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Abstract: Honey bee classification by wing geometric morphometrics entails the first step of manual
annotation of 19 landmarks in the forewing vein junctions. This is a time-consuming and error-
prone endeavor, with implications for classification accuracy. Herein, we developed a software
called DeepWings© that overcomes this constraint in wing geometric morphometrics classification
by automatically detecting the 19 landmarks on digital images of the right forewing. We used a
database containing 7634 forewing images, including 1864 analyzed by F. Ruttner in the original
delineation of 26 honey bee subspecies, to tune a convolutional neural network as a wing detector,
a deep learning U-Net as a landmarks segmenter, and a support vector machine as a subspecies
classifier. The implemented MobileNet wing detector was able to achieve a mAP of 0.975 and the
landmarks segmenter was able to detect the 19 landmarks with 91.8% accuracy, with an average
positional precision of 0.943 resemblance to manually annotated landmarks. The subspecies classifier,
in turn, presented an average accuracy of 86.6% for 26 subspecies and 95.8% for a subset of five
important subspecies. The final implementation of the system showed good speed performance,
requiring only 14 s to process 10 images. DeepWings© is very user-friendly and is the first fully
automated software, offered as a free Web service, for honey bee classification from wing geometric
morphometrics. DeepWings© can be used for honey bee breeding, conservation, and even scientific
purposes as it provides the coordinates of the landmarks in excel format, facilitating the work of
research teams using classical identification approaches and alternative analytical tools.

Keywords: wing landmarks; deep learning; wing geometric morphometrics; honey bee classification; software

1. Introduction

The western honey bee (Apis mellifera L.) differentiated into 31 subspecies in its native
range in Eurasia and Africa [1–4]. The great majority of this variation was recognized
early by the father of honey bee taxonomy, Friedrich Ruttner, who identified 24 subspecies
using 36 morphological traits derived from pilosity, pigmentation, length of different body
parts, and wing venation. Analysis of the 36 traits still represents the gold standard of
honey bee classification and is required for scientific applications, as the description of
new subspecies [5]. However, measuring and analyzing all 36 traits is labor-intensive
and involves expert knowledge, making classical morphometry unsuitable for colony
identification for commercial, conservation, or even scientific purposes. To circumvent
this limitation, efforts have recently been made to simplify and automate the identification
of honey bee subspecies [6–9]. Yet, a tool for simple, fast, and inexpensive honey bee
classification remains unavailable for use by the beekeeping community.
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Here, we used machine learning tools to develop an open-source software, Deep-
Wings©, to assist beekeepers, queen breeders, as well as researchers in identifying honey
bee subspecies by wing geometric morphometrics in an entirely automatic, rapid, easy, and
free-of-charge manner. The steps involved in the development of DeepWings© are fully
detailed in the next sections, whereas the remainder of the Introduction section provides
the state-of-the-art in honey bee identification by morphology-based methods, with an
emphasis on wing venation traits. The Materials and Methods section starts with the
modeling of the setup to obtain the final solution. Then, the wing images are described
as well as the steps involved in the construction of the datasets used in the training, in-
cluding data augmentation to deal with the problem of the small wing dataset used for
classification training. The ensuing subsections detail the methods involved in the three
major stages of the DeepWings© architecture. The first stage (preprocessing) encompasses
the curation of the raw wing images using CNN, which entails the application of filters,
wing detection, wing cropping, and wing size normalization. The overall approach allows
for the analysis of images showing a wide range of variations regarding visual artifacts,
noise, pose, and illumination, as well as containing a variable number of wings. The second
stage (landmarks detection) entails detection (by the U-Net), extraction, and sorting of
the taxonomically informative wing venation traits (landmarks) from the wing images
segmented in the previous stage. In the third stage (classification), the extracted landmarks
are subjected to Procrustes normalization, which handles translation, rotation, and scale
wing invariances, before entering the SVM classifier. The performance of the methods
involved in the three stages of the architecture is assessed in the Results and Discussion
section, and DeepWings© is compared to other wing-based classification tools. This section
also presents the implementation of DeepWings© as a Web service, its attributes, and its
multiple applications in the real world. This work ends with the main findings in the
Conclusions section.

Background

Classical morphometry has been replaced by labor-effective alternatives based on
the forewing shape patterns, which are typically assessed on honey bee workers (infertile
females). The forewings, specifically the vein junctions, carry high-information content
and are therefore of great value for the identification of honey bee subspecies [5,10–12].
This feature, together with the quasi-two-dimensional structure of forewings, makes this
body part well-suited for computerizing and automating honey bee classification using
image analysis.

A suite of forewing traits is used, singly or in conjunction, in the identification of
honey bee subspecies [5]. Among these are the cubital index, the hantel index, and the
discoidal shift angle [13], which can be measured on wing images by the semi-automatic
proprietary software CBeeWing (https://www.cybis.se/index.htm; accessed on 26 April 2022).
This software is commonly employed by beekeepers engaged in the conservation of the
endangered Apis mellifera mellifera subspecies in northern Europe [14]. However, by using a
limited number of traits, CBeeWing does not take full advantage of the information content
carried by the wing shape, making identification less accurate. On the other side of the
spectrum is the very intensive DAWINO (Discriminant Analysis with Numerical Output)
method, which requires measurements of 30 forewing characters encompassing vein angles,
vein lengths, and indexes [5].

Wing shape analysis based on wing geometry, dubbed wing geometric morphometrics,
offers an interesting alternative for honey bee identification [5,10]. Wing geometric mor-
phometrics is widely used in insect taxonomy in general and was revealed as particularly
useful for identifying bee species [15–19] and honey bee lineages and subspecies for a wide
range of purposes [6,8,11,12,20–25]. Using this method, wing shape variations are captured
by 19 data points, known as landmarks, acquired from the vein junctions annotated in
images (Figure 1a,b). Given that the locations of the 19 landmarks are subspecies-specific,
deviations in positional coordinates can be used in honey bee identification (Figure 1c,d).

https://www.cybis.se/index.htm
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Most of the 19 landmarks are also employed for calculating all vein lengths and angles
by both the classical morphometry and the DAWINO methods [5]. To the best of our
knowledge, the only system publicly available for honey bee identification by wing geo-
metric morphometrics is implemented by the software IdentiFly [26]. The problem is that
IdentiFly is a semi-automatic software requiring several steps for wing classification, often
including manual correction of landmark annotations, making it very difficult for routine
use by queen breeders or beekeepers.
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Figure 1. Right forewings of honey bee workers showing the 19 landmarks. (a) An example of a
manually annotated image used for training the landmark segmenter. (b) Example of an image
annotated automatically by the software DeepWings©. (c) Overlapping of the M-lineage subspecies
Apis mellifera mellifera and Apis mellifera iberiensis right forewings, as extracted by the wing detector of
DeepWings©. (d) Extracted landmarks of the two forewings, after Procrustes alignment, showing the
positional deviations between these two honey bee subspecies.

