
Citation: Khade, S.; Gite, S.; Pradhan,

B. Iris Liveness Detection Using

Multiple Deep Convolution

Networks. Big Data Cogn. Comput.

2022, 6, 67. https://doi.org/

10.3390/bdcc6020067

Academic Editor: Rao Mikkilineni

Received: 18 May 2022

Accepted: 9 June 2022

Published: 15 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

Iris Liveness Detection Using Multiple Deep
Convolution Networks
Smita Khade 1 , Shilpa Gite 1,2,* and Biswajeet Pradhan 3,4,5

1 Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India;
smita.khade.phd2020@sitpune.edu.in or ambedkar.smita@gmail.com

2 Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International (Deemed University),
Pune 412115, India

3 Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and
Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology
Sydney, Sydney, NSW 20017, Australia; biswajeet.pradhan@uts.edu.au

4 Center of Excellence for Climate Change Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
5 Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM),

Bangi 43600, Malaysia
* Correspondence: shilpa.gite@sitpune.edu.in

Abstract: In the recent decade, comprehensive research has been carried out in terms of promising
biometrics modalities regarding humans’ physical features for person recognition. This work focuses
on iris characteristics and traits for person identification and iris liveness detection. This study used
five pre-trained networks, including VGG-16, Inceptionv3, Resnet50, Densenet121, and EfficientNetB7,
to recognize iris liveness using transfer learning techniques. These models are compared using three
state-of-the-art biometric databases: the LivDet-Iris 2015 dataset, IIITD contact dataset, and ND Iris3D
2020 dataset. Validation accuracy, loss, precision, recall, and f1-score, APCER (attack presentation
classification error rate), NPCER (normal presentation classification error rate), and ACER (average
classification error rate) were used to evaluate the performance of all pre-trained models. According
to the observational data, these models have a considerable ability to transfer their experience to the
field of iris recognition and to recognize the nanostructures within the iris region. Using the ND Iris
3D 2020 dataset, the EfficeintNetB7 model has achieved 99.97% identification accuracy. Experiments
show that pre-trained models outperform other current iris biometrics variants.

Keywords: iris; liveness detection; biometric identification pre-trained networks; VGG16; Inceptionv3;
Resnet50; Densenet121; EfficientNetB7

1. Introduction

Iris identification systems have proven to be dependable over time and are inexpensive,
non-invasive, and contactless; these attributes will help it to expand in the market over
the following years [1]. Presentation attack instruments (PAI) have been proven to be a
significant threat to iris recognition systems [2]. Here, PAI refers to a trait of biometrics
employed in a presentation attack (PA). Presentation attack detection (PAD) refers to a
biometric system’s ability to identify PAIs, which would otherwise deceive the system
into mistaking an unauthorized user for a legitimate one by presenting an artificial, forged
version of the original biometric attribute to the image capture equipment.

The biometric community, including researchers and manufacturers, has taken on
the difficult challenge of designing and creating effective security measures against this
issue [3], with PAD approaches being recommended as a possible solution. Threats are
no longer limited to theoretical or scientific research; they are already being conducted
against real-world businesses. One example is using a regular printer and a contact lens to
attack Samsung Galaxy S8 devices with the iris unlock feature. Hacking groups aiming to
gain notoriety for genuine criminal cases have disclosed this instance to the public via live
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biometric presentations during conferences [4]. All of these threats, as well as any new or
unfamiliar PAI forms that might be developed in the future, should be detectable using an
ideal PAD approach [4]. As early models of the LivDet competition have demonstrated,
PAD for iris recognition systems is diverse, with many unresolved issues in developing
practical algorithms for identifying iris PAD [5]. This article uses five pre-trained networks
to recognize iris liveness: VGG-16 [6], Inceptionv3 [7], Resnet50 [8], Densenet121 [9], and
EfficientNetB7 [10]. We compared models in this study using the same data and factors to
find the best model for distinguishing between real and fake iris images. To eliminate any
biases, the models were trained and evaluated on real and fake iris images from several
datasets. The models were then evaluated using performance measures, along with the
time it takes to compute them. The findings were thoroughly examined, and the best model
for binary classification was selected.

To our knowledge, the most commonly employed transfer learning models for identi-
fying iris liveness in the existing literature are VGG-16 [11], Inceptionv3 [7], Resnet50 [8],
Densenet121 [8], and EfficientNetB7. These models are validated using one or two iris
datasets. To date, no one has carried out a comparative analysis among these models,
based on different state-of-the-art iris biometric databases. Therefore, there is a need for
these comparative analyses to identify which pre-trained model gives the best iris liveness
detection among the different standard iris benchmark datasets.

