default/files/documents/5794867/National-Security-Archive-David-Gunning-DARPA.pdf
https://nsarchive.gwu.edu/sites/default/files/documents/5794867/National-Security-Archive-David-Gunning-DARPA.pdf
http://dx.doi.org/10.1038/538020a
http://dx.doi.org/10.1007/s00521-020-04830-w
http://dx.doi.org/10.1108/ICS-03-2018-0031
http://dx.doi.org/10.1109/TIFS.2021.3117075
http://dx.doi.org/10.1007/s10922-021-09606-8
http://dx.doi.org/10.1007/s10472-015-9483-5
http://dx.doi.org/10.1016/0004-3702(92)90069-A
http://dx.doi.org/10.1080/19462166.2013.869878
http://dx.doi.org/10.1080/19462166.2013.869766
http://dx.doi.org/10.1080/19462166.2013.869767
http://dx.doi.org/10.1080/19462166.2013.869764
http://dx.doi.org/10.1109/MIS.2020.3042740

Big Data Cogn. Comput. 2022, 6, 91 17 of 17

30. Grover, S.; Pulice, C.; Simari, G.I.; Subrahmanian, V.S. BEEF: Balanced English Explanations of Forecasts. IEEE Trans. Comput.
Soc. Syst. 2019, 6, 350–364. [CrossRef]

31. Alfano, G.; Greco, S.; Parisi, F.; Simari, G.I.; Simari, G.R. Incremental computation for structured argumentation over dynamic
DeLP knowledge bases. Artif. Intell. 2021, 300, 103553. [CrossRef]

32. Al-Shaer, R.; Spring, J.M.; Christou, E. Learning the Associations of MITRE ATT & CK Adversarial Techniques. In Proceedings
of the 2020 IEEE Conference on Communications and Network Security (CNS), Avignon, France, 29 June–1 July 2020; pp. 1–9.
[CrossRef]

33. Kuppa, A.; Aouad, L.; Le-Khac, N.A. Linking CVE’s to MITRE ATT&CK Techniques. In Proceedings of the 16th International
Conference on Availability, Reliability and Security, Vienna, Austria, 17–20 August 2021; pp. 1–12.

34. Hong, S.; Kim, K.; Kim, T. The Design and Implementation of Simulated Threat Generator based on MITRE ATT&CK for Cyber
Warfare Training. J. Korea Inst. Mil. Sci. Technol. 2019, 22, 797–805.

35. Choi, S.; Yun, J.H.; Min, B.G. Probabilistic attack sequence generation and execution based on mitre att&ck for ics datasets.
In Proceedings of the Cyber Security Experimentation and Test Workshop, Virtual, CA, USA, 9 August 2021; pp. 41–48.

http://dx.doi.org/10.1109/TCSS.2019.2902490
http://dx.doi.org/10.1016/j.artint.2021.103553
http://dx.doi.org/10.1109/CNS48642.2020.9162207

	Introduction
	Preliminaries
	Defeasible Logic Programming (DeLP)
	Probabilistic DeLP: DeLP3E Framework

	Cyberthreat Analysis with DeLP3E
	 P-DAQAP Platform
	Architecture and Workflow
	P-DAQAP Functionalities
	Current State: Registered Queries
	``What-If'' Scenarios
	Next Steps: Explainability

	Empirical Evaluation
	Experimental Setup
	Results
	Results in the Context of Practical Applications

	Conclusions and Future Work
	References