The most recent advance in honey bee classification comes from the application of
artificial intelligence through techniques of machine learning [9]. De Nart and colleagues [9]
based their classification method on the entire wing and used Convolutional Neural Net-
works (CNN) to develop an end-to-end solution for resolving the images. Unfortunately,
this new tool is limited to the classification of only seven honey bee subspecies and it was
not made available for use by the scientific or beekeeping community.

In a global world, maintaining the genetic integrity of native honey bee subspecies
is becoming increasingly demanding. In this context, it is important that queen breed-
ers engaged in honey bee conservation programs have tools at their disposal for colony
identification. While molecular tools offer the most accurate solution for subspecies identifi-
cation [27,28], they are not affordable for most queen breeders, in which case morphometry
becomes the only option. Here, we filled a gap in the geometric morphometrics identi-
fication of honey bees by developing a fully automated software that is easy to use and
is freely available as a Web service. To that end, we implemented machine learning tech-
niques for (i) detecting wings using CNN, (ii) segmenting landmarks using U-Net, and
(iii) classifying models using a support vector machine (SVM). Using this multi-step ap-
proach, we addressed three main questions: (i) Can the CNN-based wing detector handle
images with multiple wings of varying orientations, ensuring the uniformity of the wing
shape pattern at the entrance of the landmarks segmenter? (ii) Is the U-Net capable of
extracting the taxonomically informative traits from the wing venation with a high level of
precision, as required for accurate subspecies classification? (iii) How efficient is SVM at
generalizing the subtle differences between the closely related honey bee subspecies and
hence ensuring accurate classification?
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2. Materials and Methods
2.1. Modelling of the Solution

Figure 2 depicts in four frames the modulation employed in this work to achieve the
final solution. The top-left frame shows the organization of the datasets that were used
to train the three machine learning models: the wing detector, the landmarks segmenter,
and the wing classifier. These models were trained using the configurations displayed
on the remaining frames and were fed with the data originating from the top-left frame.
The bottom-left frame shows the organization of the wing detector, in which the wing
images were the inputs and the positions of the bounding boxes (surrounding the manually
annotated landmarks) were the targets for the CNN learning models. The bottom-right
frame shows the organization of the landmarks segmenter, in which the U-Net inputs were
loaded with the wing images and the U-Net outputs were loaded with the corresponding
landmark images (masks). Finally, the top-right frame shows the intervening elements of
the subspecies classifier. At this stage of the training, the landmarks previously annotated
(bottom-right frame) were processed (PCA-Sorting-Procrustes) to assure their geometric
stabilization before entering the SVM classifier. The One-Hot encoding was used in the
SVM outputs, in order to represent the wings of the different subspecies.
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Figure 2. Modeling of the setup to obtain the final solution: the datasets (top-left frame), the wings
detector (bottom-left frame), the landmarks segmenter (bottom-right frame), and the subspecies
classifier (top-right frame).

2.2. Image Datasets

Two sets of images were used to train the system developed in this study. Dataset
1 comprised 5770 images of the right forewing of honey bee workers. The wings were
photographed from mounts on microscopic slides (~10 wings per slide) using a stereomi-
croscope attached to a digital camera with a resolution of 1000 pixels per centimeter. These
images were manually annotated for the 19 landmarks by one single operator, following
the positional order portrayed in Figure 1a. Of the 5770 images, 3518 were collected from
Iberian colonies of Apis mellifera iberiensis identified by genetic data [25,29] whereas 2252
were collected from Azorean colonies of mixed ancestry [25]. Dataset 1 was annotated for
the population analysis carried out by Ferreira and colleagues [25].

Dataset 2 comprised 1864 images of the right forewing of honey bee workers ob-
tained from the Morphometric Bee Data Bank in Oberursel, Germany, where the original
specimens used by F. Ruttner [1] in his seminal taxonomic work are deposited. These
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images were taken from mounts on microscopic slides using a stereomicroscope attached
to a digital camera with a resolution of 650 pixels per centimeter. Dataset 2 comprised
wings belonging to 26 subspecies sampled from across the A. mellifera native range. The
number of wings per subspecies varied among the four evolutionary lineages and sub-
species. Specifically, the African lineage (A) included 116 A. m. adansonii, 30 A. m. capensis,
60 A. m. intermissa, 70 A. m. lamarckii, 55 A. m. litorea, 10 A. m. major, 80 A. m. monticola,
50 A. m. ruttneri, 20 A. m. sahariensis, 140 A. m. scutellata, 70 A. m. unicolor, and
133 A. m. jemenitica wing images. The eastern European lineage (C) included 150 A. m. car-
nica, 90 A. m. cecropia, 110 A. m. ligustica, 20 A. m. macedonica, and 10 A. m. siciliana wing
images. The western European lineage (M) included 20 A. m. iberiensis and 140 A. m. mellif-
era wing images. Finally, the Oriental lineage (O) included 50 A. m. adami, 50 A. m. anatoliaca,
60 A. m. armeniaca, 120 A. m. caucasia, 40 A. m. cypria, 80 A. m. meda, and 90 A. m. syriaca
wing images.

Contrary to the high quality of most images in dataset 1 (example in Figure 1a),
dataset 2 contained numerous images with visual artifacts, noise, pose variations, illumina-
tion variations, and specular light reflections (examples in Figure 3), showing the difficulty
of generalizing a solution for a reliable classification system. Furthermore, most images in
both datasets contained more than one wing.
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Figure 3. A sample of honey bee forewings showing the range of image quality.

The two datasets were aggregated and then split into three subsets according to the
following ratios: 80% for the training subset, 10% for the validation subset, and 10% for the
testing subset. These three new datasets were randomly built from the original aggregated
dataset. The training dataset was used for the training process, the validation dataset was
used to tune the parameters of the machine learning models, and the testing dataset was
used to assess the final functional performance of the machine learning models.

2.2.1. Masks

Masks of the size of the input images were created by an algorithm based on the
manually marked landmarks from dataset 1, with the pixels forming the landmarks de-
noted in white and the background in black. These masks were the targets of the U-Net
neural network [30]. Figure 4 provides examples of the output masks created for the
U-Net training.

2.2.2. Data Augmentation

Dataset 2 was considerably smaller than dataset 1 and comprised numerous images
representing a large spectrum of visual variations (Figure 3), contrasting with the high
image quality of dataset 1 (Figure 1a). To accommodate the problem of unbalanced datasets,
dataset 2 was artificially expanded. Employment of a data augmentation approach [31]
enabled the construction of a large database for increased precision of the automatic
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landmarks segmenter. To accommodate the problem of image variations, specific visual
features were simulated, including dust, noise, and drastic angle changes (Figure 5).
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2.3. Processing and Analyzing Wing Images

The processing and analysis of wing images encompassed three major stages: prepro-
cessing, landmark extraction, and classification (Figure 6). The system must be capable of
handling different variables of the images, such as wing pose, image size, and multiple
wings in a single image.