In this paper, several transfer learning models are used to identify iris liveness detection.
This work’s primary contributions can be summarized in the following points:

• To identify iris liveness through five pre-trained networks, namely, VGG-16, Incep-
tionv3, Resnet50, Densenet121, and EfficientNetB7;

• To conduct a performance comparison across all five models to decide which pre-
trained model is better for Iris-PAD;

• To fine-tune all these models to achieve better performance.

To assess these models as performance indicators, twelve metrics are used: i.e., valida-
tion accuracy, training accuracy, validation loss, training loss, precision, recall and f1-score,
APCER, BPCER, ACER, training time, and testing time.

The rest of the paper is structured as follows. Section 2 discusses related work in the
published literature. The background, architecture, and working process of the proposed
system are all described in Section 3. Section 4 explains the experimental setup, along with
a description of the datasets used for experimentation and the performance metrics used
for evaluation. Section 5 describes the experimental results. A comparison of the model’s
performance with other models and a discussion of the results is offered in Section 6. Lastly,
Section 7 offers our conclusions.

2. Related Work

Due to the increasing deployment of these systems for various secure processes,
which raises the possibility of criminal assaults on these sensitive systems, numerous PAD
approaches for iris identification systems have been presented in the research literature [12].
The majority of iris PAD research has been focused on deep learning algorithms since 2018,
but a few traditional computer-vision-based methods have been proposed [13].

The following are some of the most prevalent methods previously used for detecting
iris liveness: Czajka [14] used pupil dynamics to create a liveness detection system. The
pupil reaction was tested in this technique, using unexpected changes in light intensity.
Fathy and Ali [15] did not take into account the segmentation and normalization steps
that are commonly employed in fake iris identification systems. The original image is
broken down into wavelets using wavelet packets (WPs). For false iris identification,
Agarwal et al. [16] employed a feature descriptor called a local binary hexagonal extreme
pattern. The proposed description takes advantage of the Hexa neighbor relationship
between the center pixel and its neighbors. Thavalengal et al. [17] created a smartphone
device for capturing RGB and NIR images of the eye and iris. For detection, distance
measurements and pupil localization algorithms are often applied. One of the most recent
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and promising classification techniques uses deep learning. In the field of iris images, there
are many works that use and apply this approach. Some of these works are described below.
The author Kuehl Kamp [18] suggested integrating two iris PAD techniques: ensemble
learning and CNNs. Widespread testing of this technique was carried out with the most
challenging datasets available that were widely accessible. Cross-sensor and cross-dataset
analyses were part of their experiments.

Their results revealed that different BSIF + CNN representations have differing abilities
to capture distinct elements of the input images. This technique outperforms the LivDet-Iris
2017 competition results. One author, Hoffman, also reported good cross-dataset and cross-
attack performance. A CNN had previously been used in [9] to perform classification tests
on patches of an iris region. The findings revealed that the most challenging presentation
attack to identify is that of textured contact lenses. This classification test method was
eventually expanded to include the ocular region [19]. Three CNNs were combined
to generate classification judgments in that study. Additional information that assists
classification and excellent cross-dataset performance can be obtained by studying the
ocular region in conjunction with the iris.

Transfer learning [20] is a process in which a model trained for one purpose on any
large dataset can be reused for training and testing for a related purpose on small datasets.
This approach is still used and is applied to iris images in several previous studies, some of
which are described here.

Spoof nets [7] comprise four convolutional layers and one inception module and were
inspired by GoogleNet. The inception module is made up of parallel layers of convolutional
filters with dimensions of 11, 33, and 55. The module benefits from minimizing the
architecture’s complexity and increasing its efficiency, as the dimension-11 filters reduce
the number of features beforehand, implementing layers of convolution through higher-
dimensional filters. The ResNet50 framework was used by Boyd [8] to see if iris-specific
feature extractors could outperform a network trained for non-iris applications. They
used five distinct sets of weights to demonstrate “three types of networks: off-the-shelf
networks, fine-tuned networks, and networks trained from scratch for iris identification.
They found that fine-tuning a current network to the specific iris domain outperformed
training from scratch”.

For iris PAD, Yadav et al. [11] integrated handmade and deep-learning-based features.
The VGG16 features were acquired from the last fully connected layer, which had a size
of 4096; then, PCA (principal component analysis) was used to reduce it to a lower-
dimensional vector. Trokielewicz et al. [21] offered a method of iris PAD to detect post-
mortem samples, using a fine-tuned VGG-16 architecture. By providing class activation
maps, this approach also examines those features and regions that the network finds most
relevant to PAD classification. The results demonstrated a significant ability to detect
post-mortem iris samples; however, there was no discussion of the cross-attack analysis.
Yadav et al. [9] offered DensePAD, a novel PAD design based on the famous DenseNet
CNN architecture. This suggested architecture received 120 × 160 normalized iris images
as input and would then output a judgment on whether the sample was genuine or not.
Their study looked at textured contact lenses in an uncontrolled, cross-sensor environment
and presented promising findings on previously unseen varieties of textured contacts.

Unfortunately, because different researchers use separate deep learning approaches,
it is questionable which model is superior. As a result, this paper examines multiple
deep neural networks that have previously produced excellent results in identifying iris
liveness. Based on our classification needs, the existing models were fine-tuned (VGG-16,
Inceptionv3, Resnet50, Densenet121, and EfficientNetB7) in this research. As a result, the
models were evaluated throughout this study using the same datasets and parameters
to find the best model for distinguishing between authentic and false iris images. To
prevent biases, the models were first trained and evaluated on real and fake iris images
from diverse datasets. The models were then evaluated, based on their evaluation criteria
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and the amount of time they took to compute the results. The findings were thoroughly
examined, and the best model for binary classification was chosen.

3. Proposed Iris Liveness Detection

To mitigate time issues with the training data set, a transfer learning strategy was
applied and pre-trained weights from ImageNet were used, which helped to speed up the
process. Due to the tiny data set, the models avoided overfitting via transfer learning. The
schematic design of the proposed model is illustrated in Figure 1. In this investigation, three
standard iris benchmark datasets were used. To prevent any biases toward data, images
from several different databases were sent to the models. We fine-tuned the last layer of five
state-of-the-art deep learning models—VGG-16, Inceptionv3, Resnet50, Densenet121, and
EfficientNetB7. For binary classification, these models were fine-tuned: the last set of layers
was modified with a flattened layer, consisting of fully connected layers and a SoftMax
activation function that turned the data from the existing layer into a huge one-dimensional
matrix. During the training of these networks, the data augmentation (DA) technique was
used. Some augmentation approaches, like flipping and rotation, were used on the input
image matrix to generate supplementary training images. For regularization, a 0.5-dropout
was added. Finally, a dense layer was added that employed SoftMax activation for the
earlier layers and produced two probability outputs for the “Live Iris Image” and “Fake
Iris Image” classes. Finally, we offered model selection criteria based on performance and
time complexity. We have made all trained models public so that they may be utilized for
iris liveness detection transfer learning. The design of these models and how they have
been employed for two-class classification will be briefly described in the following section.
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Figure 1. Graphical representation of the results of a study on the efficiency of transfer learning
models for detecting iris liveness.

3.1. VGG-16

The VGG16 input is a 224 × 224 RGB image with a predefined size. It has 16 layers,
including 13 convolutional layers and three fully connected layers, using maxpooling to
minimize volume size and a SoftMax classifier just after the fully connected layer. For this
learning process, the last fully connected layer and SoftMax activation are substituted with
our designed classifier, as shown in Figure 2 [6].

3.2. InceptionV3

InceptionV1 architecture is also known as GoogleNet. InceptionV3 has 484 levels, each
of which contains 11 inception modules. It has a 299 × 299 image input size. Convolution
filters, pooling layers, and the Relu activation function are included in each module.
InceptionV3 lessens the number of variables without compromising network efficiency, by
factoring in convolutions.
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To minimize the number of features, InceptionV3 developed a revolutionary downsiz-
ing method. Figure 3 depicts our fine-tuned InceptionV3 model for detecting iris liveness.
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3.3. ResNet 50

ResNet50 is a ResNet (residual network) variant. There are 48 convolutional layers,
1 MaxPool, and one average pool layer in this model. Each convolution block has three
convolution layers, and each identification block also has three convolution layers. ResNet-
50 can be trained with about 23 million parameters. Figure 4 depicts the fine-tuned
ResNet50 model for detecting Iris liveness.
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3.4. DenseNet121

DenseNet121′s input is a 224 × 224 RGB image of a predefined size. DenseNet121
is made up of 121 layers, with about 8 million parameters. It is organized into dense
blocks, with the same feature map size but with various filters within each block. Transition
layers are the layers that reside between the blocks and apply batch normalization for
down-sampling. The last fully connected layer and SoftMax activation are substituted with
a classifier in this experiment, as shown in Figure 5.
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3.5. EfficientNetB7

Efficient Net [10], one of the most advanced models, introduced a scaling strategy that
uses a compound coefficient to equally scale all parameters of a network’s depth, width,
and resolution. The EfficientNetB0-B7 designs are a family of architectures that have been
built up from the baseline network and represent a good blend of accuracy and efficiency.
Figure 6 depicts our fine-tuned EfficientNetB7 model for detecting iris liveness.
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4. Experimental Set-Up

There are three subheadings in this section. All three datasets utilized for experimental
validations are discussed in the first subsection. The second subsection describes how these
deep learning models are trained. The third subsection delves deeper into the evaluation
criteria utilized to evaluate the suggested approach’s results.