2.3.1. Preprocessing

Preprocessing comprises several steps needed for curating the images for subsequent
detection of the 19 landmarks. These steps included the application of filters, wing detection,
wing cropping, and wing size normalization (Figure 6). After opening the images, two filters
were applied: a CLHAE (Contrast Limited Adaptive Histogram Equalization) filter [32], to
highlight important image features, and a Gaussian filter, to remove noise. The images were
resized to a static value and a CNN-based [33] object detector, capable of perceiving the
existence of each wing within an image, was used. This approach enabled image cropping
in a normalized manner (Figure 7). Several object detector models were tested, including
SSD MobileNet v1 FPN coco [34], Faster R-CNN NAS [35], Faster R-CNN Inception Resnet
v2 Atrous Coco [36], and YoloV3 [37].
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None of the datasets had annotated wing bounding boxes. However, it was possible
to infer bounding boxes using the landmark coordinates of the training dataset (Figure 8).
Prior to training the wing detection, the target landmarks were used to delineate the wing
region and then the bounding boxes were inferred from the peripherical landmarks. A
spatial margin around the landmarks ensured that they would fall inside the bounding box.
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2.3.2. Landmark Detection

Landmark detection comprises several steps, including implementation of the land-
mark detector, Blob detection, adjustment of mask angle, extraction and sorting of land-
marks (Figure 6). The U-Net detector was revealed to be more precise in segmenting
the 19 landmarks than a classification CNN and the classical approaches (e.g., adaptive
binarization) available in the OpenCV library [38]. The U-Net architecture consists of a
contracting path to capture context and a symmetric expanding path, which enables precise
landmark positioning by extracting their mass centers (Figure 9). The U-Net was trained
using a GTX1080ti GPU and the Keras deep learning framework [39].
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Figure 9. U-Net architecture used for segmentation of the landmarks. It is based on CNN
with a contracting path to capture context and a symmetric expanding path to enable precise
landmark positioning.

The images for the U-Net training were converted to greyscale, as the searched land-
mark patterns do not depend on color. This helped save computational memory and
reduce the “curse of dimensionality” of the neural model. Because the wing images had
variations in the positional angles, the cropped images tended to exhibit different sizes
(Figure 8). Moreover, the U-Net input size needed to be static (400 × 400 inputs) and
the image width–height ratio of the wing could not be altered in order to avoid pattern
deformations. Therefore, the wing image was stacked on a black background where the
horizontal axis of the wing image was scaled to the limits of that black layer (Figure 10).
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Figure 10. Examples of mounted images presented to the U-Net input.

During the U-Net training, it became evident that using only one pixel to represent
each landmark was not a suitable solution. Therefore, to increase the signal-to-noise ratio,
the U-Net received a small circle (synthetic landmark) for each landmark, reinforcing the
landmark as the target region for the U-Net. The synthetic landmarks taken by the U-Net
generated the regions illustrated in Figure 11, after the training. As expected, these regions
are not a perfect circle, contrary to the U-Net target masks shown in Figure 4.
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Figure 11. Landmarks superimposed on original wing images.

When the U-Net segments the 19 landmarks, it does not identify each one in a dif-
ferentiated manner. This is a critical issue because the classifier can only make the right
decision if the order of the landmarks displayed in Figure 1b is kept during the processing
runs. The first step to ensure a standardized landmarks extraction was based on Principal
Components Analysis [40], which identifies the largest eigenvector that gives the angle
of the landmarks’ distribution. Then, the rotation of the entire mask following that angle
allows having the landmarks rotationally aligned to the horizontal axis. This procedure
simplified the mechanism of extracting the landmarks in a standard order because their
patterns could be scanned in a consistent pose.

From the masks generated by the U-Net, it was then required to extract the mass
center of the detected landmark regions. The most straightforward way to do this was to
compute the center of the segmented regions using the Blob Detector implemented in the
OpenCV library. The total number of expected landmarks (19) was used to validate seg-
mentation; if that number was not confirmed, the process would fail. Following detection,
all 19 landmarks were sorted out according to their positional relationship (Figure 1b) to
enable accurate classification. This step was accomplished by placing the 19 landmarks in
a list sorted in ascending order through the x-axis. After sorting, if there were values on
the x-axis that were very close to each other (distance of 5 pixels), the Y-axis was used to
eliminate the doubt. This approach ensured the standard positional order of the 19 land-
marks portrayed in Figure 1b, which does not coincide with the order entered manually
(Figure 1a).
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The positional precision of the 19 landmarks was assessed by comparing the landmark
patterns obtained from the U-Net output with the manually annotated landmarks (Figure 1).
The precision of a given computed landmark was calculated inside the Procrustes space
by comparing it with its corresponding ground-true landmark. The Euclidian distances
between the landmarks’ pairs were then summed up and normalized. The maximum
precision of 1 was achieved when the sum of the distances was equal to zero.

The information content carried by each landmark was calculated using the well-
known information gain ratio criterion [41]. This criterion measures the uncertainty in
how the data are separated based on a specific feature. The value of the information gain
ratio was calculated for each feature, allowing assessment of their individual impact on
subspecies classification.

2.3.3. Classification

The classification stage involved a Procrustes normalization (Figure 6), which allowed
the ignoring of transposition, mirroring, rotation, and scale of the different landmark
patterns [42]. The Generalized Procrustes Analysis (GPA) computed an invariant mean
of landmark patterns generated from the training dataset. The linear projection of the
new landmark pattern in the invariant space creates a pattern of information where the
invariation rules are achieved.

Forewings classification was performed using a support vector machine (SVM) [43] by
employing the Scikit-Learn [44] library. The SVM presents a high generalization capacity
and is well-suited for small datasets, as is the case of dataset 2, used for training the
classifier. Loading SVM with the geometric features invariant to translation, rotation, and
scale was critical to achieving good classification results. After classification, the results
were visualized and saved.

3. Results and Discussion
3.1. Wing Detector

The wing detector is essential to extract several wings from one image and normalize
the image aspect, allowing for the stable loading of the CNN inputs. Several models of
object detectors were trained on dataset 1 using transfer learning [45], which stabilized
the training from the initial iterations. The criteria for model selection were accuracy and
speed, which are both shown for each tested model in Table 1.

Table 1. Wing detector models with corresponding mAP and speed.

Model Coco mAP@0.5 Images per Second

SSD MobileNet v1 FPN coco 0.975 24
Faster R-CNN NAS 0.950 0.6
Faster R-CNN Inception Resnet v2 Atrous Coco 0.950 1.8
YoloV3 0.900 18

While all trained models achieved mAP levels > 0.9, SSD MobileNet v1 FPN coco [34]
was revealed to be the most accurate (0.975) and at the same time the fastest model
(24 images per second). This was an expected result because MobileNet presents a simpler
architecture that requires fewer images to be trained than other models. Moreover, its
simpler architecture can be associated with its generalization capability, reducing the “curse
of dimensionality”. This generalization capability ensures correct wing detection even
when the quality of wing images is poor. This characteristic of MobileNet will be critical for
future users of the pipeline developed here as the images under analysis will likely exhibit
a wide range of visual diversity (e.g., specular reflections, varying contrast) and artifacts
(Figure 3).