4.1. Description of the Dataset

Using numerous databases, the efficacy of the suggested models against various types
of iris spoofing assaults is assessed. A description of each dataset and the total images used
for experimentation is given below. From the total samples, 50% of images were arbitrarily
used for testing. The remaining 50% of images were divided into two groups, with 80%
used for training and 20% used for validation.

4.1.1. LivDet-Iris 2015: Clarkson Dataset

The Clarkson dataset has different training and testing images. The chosen classifiers
were trained on training samples and tested on testing samples that are present in the
dataset. In total, 3588 images were used for experimentation. Dalsa and LG sensors were
utilized to acquire the images on this dataset. For both training and testing, three types of
iris images were provided: live, patterned (contact lenses), and printed photographs [22].
Table 1 shows the number of images used for training, testing, and validation, along with
samples of live and fake images from the LivDet-Iris 2015 dataset.
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Table 1. The Clarkson dataset description.

Datasets Features Parameters

Total Instances 3588
Total Training Data 1436

Total Validation Data 358
Total Testing Data 1794
Number of classes 2

Live Iris Images
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The IIIT-D CLI database is provided by the image analysis and biometrics laboratory
of the IIIT in Delhi [23,24]. It consists of 6570 iris images from 101 separate people. A total
of 202 iris classifications were created by photographing each subject’s left and right iris.
Images were captured using the Cogent CIS 202 dual iris sensor and the VistaFA2E single
iris sensor [25]. Datasets provided three types of iris images: live (original images), colored
contact lenses, and clear contact lenses. A total of 2000 images were selected randomly
for experimentation. Table 2 shows the number of images used for training, testing, and
validation, along with a sample of live and fake images from the CLI dataset.

Table 2. IIITD contact lens iris dataset description.

Datasets Features Parameters

Total Instance 2000
Total Training Data 800

Total Validation Data 200
Total Testing Data 1000
Number of classes 2

Live iris images
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4.1.3. ND_Iris3D_2020

Images were taken of 88 subjects (176 irises) wearing three distinct brands of contact
lenses: Johnson & Johnson, Ciba Vision, and Bausch & Lomb, of irises with and without
contact lenses [5,26]. Under varying near-infrared illumination, images were acquired
using the LG4000 and AD100 iris sensors, allowing optical stereo-based 3D reconstruction
techniques to be designed and tested. The dataset contains 6838 images, with the LG4000
sensor acquiring 3488 images and the AD100 sensor acquiring 3362 images. Table 3 shows
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the number of images used for training, testing, and validation, along with a sample of live
and fake images from the ND_Iris3D_2020 dataset.

Table 3. ND_Iris3D_2020 dataset description.

Datasets Features Parameters

Total Instance 1640
Total Training Data 656

Total Validation Data 164
Total Testing Data 820
Number of classes 2

Live Iris Images
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4.2. Model Training

For this study, a transfer learning approach was adopted, and pre-trained weights from
ImageNet were used for the training data set. The pre-trained model weights were treated
as the initial values for the new training process, and they were updated and adjusted in
the training process. In this case, the weights were fine-tuned, from generic feature maps to
the specific features associated with the new dataset. The goal of fine-tuning is to adapt
generic features to a given task, rather than overwrite the generic learning.

The VGG-16, Inceptionv3, Resnet50, Densenet121, and EfficientNetB7 models were
trained on an Intel(R) Core(TM) i3-6006U CPU @ 2.00 GHz 1.99 GHz, 12.0 GB RAM com-
puter, running on a 64-bit operating system, for this experiment. The deep learning library
TensorFlow 2.7 with Keras API was utilized for the algorithm creation and implementation
of all models. To quantify the model’s effectiveness from the ground truth probabilities,
the categorical cross-entropy loss function was used to train it. We then used an Adam
optimizer with a learning rate of 0.001 to reduce the loss function and increase efficacy. To
avoid the problem of an overfitting or underfitting model, we created an early termination
approach, based on validation performance. During the training of these networks, data
augmentation (DA) techniques, such as flipping and rotation, were used. Flipping and rota-
tion are used on the input image matrix to generate supplementary training images. These
augmentation techniques are used to reduce the risk of overfitting, thereby improving the
accuracy of unseen data. To reduce the bias toward a dataset, the system was introduced
to images from several databases. For regularization, a 0.5-dropout was added. Finally, a
dense layer was added that employed SoftMax activation in the earlier layers and produced
two probability outputs for the “Live Iris Image” and “Fake Iris Image” classes.