Given the demonstrated superior performance, MobileNet was chosen for the final
implementation of the system. This CNN-based wing detector proved to be essential
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for assuring the uniformity of the wing shape pattern at the entrance of the U-Net, al-
lowing the extraction of several wings from the same image even when they exhibited
different orientations.

3.2. Size of Synthetic Landmarks for Training

The size of the synthetic landmarks, denoted as circles, directly influenced the effec-
tiveness of the U-Net at the training stage. Circles with a radius varying from one to five
pixels were examined. The most appropriate circles had three and four pixels, with the
latter performing better than the former (Table 2). Circles with a radius smaller than three
pixels were too small and were virtually ignored by the neural network. On the other hand,
circles with a radius larger than four pixels were too large, compromising the positional
accuracy of the detected points. Furthermore, in several cases, the large radius size led to
the merging of different landmark regions into a single one, preventing the detection of all
19 landmarks.

Table 2. Functional performance of the U-Net landmarks segmenter in detecting exactly 19 landmarks
when variating a set of factors (Radius, Altered images, Dust, Kernel, Weights).

Radius Altered Images Dust Kernel Weights Accuracy
(%)

1 2 No No 3 × 3 No 68.1
2 3 No No 3 × 3 No 70.4
3 3 Yes No 3 × 3 No 76.3
4 3 Yes No 5 × 5 No 78.7
5 3 Yes Yes 5 × 5 No 81.9
6 3 Yes Yes 5 × 5 Yes 88.2
7 4 Yes Yes 5 × 5 Yes 91.8
8 4 Yes Yes 7 × 7 Yes 83.1

3.3. U-Net Optimization

The U-Net was revealed to be an essential solution for detecting the 19 landmarks.
While we tried classical object detectors (e.g., Faster R-CNN, YoloV3), these were incapable
of returning good precision in finding the correct position of the landmarks. Furthermore,
as a segmenter, the U-Net was designed to make pixel-oriented annotations, and that
precision was well-suited to our system needs.

Several parameter changes were made to the U-Net to improve its functional performance.
The original U-Net implementation uses convolution layer kernels of 3 × 3 elements, but
that version had a greater focus on detecting edges [30]. Kernels of sizes 3 × 3, 5 × 5, and
7 × 7 were tested. Larger kernels could deliver better results due to a broader view of the
landmark context. The best segmentation quality was obtained for size 5 × 5 (Table 2).
Although no new layers were added to the U-Net, changing the size of the kernels had a
substantial impact on memory and speed performance. For instance, increasing the kernels
from 3 × 3 to 5 × 5 made the neural network run three times slower.

The training results of the U-Net were further optimized by implementing different
approaches, including (i) early stopping [46], (ii) reduction on plateau [39], and (iii) a
weight loss function. The early stopping ends the model’s training when the validation
loss starts growing relative to the previous training iterations. By interrupting the process
soon after the model converged (generalization state), it was possible to avoid overfitting.
The reduction on plateau decreases the training learning rate when the loss figure stops
improving. Implementation of these two approaches allowed a better level of convergence
and landmark segmentation. The weight loss function, which allows differentiating the
importance of different training classes, was implemented to emphasize the landmarks
relative to the background. To illustrate the problem, a 400 × 400 image has 160,000 pixels
and contains 19 circles with a radius of four pixels. Therefore, only 955 of those pixels
constitute landmarks to be segmented, representing <1% of the total pixels. Accordingly,
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weighting the two classes by using the weight loss function was crucial for achieving
segmentation success. Several weight configurations were tested. The one that produced
the best results kept the weights of the background class at one and increased by 50 the
weight of the landmark class.

3.4. Evaluation of Landmarks Segmentation

In this section, the parametrization and the results that produce a suitable generaliza-
tion regarding the landmarks segmentation are analyzed regarding (i) the segmentation
capabilities of the U-Net (ensuring that the 19 landmarks are detected), (ii) the positional
precision of the 19 landmarks, and (iii) the processing robustness in dealing with image
dust and noise.

Table 2 shows the capability of the U-Net in annotating exactly the 19 landmarks,
using several configurations in the validation dataset. Radius represents the radius in pixels
of the landmarks used during the training. Altered images indicate whether the images
were rotated or displaced during the process of data augmentation in the training dataset.
Dust corresponds to artifacts and noise artificially added to the images. Kernel corresponds
to the U-Net kernel size. Weights represent the use of weight loss function during training.
Accuracy indicates the success of the U-Net model in detecting all 19 landmarks. A
summary of a larger grid of parameter combinations is shown in Table 2. Lines 1 and 2
show an improvement in the U-Net performance when the circle radius is increased from
2 to 3. Lines 2 and 3 show the improvement resulting from data augmentation regarding
affine geometric transformations (Altered Images). Lines 3 and 4 reveal the benefit of
using a kernel size of 5 × 5 versus 3 × 3. The improvement achieved from adding noise is
evidenced when comparing lines 4 and 5. A comparison between lines 5 and 6 underscores
the benefit of using the weight loss function to train the U-Net. Lines 6, 7 and 8 show
that the radius of size four outperforms the radius of size three and that the kernel size of
5 × 5 outperforms 7 × 7. When combining the best parameters, the accuracy of landmark
segmentation reaches 91.8%.

The U-Net model learned how to handle problems of dust and angle modifications,
as illustrated for several examples in Figure 12a,b. However, when the images were
excessively corrupted by visual artifacts, some landmarks went undetected (Figure 12c).
In addition to distorting the detection of landmarks, artifacts in the image may also create
false positives.

The positional precision of the 19 computed landmarks was assessed on the testing
dataset by comparing the U-Net-generated landmarks with the manually annotated land-
marks (Figure 1). Obtaining a high-precision landmarks segmenter is critical for honey bee
classification when using wing geometric morphometrics. This is because the locations of
the 19 landmarks are subspecies specific, as illustrated in Figure 1c,d for two genetically
close subspecies [5], and any positioning error will impact classification accuracy. As shown
in Table 3, precision varied among landmarks, with the lowest value obtained for landmark
9 (0.900) and the highest for landmark 19 (0.975). Curiously, landmark 19 is the single one
located outside of a vein junction. The average precision obtained for the 19 computed
landmarks was 0.943 ± 0.020.

While all 19 landmarks are used by the subspecies classifier, the information content
carried by each one is variable. Table 4 shows the information gain ratio obtained for each
x and y input feature associated with the 19 landmark coordinates. The most important
features (information gain ratio > 0.2) for subspecies classification were 13-x, 17-y, 15-y, 13-y,
and 8-y, which exhibited a precision ranging from 0.933 (landmark 15) to 0.958 (landmark 17;
Table 3). Interestingly, these four landmarks are implicated in the calculations of the cubital
index, hantel index, and discoidal shift angle, which are used by many queen breeders
engaged in A. m. mellifera conservation [14]. This finding suggests that the pipeline is
using, with good precision, the features that are well-known as correlated to the subspecies.
Moreover, the use of wing landmarks in honey bee classification enables a very affirmative
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criterion for automatically excluding images, as classification is aborted when the number
of extracted landmarks is different from 19.
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Table 3. Positional precision of the 19 detected landmarks. The landmarks correspond in nomination
to the sequence of annotated numbers shown in Figure 1b.

Landmark Precision Landmark Precision

1 0.968 11 0.924
2 0.970 12 0.926
3 0.963 13 0.937
4 0.954 14 0.945
5 0.911 15 0.933
6 0.932 16 0.931
7 0.939 17 0.958
8 0.950 18 0.962
9 0.900 19 0.975
10 0.937 Average ± SD 0.943 ± 0.020

In summary, the essays carried out here, using complex images from dataset 2 and
images from external datasets (data not shown), revealed a high capacity of the U-Net
for generalization in detecting the landmarks. The U-Net model was not only capable
of individually detecting each landmark but also capable of relating the landmarks in
a pattern, enabling inference of missing landmarks. Furthermore, the U-Net showed
precision capability and robustness in dealing with new and visually corrupted images.
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Table 4. Input feature regarding the 19 landmarks (x, y) coordinates ranked by information content.

Landmark (x or y) Component Information Gain Ratio Landmark (x or y) Component Information Gain Ratio

13 (x) 0.267 18 (x) 0.095
17 (y) 0.248 17 (x) 0.088
15 (y) 0.240 6 (x) 0.087
13 (y) 0.236 1 (y) 0.087
8 (y) 0.203 7 (x) 0.071
15 (x) 0.166 3 (y) 0.068
4 (y) 0.150 2 (y) 0.062
10 (x) 0.147 12 (x) 0.053
14 (x) 0.146 6 (y) 0.053
3 (x) 0.141 11 (y) 0.051
9 (y) 0.137 19 (y) 0.043
5 (y) 0.135 11 (x) 0.042
16 (x) 0.134 4 (x) 0.040
12 (y) 0.131 9 (x) 0.039
5 (x) 0.131 7 (y) 0.025

10 (y) 0.130 1 (y) 0.020
18 (y) 0.127 16 (y) 0.019
14 (y) 0.109 2 (x) 0.017
8- (x) 0.107 1 (x) 0.016

This study provides new insights into machine learning research by offering an al-
ternative solution for problems demanding annotation of landmarks with a high level of
precision (e.g., reference points in aerial images, facial points used for biometric recognition,
markers at body joints employed for motion acquisition, anatomical landmarks in medical
images, fingerprint minutiae for person recognition). To the best of our knowledge, our
approach is unique in the usage of the U-Net for the segmentation of landmarks. Remark-
ably, the U-Net allowed a precise and robust (regarding the noise) segmentation process
when using a kernel of 5 × 5 and landmark masks with a radius of 4 pixels. Furthermore,
employing a weight cost function was revealed to be essential to emphasize the landmarks
relative to the background, further contributing to the success of the final solution.

3.5. Classification

The classifier receives the image features already treated and simplified in the previ-
ous stages of the pipeline (Figure 6). For instance, the U-Net translates the wing image
into 19 stable data points, and the Procrustes method ensures positional independence
(translation, scale, rotation), to avoid a training dataset with those variations and allow
future classification of images with a range of variations.

The images were classified using SVM [43], a model that does not need a large hyper-
parametrization, simplifying the training phase. The validation dataset was employed to
find the SVM configuration that returned the most accurate classification. The SVM C factor
was 30, the gamma value was 0.17, and the best kernel was the RBF (Radial Base Function).
The model input consisted of the 38 values (x, y landmarks coordinates) normalized by the
Procrustes method. The model output codified the subspecies under classification.

The final SVM configuration was able to classify the forewings with 86.6% ± 6.9
average (±SD) accuracy across the 26 subspecies represented in the testing dataset (Table 5),
despite the relatively small number of images used in the classification training and the low
quality of many of them (Figure 3). Nawrocka and colleagues [8] found a similar average
accuracy (88.4%) for a similar manually annotated dataset (25 instead of 26 subspecies of
the Oberursel collection), further validating the performance of the pipeline developed
herein. These authors [8] also employed the geometric morphometrics method, although
they classified the 25 subspecies using the linear canonical variate analysis as opposed to
the non-linear SVM approach. In another study, Da Silva and colleagues [7] used manually
annotated landmarks on the Oberursel wing images to compare seven different classifiers,
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including SVM. Unexpectedly, the authors reported poor performance of the SVM classifier
(60.04%), as compared to this study, with the best classifier, Naïve Bayes, achieving only
65.15% accuracy in cross-validation.

Table 5. Classification accuracy obtained for the 26 A. mellifera subspecies.

Lineage Average (± SD)
Accuracy (%)

A. mellifera
Subspecies

Accuracy
(%)

A. mellifera
Subspecies

Accuracy
(%)

A 75.0 ± 7.1

adansonii 72.4 monticola 80.0
capensis 77.9 ruttneri 66.1
intermissa 75.2 sahariensis 82.7
lamarckii 69.3 scutellata 71.8
litorea 60.9 unicolor 87.9
major 78.8 jemenitica 77.2

M 92.2 ± 3.3 iberiensis 88.7 mellifera 95.3

C 88.1 ± 7.3
carnica 89.6 macedonica 85.7
cecropia 96.4 siciliana 75.3
ligustica 93.1

O 91.2 ± 4.1

adami 90.3 cypria 82.7
anatoliaca 93.9 meda 94.5
armeniaca 92.1 syriaca 95.3
caucasia 88.2

At the subspecies level, the lowest accuracy was observed for the African A. m. litorea
(60.9%) and the highest for the eastern European A. m. cecropia (96.4%; Table 5). At the
lineage level, the lowest average accuracy was observed for the African (75.0%) and the
highest for the western European (92.2%; Table 5). The poorer performance of the classifier
for African subspecies is consistent with the findings of [8] and is explained by the closer
morphological proximity among subspecies from central and southern Africa. Accordingly,
when the subspecies of African ancestry were excluded from the analysis, classification
accuracy increased up to 90.5% ± 1.7.

The performance of the pipeline was further improved (95.8% accuracy; Table 6)
by training another model with only five subspecies chosen for their commercial value
(A. m. ligustica, A. m. carnica and A. m. caucasia) or conservation status (A. m. mellifera and
its sister A. m. iberiensis) [47]. Except for A. m. iberiensis, the remaining four subspecies were
amongst the best represented in dataset 2, used for classification training, with A. m. carnica
having the largest number of wing images (n = 150). While excluding subspecies of African
ancestry led to greater classification accuracy (this study and [8]), it is possible that the
improved performance allowed by the five subspecies model is also related to the larger
sample size used during training. Although not directly comparable with our system, the
end-to-end solution developed from the entire wing (as opposed to the landmarks) by
De Nart and colleagues [9] achieved accuracy values of 99% in cross-validation from a
much larger (n = 9887) proprietary wing image dataset representing one hybrid and seven
subspecies (A. m. ligustica, A. m. carnica, A. m. caucasia, A. m. anatoliaca, A. m. siciliana,
A. m. iberiensis, A. m. mellifera) using CNN.