4.3. Performance Measures

Accuracy, as a common machine learning performance evaluation metric, was utilized
to compare the performance of all the tested variations of the suggested approach. In
addition, other critical biometric measures were considered: performance indices, such
as loss, validation accuracy, precision, recall, f1_score, APCER, NPCER, and ACER were
used to evaluate our analysis. The formulae for all performance measures are given in
Equations (1)–(8).
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Accuracy =
TP + TN

FP + FN + TP + TN
(1)

Precision =
TP

FP + TP
(2)

Recall =
TP

TP + TN
(3)

F−Measures = 2× Precision ∗ Recall
Precision + Recall

(4)

APCER = FP/(FP + FN) (5)

NPCER = FN/(FN + TP) (6)

ACER = (APCER + NPCER)/2 (7)

Categorical cross− entropy loss = −
M

∑
C=1

yi, c log(pi, c) (8)

where:
TP indicates the data samples, which are predicted as live iris samples and in fact are

live samples;
TN gives the data samples detected as spoofed iris and also are spoofed iris samples;
FP indicates the samples identified as live iris samples but that are in fact spoofed ones;
FN shows the data samples detected as spoofed but that are in fact live iris samples;
M indicates the class;
yi, c and pi, c indicate the ground truth and predicted probabilities for individual images.

5. Results

This section gives the results of several experiments on the three datasets with five
transfer learning networks, i.e., VGG-16, Inceptionv3, Resnet50, Densenet121, and Efficient-
NetB7. This section is organized into four sub-sections. Section 5.1 presents the results
and graphs for the VGG-16 approach. Section 5.2 presents the results of the InceptionV3
network tests. The ResNet50 approach is discussed in Section 5.3. Section 5.4 presents the re-
sults of the DenseNet121 network tests. Section 5.5 presents the results of the EfficientNetB7
network tests. Tables 4–8 show the results of validation for the respective networks.

Table 4. Performance evaluation of the VGG16 model for iris liveness detection.

Dataset Clarkson 2015 IIITD_Contact ND Iris3D_2020

Validation accuracy (%) 99.72 99.75 98.78
Training accuracy (%) 99.23 98.75 1

Validation loss (%) 0.62 3.05 11.74
Training loss (%) 3.11 6.23 0.000003

Precision (%) 100 85.00 100
Recall (%) 100 85.00 100

F1-score (%) 100 85.00 100
APCER (%) 0.14 0.136 0
BPCER (%) 0.49 0.158 0.2
ACER (%) 0.32 0.147 0.1

Training time (s) 2983 2938 1297
Testing time (s) 888 502 417

5.1. VGG-16

This section reports the best results for each dataset using the VGG16 model. Adam
optimization achieved better performances compared to SGD. Table 4 shows a summary of
the outcomes of the VGG16 model across all three datasets. It can be observed from Table 4
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that the Clarkson 2015 dataset gave the best validation accuracy of 99.72%, while the ND
Iris3D_2020 dataset gave the lowest ACER of 0.1%, with the lowest testing time of 417 s.
Figure 7 shows the training and validation analysis over five epochs of the pre-trained
VGG-16 model. From Figure 7, we can infer that, overall, the best results were observed
using Adam optimization, with the Clarkson 2015 dataset for fine-tuning.

Table 5. Performance evaluation of the InceptionV3 model for iris liveness detection.

Dataset Clarkson 2015 IIITD_Contact ND Iris3D_2020

Validation accuracy (%) 99.44 71.5 94.5
Training accuracy (%) 99.79 59.13 98.37

Validation loss (%) 2.47 63.57 1.3255
Training loss (%) 0.69 10.15 3.902

Precision (%) 99.0 71.00 99.0
Recall (%) 99.0 70.00 99.0

F1-score (%) 99.0 70.00 99.0
APCER (%) 0 30.6 3.4375
BPCER (%) 2.9925 28.4 0
ACER (%) 1.4962 29.5 1.7187

Training time (s) 877 656 724
Testing time (s) 365 194 216

Table 6. Performance evaluation of the ResNet50 model for iris liveness detection.

Dataset Clarkson 2015 IIITD_Contact ND Iris3D_2020

Validation accuracy (%) 99.72 91.5 99.39
Training accuracy (%) 99.79 99.75 100

Validation loss (%) 0.3 47.33 1.19
Training loss (%) 1.28 0.78 0.0086

Precision (%) 100 98.00 100
Recall (%) 100 98.00 100

F1-score (%) 100 98.00 100
APCER (%) 0 0 0
BPCER (%) 0.748 3.6 0.2
ACER (%) 0.374 1.8 0.1

Training time (s) 945 537 398
Testing time (s) 296 165 121

Table 7. Performance evaluation of the DenseNet121 model for iris liveness detection.

Dataset Clarkson 2015 IIITD_Contact ND Iris3D_2020

Validation Accuracy (%) 98.32 88 98.78
Training Accuracy (%) 98.26 89.88 99.54

Validation Loss (%) 03.96 40.64 03.59
Training Loss (%) 05.29 24.68 01.09

Precision (%) 99.00 93.00 100
Recall (%) 99.00 93.00 100

F1-score (%) 99.00 93.00 100
APCER (%) 0.3589 9.2 0.9375
BPCER (%) 2.7431 4.6 0
ACER (%) 1.551 6.9 0.4687

Training Time (s) 907 587 300
Testing Time (s) 256 162 87

Table 8. Performance evaluation of the EfficientNetB7 model for iris liveness detection.