Training the system with a larger number of wing images per subspecies may lead to a
more accurate classification. Yet, this effort can only be achieved with wing images obtained
from newly collected specimens outside of the Oberursel collection, as was carried out by
De Nart and colleagues [9]. The problem is that this effort involves the identification of the
specimens using the full set of morphological traits, which is a time-consuming endeavor
requiring expert knowledge that is not always available [5]. Moreover, the classification
pipeline developed herein was based on the explicit choice of training the system with the
original wing collection used by Ruttner [1] in the delineation of the A. mellifera subspecies,
in spite of the low number of wing images and their often-low quality. Nonetheless, if
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needed, the system can be trained with new examples to improve classification rates on all
types of wing images.

Table 6. Classification accuracy obtained for five A. mellifera subspecies.

A. mellifera Subspecies Accuracy
(%)

carnica 98.9
caucasia 97.7
iberiensis 91.1
ligustica 96.4
mellifera 95.0
Average ± SD 95.8 ± 2.7

3.6. Computational Cost Analysis

The final implementation of the system, using a CNN MobileNet, a U-Net, and a SVM,
presented a good speed performance, requiring 14 s to process 10 images, which is the
minimum number recommended for colony-level identification [5]. The computational
machine was based on an i5-9400@2.9 GHz six cores CPU and 16 GBytes of main memory.
As the implemented solution is based on threads, the overall speed performance could
be increased by using a CPU with a larger number of cores. The CPU clock also directly
influences the speed performance because the main processing demands mathematical
vector operations that are correlated to the vectorial instruction speed. The deep learning
framework allows for running the code on a GPU to achieve an overall velocity of about
15 times as compared to the CPU.

3.7. DeepWings© as a Web Service

The pipeline developed herein for honey bee subspecies identification was registered
as software named DeepWings© (Registo de obra n.◦ 3214/2019, Inspeção-Geral das Ativi-
dades Culturais). DeepWings© is implemented as a free Web service available at the URL
https://deepwings.ddns.net, accessed on 26 April 2022. The Flask framework was used
to program the Web service, which was constructed with parallel programming based
on threads.

DeepWings© is a user-friendly software that only requires dragging wing images into
a file drop zone (Figure 13a). After image processing, a table containing the probabilities of
the top three subspecies is built on the Web page (Figure 13b). In addition to classification,
DeepWings© computes several wing geometric parameters and the coordinates of the
landmarks (Figure 13c). Classification probabilities, geometric parameters (cubital index,
hantel index, discoidal shift angle) and landmark coordinates can be downloaded as excel
files, facilitating data storage for further analysis or alternative applications. For instance,
the coordinates of the landmarks can be used directly by other identification software,
such as MorphoJ [48] or IdentiFly [26], or to calculate angles and lengths required by
other methods such as the DAWINO or classical wing morphometry [5]. DeepWings© can
therefore be used in conjunction with measurements of other body traits (e.g., pilosity,
pigmentation, proboscis and lengths) for purposes requiring more intensive methods, such
as identification of new subspecies [2–5]. However, more importantly, beekeepers and
queen breeders now have a friendly tool for identifying their colonies for conservation or
commercial purposes.

https://deepwings.ddns.net
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It is increasingly recognized that sustainable beekeeping requires the use of native
subspecies, as they are better adapted to local environments and show superior performance
when compared with exotic subspecies [49]. The problem is that the genetic integrity of
many honey bee subspecies is threatened after many generations of importation of exotic
queens [47]. A. m. mellifera is the best example of such a situation, as in large tracts of
its native distribution, this subspecies is severely introgressed or is even on the brink
of extinction. This has led to increasing demand for native subspecies, especially for
A. m. mellifera, and consequently for identification tools that can be used to certify the
origin of the queens. Such certification is required for beekeepers for (i) moving their
colonies to conservation areas, (ii) monitoring the efficiency of isolated mating stations,
and (iii) receiving subventions according to local or European legislation. Additionally,
beekeepers may be able to increase the market value of their stock by certifying the queens’
origin. Highly accurate subspecies identification implies measuring 36 morphological
traits [5] or genotyping genome-wide molecular markers [28]. However, these methods
are not accessible to most beekeepers and queen breeders, as the former is too laborious
and time-consuming and the latter is still too expensive. DeepWings© offers an alternative
solution for the above applications, which often do not require the accuracy levels provided
by those morphological or molecular methods.
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4. Conclusions

The software DeepWings© developed here for the identification of honey bees by
wing geometric morphometrics, combines a CNN as the wing detector, a deep learning
U-Net as the landmarks segmenter, and a SVM as the subspecies classifier. This multi-step
solution was revealed to be better suited than an end-to-end solution for our problem for
three main reasons. First, by using models of low complexity (U-Net and SVM), it was
possible to train the system with the small wing collection used by Ruttner [1] to identify
the honey bee subspecies. Second, it allowed the neural model to search for the features
(landmarks) that are used by the gold-standard method in honey bee classification based
on wings: geometric morphometrics. Third, by introducing the Procrustes method between
the landmark detection step and the classification step, the classifier could be trained with
greater robustness, as the wing invariances (translation, rotation, and scale) do not need to
be learned. Despite the apparent complexity, the system showed good speed performance,
requiring 14 s to process 10 images, which is the minimum number recommended for
colony-level identification [5].

While there is another wing geometric morphometrics tool (IdentiFly) available for
honey bee classification, DeepWings© is the first to do so in a fully automated manner.
The scientific novelty and greatest contribution of our solution to honey bee classification
is related to the capability of DeepWings© to segment the wings from images containing
varying artifacts, varying numbers of wings, and wings with different orientations, and
then segment the landmarks with high precision.

Since the wing shape patterns differ slightly among subspecies, particularly when
they belong to the same lineage, it became critical to use a segmenter that would allow high
precision in detecting the 19 landmarks. This goal was achieved by using the U-Net, which
showed good performance even when the images were very noisy.

The use of SVM in the classification was revealed to be a good solution with suitable
generalization, given the weak separation among subspecies (particularly those of African
ancestry) and the low number of images available for classification training (26 subspecies
represented by only 1864 images). Despite these limitations, classification accuracy was
86.6% for the 26 subspecies and increased to 95.8% when the classifier was trained with
only five subspecies. Higher accuracy would have been expected had the dataset used in
the classification training been larger. However, despite the low number of wing images
contained in the Oberursel collection and their often-low quality, we explicitly chose to
train our system with the dataset that was originally used by Ruttner [1] in the delineation
of the A. mellifera subspecies.

DeepWings© is available as free software for use in colony identification for multiple
purposes (e.g., monitoring isolated mating stations, selection of queens in conservation
apiaries) by beekeepers, queen breeders, and even scientists. In addition to classification,
DeepWings© provides the coordinates of the 19 landmarks, and these can be processed
by other software, facilitating data exchange between different scientific studies and re-
search teams.

Author Contributions: Conceptualization, P.J.R. and M.A.P.; methodology, P.J.R. and W.G.; software,
P.J.R. and W.G.; validation, P.J.R. and W.G. and M.A.P.; formal analysis, P.J.R. and W.G.; investigation,
W.G.; resources, P.J.R. and M.A.P.; data curation, W.G.; writing—original draft preparation, P.J.R.,
M.A.P. and W.G.; writing—review and editing, P.J.R. and M.A.P.; supervision, P.J.R.; project adminis-
tration, P.J.R.; funding acquisition, M.A.P. All authors have read and agreed to the published version
of the manuscript.

Funding: Financial support was provided through the program COMPETE 2020—POCI (Programa
Operacional para a Competividade e Internacionalização) and by Portuguese funds through FCT
(Fundação para a Ciência e a Tecnologia) in the framework of the project BeeHappy (POCI-01-
0145-FEDER-029871). FCT provided financial support by national funds (FCT/MCTES) to CIMO
(UIDB/00690/2020).

Institutional Review Board Statement: Not applicable.



Big Data Cogn. Comput. 2022, 6, 70 19 of 20

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: https://github.com/walterBSG/Beeapp-landmark-detection, accessed on 26 April 2022.

Acknowledgments: We are indebted to Helena Ferreira for manually annotating wings of dataset 1
and to Tiago M. Francoy for providing the wing images of dataset 2.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ruttner, F. Biogeography and Taxonomy of Honeybees; Springer: Berlin/Heidelberg, Germany, 1988; p. 284.
2. Sheppard, W.S.; Meixner, M.D. Apis mellifera pomonella, a new honey bee subspecies from Central Asia. Apidologie 2003, 34,

367–375. [CrossRef]
3. Meixner, M.D.; Leta, M.A.; Koeniger, N.; Fuchs, S. The honey bees of Ethiopia represent a new subspecies of Apis mellifera-Apis

mellifera simensis n. ssp. Apidologie 2011, 42, 425–437. [CrossRef]
4. Chen, C.; Liu, Z.G.; Pan, Q.; Chen, X.; Wang, H.H.; Guo, H.K.; Liu, S.D.; Lu, H.F.; Tian, S.L.; Li, R.Q.; et al. Genomic analyses

reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n.
ssp. Mol. Biol. Evol. 2016, 33, 1337–1348. [CrossRef] [PubMed]

5. Meixner, M.D.; Pinto, M.A.; Bouga, M.; Kryger, P.; Ivanova, E.; Fuchs, S. Standard methods for characterising subspecies and
ecotypes of Apis mellifera. J. Apic. Res. 2013, 52, 1–28. [CrossRef]

6. Tofilski, A. DrawWing, a program for numerical description of insect wings. J. Insect Sci. 2004, 4, 17. [CrossRef]
7. Da Silva, F.L.; Sella, M.L.G.; Francoy, T.M.; Costa, A.H.R. Evaluating classification and feature selection techniques for honeybee

subspecies identification using wing images. Comput. Electron. Agric. 2015, 114, 68–77. [CrossRef]
8. Nawrocka, A.; Kandemir, I.; Fuchs, S.; Tofilski, A. Computer software for identification of honey bee subspecies and evolutionary

lineages. Apidologie 2018, 49, 172–184. [CrossRef]
9. De Nart, D.; Costa, C.; di Prisco, G.; Carpana, E. Image recognition using convolutional neural networks for classification of

honey bee subspecies. Apidologie 2022, 53, 5. [CrossRef]
10. Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge University Press: Cambridge, UK, 1992.
11. Francoy, T.M.; Wittmann, D.; Drauschke, M.; Muller, S.; Steinhage, V.; Bezerra-Laure, M.A.F.; De Jong, D.; Goncalves, L.S.

Identification of Africanized honey bees through wing morphometrics: Two fast and efficient procedures. Apidologie 2008, 39,
488–494. [CrossRef]

12. Kandemir, I.; Ozkan, A.; Fuchs, S. Reevaluation of honeybee (Apis mellifera) microtaxonomy: A geometric morphometric approach.
Apidologie 2011, 42, 618–627. [CrossRef]

13. Prabucki, J.S.; Samborski, J.; Chuda-Mickiewicz, B. The use of three taxonomic characters for race identification of Middle
European bee. J. Apic. Sci. 2002, 46, 41–47.

14. Bouga, M.; Alaux, C.; Bienkowska, M.; Buchler, R.; Carreck, N.L.; Cauia, E.; Chlebo, R.; Dahle, B.; Dall’Olio, R.; De la Rua, P.; et al.
A review of methods for discrimination of honey bee populations as applied to European beekeeping. J. Apic. Res. 2011, 50, 51–84.
[CrossRef]

15. Bonatti, V.; Simoes, Z.L.P.; Franco, F.F.; Francoy, T.M. Evidence of at least two evolutionary lineages in Melipona subnitida (Apidae,
Meliponini) suggested by mtDNA variability and geometric morphometrics of forewings. Naturwissenschaften 2014, 101, 17–24.
[CrossRef] [PubMed]

16. Francoy, T.M.; Franco, F.D.; Roubik, D.W. Integrated landmark and outline-based morphometric methods efficiently distinguish
species of Euglossa (Hymenoptera, Apidae, Euglossini). Apidologie 2012, 43, 609–617. [CrossRef]

17. Francoy, T.M.; Bonatti, V.; Viraktamath, S.; Rajankar, B.R. Wing morphometrics indicates the existence of two distinct phenotypic
clusters within population of Tetragonula iridipennis (Apidae: Meliponini) from India. Insectes Sociaux 2016, 63, 109–115. [CrossRef]

18. Costa, C.P.; Machado, C.A.S.; Santiago, W.M.S.; Dallacqua, R.P.; Garófalo, C.A.; Francoy, T.M. Biome variation, not distance
between populations, explains morphological variability in the orchid bee Eulaema nigrita (Hymenoptera, Apidae, Euglossini).
Apidologie 2020, 51, 984–996. [CrossRef]

19. Rebelo, A.R.; Fagundes, J.M.G.; Digiampietri, L.A.; Francoy, T.M.; Biscaro, H.H. A fully automatic classification of bee species
from wing images. Apidologie 2021, 52, 1060–1074. [CrossRef]

20. Francoy, T.M.; Prado, P.R.R.; Gonçalves, L.S.; Costa, L.d.F.; Jong, D.D. Morphometric differences in a single wing cell can
discriminate Apis mellifera racial types. Apidologie 2006, 37, 91–97. [CrossRef]

21. Evin, A.; Baylac, M.; Ruedi, M.; Mucedda, M.; Pons, J.-M. Taxonomy, skull diversity and evolution in a species complex of Myotis
(Chiroptera: Vespertilionidae): A geometric morphometric appraisal. Biol. J. Linn. Soc. 2008, 95, 529–538. [CrossRef]

22. Tofilski, A. Using geometric morphometrics and standard morphometry to discriminate three honeybee subspecies. Apidologie
2008, 39, 558–563. [CrossRef]