Dataset Clarkson 2015 IIITD_Contact ND Iris3D_2020

Validation accuracy (%) 99.44 94.5 99.97
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Table 8. Cont.

Dataset Clarkson 2015 IIITD_Contact ND Iris3D_2020

Training accuracy (%) 99.16 1 100
Validation loss (%) 04.28 21.41 00.47
Training loss (%) 0.42 00.25 00.11

Precision (%) 98.00 99.00 100
Recall (%) 98.00 99.00 100

F1-score (%) 98.00 99.00 100
APCER (%) 1.5793 0.2 0
BPCER (%) 5.2369 2 0
ACER (%) 3.4081 1.1 0

Training time (s) 2003 1092 1098
Testing time (s) 644 334 319
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Figure 7. Validation and training analyses over five epochs of the pre-trained VGG-16 model,
using various datasets: (a) validation and training model accuracy analysis, using the Clarkson
2015 dataset; (b) validation and training model loss analysis, using the Clarkson 2015 dataset;
(c) validation and training model accuracy analysis, using the IIITD dataset; (d) validation and
training model loss analysis, using the IIITD dataset; (e) validation and training model accuracy
analysis, using the ND_Iris3D_2020 dataset; and (f) validation and training model loss analysis, using
the ND_Iris3D_2020 dataset.
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5.2. InceptionV3

The InceptionV1 architecture is also known as GoogleNet. This section reports the
best results for each dataset, using the InceptionV3 model. Adam optimization achieved
improved performances compared to SGD. Table 5 shows a summary of the outcomes of
the InceptionV3 model across all datasets. It can be observed from Table 5 that the Clarkson
2015 dataset gave the best validation accuracy of 99.44% and the lowest ACER of 1.4%. The
IIITD_contact dataset yielded the lowest testing time of 194 sec.

Figure 8 shows the training and validation analyses over five epochs of the pre-trained
InceptionV3 model. From Figure 8, we can infer that, overall, the best results were observed
using Adam optimization, with the Clarkson 2015 dataset for fine-tuning.
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Figure 8. Validation and training analyses over five epochs of the pre-trained Inception model,
using various datasets: (a) validation and training model accuracy analysis, using the Clarkson
2015 dataset; (b) validation and training model loss analysis, using the Clarkson 2015 dataset;
(c) validation and training model accuracy analysis, using the IIITD dataset; (d) validation and
training model loss analysis, using the IIITD dataset; (e) validation and training model accuracy
analysis, using the ND_Iris3D_2020 dataset; and (f) validation and training model loss analysis, using
the ND_Iris3D_2020 dataset.
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5.3. ResNet50

This section reports the best results for each dataset, using the ResNet50 model. Table 6
shows an overview of the results for the ResNet50 model across all datasets. It can be
observed from Table 6 that Clarkson 2015 gave the best validation accuracy of 99.72%,
while the ND Iris3D_2020 dataset gave the lowest ACER of 0.1%, with the lowest testing
time of 121 sec. Figure 9 shows training and validation analyses over five epochs of the
pre-trained ResNet50 model. From Figure 9, we can infer that, overall, the best results were
observed using Adam optimization with the Clarkson 2015 dataset for fine-tuning.
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Figure 9. Validation and training analysis over five epochs of the pre-trained ResNet50 model
using various datasets: (a) validation and training model accuracy analysis, using the Clarkson
2015 dataset; (b) validation and training model loss analysis, using the Clarkson 2015 dataset;
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5.4. DenseNet121

DenseNet121′s input is a 224× 224 RGB image with a predefined size. The best results
for each dataset using the DenseNet121 model are reported in this section. Table 7 shows
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an overview of the results for the DenseNet121 model across all datasets. It can be observed
from Table 7 that Clarkson 2015 gave the best validation accuracy of 99.72%, while the
ND Iris3D_2020 dataset gave the lowest ACER 0.1%, with the lowest testing time of 121 s.
Figure 9 shows the training and validation analysis over five epochs of the pre-trained
ResNet50 model. From Figure 10, one can infer that, overall, the best results were observed
using Adam optimization, with the Clarkson 2015 dataset for fine-tuning.
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using various datasets: (a) validation and training model accuracy analysis, using the Clarkson
2015 dataset; (b) validation and training model loss analysis, using the Clarkson 2015 dataset;
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training model loss analysis, using the IIITD dataset; (e) validation and training model accuracy
analysis, using the ND_Iris3D_2020 dataset; and (f) validation and training model loss analysis, using
the ND_Iris3D_2020 dataset.