23. Miguel, I.; Baylac, M.; Iriondo, M.; Manzano, C.; Garnery, L.; Estonba, A. Both geometric morphometric and microsatellite data
consistently support the differentiation of the Apis mellifera M evolutionary branch. Apidologie 2011, 42, 150–161. [CrossRef]

https://github.com/walterBSG/Beeapp-landmark-detection
http://doi.org/10.1051/apido:2003037
http://doi.org/10.1007/s13592-011-0007-y
http://doi.org/10.1093/molbev/msw017
http://www.ncbi.nlm.nih.gov/pubmed/26823447
http://doi.org/10.3896/IBRA.1.52.4.05
http://doi.org/10.1673/031.004.1701
http://doi.org/10.1016/j.compag.2015.03.012
http://doi.org/10.1007/s13592-017-0538-y
http://doi.org/10.1007/s13592-022-00918-5
http://doi.org/10.1051/apido:2008028
http://doi.org/10.1007/s13592-011-0063-3
http://doi.org/10.3896/IBRA.1.50.1.06
http://doi.org/10.1007/s00114-013-1123-5
http://www.ncbi.nlm.nih.gov/pubmed/24384774
http://doi.org/10.1007/s13592-012-0132-2
http://doi.org/10.1007/s00040-015-0442-2
http://doi.org/10.1007/s13592-020-00776-z
http://doi.org/10.1007/s13592-021-00887-1
http://doi.org/10.1051/apido:2005062
http://doi.org/10.1111/j.1095-8312.2008.01076.x
http://doi.org/10.1051/apido:2008037
http://doi.org/10.1051/apido/2010048


Big Data Cogn. Comput. 2022, 6, 70 20 of 20

24. Oleksa, A.; Tofilski, A. Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee
subspecies. Apidologie 2015, 46, 49–60. [CrossRef]

25. Ferreira, H.; Henriques, D.; Neves, C.J.; Machado, C.A.S.; Azevedo, J.C.; Francoy, T.M.; Pinto, M.A. Historical and contemporane-
ous human-mediated processes left a strong genetic signature on honey bee populations from the Macaronesian archipelago of
the Azores. Apidologie 2020, 51, 316–328. [CrossRef]

26. Tofilski, A. IdentiFly Software, Version 0.31. Available online: http://drawwing.org/identifly (accessed on 4 April 2022).
27. Henriques, D.; Browne, K.A.; Barnett, M.W.; Parejo, M.; Kryger, P.; Freeman, T.C.; Muñoz, I.; Garnery, L.; Highet, F.;

Jonhston, J.S.; et al. High sample throughput genotyping for estimating C-lineage introgression in the dark honeybee: An
accurate and cost-effective SNP-based tool. Sci. Rep. 2018, 8, 8552. [CrossRef] [PubMed]

28. Momeni, J.; Parejo, M.; Nielsen, R.O.; Langa, J.; Montes, I.; Papoutsis, L.; Farajzadeh, L.; Bendixen, C.; Căuia, E.;
Charrière, J.-D.; et al. Authoritative subspecies diagnosis tool for European honey bees based on ancestry informative
SNPs. BMC Genom. 2021, 22, 101. [CrossRef]

29. Chavez-Galarza, J.; Henriques, D.; Johnston, J.S.; Carneiro, M.; Rufino, J.; Patton, J.C.; Pinto, M.A. Revisiting the Iberian honey
bee (Apis mellifera iberiensis) contact zone: Maternal and genome-wide nuclear variations provide support for secondary contact
from historical refugia. Mol. Ecol. 2015, 24, 2973–2992. [CrossRef]

30. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Lecture Notes in
Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [CrossRef]

31. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems—Volume 1, Lake Tahoe, Nevada, 3–6 December 2012;
pp. 1097–1105.

32. Bradski, G.R.; Pisarevsky, V. Intel’s computer vision library: Applications in calibration, stereo, segmentation, tracking, gesture,
face and object recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2000),
Hilton Head, SC, USA, 15 June 2000; pp. 796–797.

33. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
34. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
35. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.

Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]
36. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the impact of residual connections on

learning. In Proceedings of the Thirty-First Aaai Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017;
pp. 4278–4284.

37. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
38. Kaehler, A.; Bradski, G.R. Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library, 1st ed.; O’Reilly Media: Sebastopol,

CA, USA, 2017; 990 p.
39. Chollet, F. Keras: The Python Deep Learning Library; Astrophysics Source Code Library: Houghton, MI, USA, 2018; p. ascl:1806.1022.
40. Mudrová, M.; Procházka, A. Principal component analysis in image processing. In Proceedings of the MATLAB Technical

Computing Conference, Prague, Czech Republic, 4–8 July 2005.
41. Quinlan, J.R. Simplifying decision trees. Int. J. Man-Mach. Stud. 1987, 27, 221–234. [CrossRef]
42. Gower, J.C. Generalized procrustes analysis. Psychometrika 1975, 40, 33–51. [CrossRef]
43. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
44. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
45. Pan, S.J.; Yang, Q.A. A Survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
46. Prechelt, L. Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw. 1998, 11, 761–767. [CrossRef]
47. De la Rua, P.; Jaffe, R.; Dall’Olio, R.; Munoz, I.; Serrano, J. Biodiversity, conservation and current threats to European honeybees.

Apidologie 2009, 40, 263–284. [CrossRef]
48. Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357.

[CrossRef]
49. Büchler, R.; Costa, C.; Hatjina, F.; Andonov, S.; Meixner, M.D.; le Conte, Y.; Uzunov, A.; Berg, S.; Bienkowska, M.;

Bouga, M.; et al. The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L.
colonies in Europe. J. Apic. Res. 2014, 53, 205–214. [CrossRef]

http://doi.org/10.1007/s13592-014-0300-7
http://doi.org/10.1007/s13592-019-00720-w
http://drawwing.org/identifly
http://doi.org/10.1038/s41598-018-26932-1
http://www.ncbi.nlm.nih.gov/pubmed/29867207
http://doi.org/10.1186/s12864-021-07379-7
http://doi.org/10.1111/mec.13223
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1038/nature14539
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1016/S0020-7373(87)80053-6
http://doi.org/10.1007/BF02291478
http://doi.org/10.1007/BF00994018
http://doi.org/10.1109/TKDE.2009.191
http://doi.org/10.1016/S0893-6080(98)00010-0
http://doi.org/10.1051/apido/2009027
http://doi.org/10.1111/j.1755-0998.2010.02924.x
http://doi.org/10.3896/IBRA.1.53.2.03

	Introduction 
	Materials and Methods 
	Modelling of the Solution 
	Image Datasets 
	Masks 
	Data Augmentation 

	Processing and Analyzing Wing Images 
	Preprocessing 
	Landmark Detection 
	Classification 


	Results and Discussion 
	Wing Detector 
	Size of Synthetic Landmarks for Training 
	U-Net Optimization 
	Evaluation of Landmarks Segmentation 
	Classification 
	Computational Cost Analysis 
	DeepWings© as a Web Service 

	Conclusions 
	References