5.5. EfficientNetB7

EfficientNetB7, one of the most advanced models, introduced a scaling strategy that
uses a compound coefficient to equally scale all parameters of a network’s depth, width,
and resolution. The best results for each dataset using the EfficientNetB7 model are reported
in this section. Table 8 shows an overview of the results for the EfficientNetB7 model across
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all datasets. It can be observed from Table 8 that ND Iris3D_2020 gave the best validation
accuracy of 99.97% and the lowest ACER 0%, with the lowest testing time of 319 s. Figure 9
shows the training and validation analysis of the pre-trained EfficientNetB7 model of five
epochs. From Figure 9, we can infer that, overall, the best results were observed using
Adam optimization, with the ND Iris3D_2020 dataset for fine-tuning.

The confusion matrix shows how many images the model both erroneously and accu-
rately detected. For all datasets and models, a confusion matrix was created. The confusion
matrix for all five models is given in Table 9. Although multiple models performed well
during validation, EfficientNetB7 showed the lowest false positive and false negative re-
sults, implying that the EfficientNetB7 model made the fewest errors when predicting
whether the image was real or not.

Table 9. Confusion matrix of all pre-trained models across all datasets.

Datasets Clarkson 2015 IIITD_Contact ND Iris3D_2020

CNN Model TP TN FP FN TP TN FP FN TP TN FP FN

VGG-16 399 1391 2 2 421 432 68 79 499 500 0 1
InceptionV3 389 1393 0 12 358 347 153 142 500 309 11 0

ResNet50 389 1393 0 3 482 500 0 18 499 320 0 1
DenseNet121 390 1388 5 11 477 454 46 23 500 317 3 0

EfficientNetB7 380 1371 22 21 490 499 1 10 500 500 0 0

Table 10 shows that EfficientNetB7 is an excellent choice, offering the highest accuracy.
EfficientNetB7 also showed promising results in terms of ACER. For faster execution,
DenseNet121 can be used with reasonable accuracy. If processing time is not an issue, then
EfficientNetB7 should be utilized for the best level of accuracy.

Table 10. Performance evaluation of all pre-trained models for iris liveness detection across all
datasets using validation accuracy (%), ACER (%), and testing time values.

Clarkson 2015 IIITD_Contact ND Iris3D_2020

CNN Model Accuracy ACER Time/s Accuracy ACER Time/s Accuracy ACER Time/s

VGG-16 99.72 0.32 888 99.75 0.14 502 98.78 0.1 417
InceptionV3 99.44 1.49 365 71.50 29.5 194 94.50 1.72 216

ResNet50 99.44 1.49 296 91.50 1.8 165 99.39 0.1 121
DenseNet121 98.32 1.55 256 88.00 6.9 162 98.78 0.46 87

EfficientNetB7 99.44 3.40 644 94.50 1.1 334 99.97 0 319

Note. The values in bold and underlined indicate the highest recorded accuracy and lowest recorded ACER and
time needed.

6. Discussions

As per the extensive literature review, VGG-16, Inceptionv3, Resnet50, Densenet121,
and EfficientNetB7 are the most frequently used transfer learning models in the literature
for detecting iris liveness. These models are validated using one or two iris datasets. To
date, no one has carried out a comparative analysis among these models, based on the
different state-of-the-art iris biometric databases. To compensate for the training data set, a
transfer learning strategy was applied, and ImageNet pre-trained weights were utilized,
which helped to speed up the process. Due to the small size of the data set, the models
avoided overfitting via transfer learning.

The loss and the accuracy values during the validation and training procedures for
each fine-tuned model are listed in Tables 4–8 and are presented in Figures 7–11. When
comparing accuracy and ACER, it can be observed that the EfficientNetB7 model gives the
maximum accuracy and minimum ACER values, followed by the VGG16 model. These
can both attain a validation accuracy of 99 percent or more with only a few epochs. This
suggests that these models are capable of rapidly learning the differences between live and
fake iris images. When the loss and accuracy for the validation set are considered, it is clear
that EfficientNetB7 and VGG16 have the highest training accuracy, while ResNet50 has the
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lowest training loss. VGG16, EfficientNetB7, and ResNet50 have the lowest training loss
in the training set [4]. As a result of this data, it can be concluded that the EfficientNetB7
model outperforms the other five models in terms of training and validation.
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Figure 11. Validation and training analysis over five epochs of the pre-trained EfficientNetB7 model
using various datasets: (a) validation and training model accuracy analysis, using the Clarkson
2015 dataset; (b) validation and training model loss analysis, using the Clarkson 2015 dataset;
(c) validation and training model accuracy analysis, using the IIITD dataset; (d) validation and
training model loss analysis, using the IIITD dataset; (e) validation and training model accuracy
analysis, using the ND_Iris3D_2020 dataset; and (f) validation and training model loss analysis, using
the ND_Iris3D_2020 dataset.

ACER gives the average classification error rate. Table 10 summarizes the ACER for
all five models. Though numerous models did well during validation, EfficientNetB7 had
the lowest ACER, meaning that the EfficientNetB7 model produced the fewest faults when
identifying whether the image was real or fake. The accuracy, precision, recall, and F1 score
of these pre-trained models were compared in this study, as shown in Tables 4–8. Efficient-
NetB7, with a validation accuracy of 99.97%, was the most accurate, closely followed by
VGG16, with a validation accuracy of 99.75%. Tables 4–8 compare each model’s training
and testing computational times. The VGG16 model takes the longest time to train (2983 s);
DenseNet121, on the other hand, was slowest throughout the learning procedure (300 s)
but was the speediest during the testing step (87 s).
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The initial experimental results demonstrate that transfer learning models have a great
deal of potential for iris liveness detection. Table 10 shows that EfficientNetB7 is an excellent
choice, with the highest accuracy. EfficientNetB7 also showed promising results in terms of
ACER. For faster execution, DenseNet121 can be used with reasonable accuracy. Statistical
analysis was performed using a Wilcoxon signed-rank test to compare the two top models’
performances (Wilcoxon P = 0.059). The analysis has demonstrated that if processing time
is not an issue, then EfficientNetB7can be utilized for the best level of accuracy.

We recommend EfficientNetB7 for live and artificial iris image classification, based on
the results mentioned earlier (99.97% accuracy, 100% precision, 100% recall, and 100% F1
score), further comparing our fine-tuned EfficientNetB7 against other publications that
have recently published classification models for iris images. As demonstrated in Table 11,
our analysis achieved the highest binary classification accuracy compared to other works
that have worked with iris liveness detection. While comparing related works with various
models, in our approach, the studies are selected based on the models used for ILD. Only
a few studies have worked on the same datasets as those that are used in our analysis.
Arora et al. [23] employed VGGNet, a pre-trained network, and the IIITD dataset; however,
the accuracy attained was lower, possibly because of the smaller number of training
images. Umer et al. [27] achieved the second-greatest accuracy with their suggested
network, VGG16.

Table 11. Comparison with other related work that has performed iris liveness detection.

Paper ID Year Models Datasets Performance measures Results (%)

Comparison with
the same datasets

[5] 2021
ND PAD,

MSU PAD1,
MSU PAD2

WUT,
ND,
CU

APCER,
BPCER,
ACER

ACER = 2.61
ACER = 2.18

ACER = 28.96

[28] 2021
VGGNet

LeNet
ConvNet

IIITD Accuracy
FAR

Accuracy = 97.98
Accuracy = 89.38
Accuracy = 98.99

Comparison with
different datasets

[29] 2021 VGG16, YOLO Self-made database Accuracy
FAR, FRR Accuracy = 98

[30] 2021 EfficientNet CASIA v1 Accuracy
FAR, FRR Accuracy = 98

[27] 2020 VGG16, ResNet50,
Inception-v3 UPOL, CASIA CCR CCR = 99.64

[31] 2019 ResNet ATVS Accuracy Accuracy = 92.57

Suggested Analysis
VGG-16, Inceptionv3,

Resnet50, Densenet121,
and EfficientNetB7

Clarkson 2015,
IIITD Contact Lens,

ND_Iris3D_2020

Accuracy, Loss, APECR,
NPCER, ACER

Accuracy = 99.97
ACER = 0

7. Conclusions

Deep learning models can help to identify iris liveness with minimal preprocessing
of iris images. Several two-class datasets were employed in this investigation, which
contained genuine iris and fake iris images from standard benchmark datasets. The transfer
learning technique was used to evaluate many state-of-the-art pre-trained neural networks,
including VGG-16, Inceptionv3, Resnet50, Densenet121, and EfficientNetB7. EfficientNetB7,
with a classification accuracy of 99.97 percent, was found to be the best model, followed
by the VGG16 model, which achieved a 99.75 percent classification accuracy. The results
of this work show that recognition models created using transfer learning and CNNs can
perform well in binary classification tasks using iris images. Both natural and synthetic
iris images have similar characteristics that humans can decipher. However, the CNN
model can quickly learn the salient features and adequately categorize the images after
only a few training epochs. The excellent accuracy found shows that the deep learning
models were able to detect something exceptional in the counterfeit iris images, allowing
the deep networks to accurately differentiate the images. These trained models can improve
the confidentiality and security of biometric systems and the accuracy and efficiency of
biometric authentication. Our approach analysis can be extended to other biometric traits
like fingerprints and facial recognition and could present a promising framework for robust
biometric identification.
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