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Abstract: Policymakers, practitioners, and researchers around the globe have been acting in a
coordinated manner, yet remaining independent, to achieve the seventeen Sustainable Development
Goals (SDGs) defined by the United Nations. Remarkably, SDG-centric activities have manifested a
huge information silo known as big data. In most cases, a relevant subset of big data is visualized
using several two-dimensional plots. These plots are then used to decide a course of action for
achieving the relevant SDGs, and the whole process remains rather informal. Consequently, the
question of how to make a formal decision using big data-generated two-dimensional plots is a critical
one. This article fills this gap by presenting a novel decision-making approach (method and tool). The
approach formally makes decisions where the decision-relevant information is two-dimensional plots
rather than numerical data. The efficacy of the proposed approach is demonstrated by conducting
two case studies relevant to SDG 12 (responsible consumption and production). The first case study
confirms whether or not the proposed decision-making approach produces reliable results. In this
case study, datasets of wooden and polymeric materials regarding two eco-indicators (CO2 footprint
and water usage) are represented using two two-dimensional plots. The plots show that wooden
and polymeric materials are indifferent in water usage, whereas wooden materials are better than
polymeric materials in terms of CO2 footprint. The proposed decision-making approach correctly
captures this fact and correctly ranks the materials. For the other case study, three materials (mild steel,
aluminum alloys, and magnesium alloys) are ranked using six criteria (strength, modulus of elasticity,
cost, density, CO2 footprint, and water usage) and their relative weights. The datasets relevant to
the six criteria are made available using three two-dimensional plots. The plots show the relative
positions of mild steel, aluminum alloys, and magnesium alloys. The proposed decision-making
approach correctly captures the decision-relevant information of these three plots and correctly ranks
the materials. Thus, the outcomes of this article can help those who wish to develop pragmatic
decision support systems leveraging the capacity of big data in fulfilling SDGs.

Keywords: big data; cognitive computing; sustainable development goals; multi-criteria decision-making

1. Introduction

According to the United Nations, sustainability means meeting current needs without
jeopardizing the potentials of fulfilling future needs [1]. This is a broad mission. The UN
has divided this mission into seventeen goals known as Sustainable Development Goals
(SDGs), which are as follows [2]: (1) No Poverty, (2) Zero Hunger, (3) Good Health and
Well-being, (4) Quality Education, (5) Gender Equality, (6) Clean Water and Sanitation,
(7) Affordable and Clean Energy, (8) Decent Work and Economic Growth, (9) Industry,
Innovation, and Infrastructure, (10) Reduced Inequality, (11) Sustainable Cities and Com-
munities, (12) Responsible Consumption and Production, (13) Climate Action, (14) Life
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Below Water, (15) Life on Land, (16) Peace and Justice Strong Institutions, and (17) Part-
nerships to achieve the Goal. These goals can be achieved by meeting preset targets and
indicators [3]. The activities associated with the targets and indicators generate an informa-
tion silo consisting of a vast array of unstructured, semi-structured, and structured datasets
distributed all around the globe. This information silo is often referred to as big data.

However, big data means horizontally networked yet independent data systems con-
taining a vast number of datasets [4,5]. It requires a scalable architecture for efficient storage,
manipulation, and analysis. Apart from its volume, its major characteristics are veracity,
value, volatility, and validity. Veracity means the accuracy of the datasets. Value deals with
generating economic or social wealth from any dataset. Volatility means the tendency for
data structures to change over time. Validity means the appropriateness of the datasets
for their intended use. The concerned national and international organizations (e.g., Inter-
national Organizations for Standardization (ISO) and the National Institute of Standards
and Technology (NIST)) have been offering vendor-neutral conceptual definitions [6,7],
taxonomies [7], requirements and usages [8,9], security and privacy [10], reference architec-
tures [11,12], standardization roadmaps [13], and adoption and modernization schemes [14]
for big data so that it benefits its stakeholders without causing the phenomena of big data
equalities [15]. Some of the relevant articles that deal with the interplay of big data and
SDGs are briefly described in the next section.

As far as big data-driven value creation is concerned, the relevant datasets must help
make decisions. In this case, data analytics are used. In most cases, the analytics help
visualize the relevant datasets using some two-dimensional plots. These plots are then used
to decide a course of action for achieving predefined objectives. For a better understanding,
consider the two-dimensional plot shown in Figure 1. This plot (a segment of big data
of engineering materials) shows the relative positions of three types of materials (mild
steels, aluminum alloys, and magnesium alloys) in terms of two material properties (tensile
strength and Yang’s modulus). A visual inspection of the plot reveals that mild steels
outperform aluminum and magnesium alloys in terms of strength and Yang’s modulus.
Therefore, if materials with high strength and Yang’s modulus are needed, mild steels
should be chosen out of the three types of materials. This argument is valid if tensile
strength and Yang’s modulus are equally important. However, this kind of decision-
making may not always be as easy as described above. For example, if the strength and
bending ability of a material are not equally important, then how do we compare the
aluminum and magnesium alloys?

Thus, a formal decision-making approach must be employed to ensure a fair and rational
comparison where the decision-relevant information is graphical information (e.g., a set of
two-dimensional plots). A general outline of the said decision-making approach is as follows:

The first step is to set the criteria-based objective functions (e.g., maximize tensile
strength, minimize Yang’s modulus, minimize CO2 emission, and alike). Naturally, this
step depends on the underlying situation. The second step is to compute the compliances
of the alternatives with respect to criteria-based objective functions. The final step is
to consider the importance or weight of each criterion and aggregate compliances so
that each alternative receives a decision score for the final decision-making. Remarkably,
while performing the second step—while computing compliances—the decision-making
approach must be able to compute the graphical information (e.g., two-dimension plots
similar to that shown in Figure 1) rather than numerical data. Consequently, conventional
decision-making approaches where the primary decision-relevant information is numerical
data are not applicable here. This necessitates a new breed of methods and tools for making
rational decisions wherein the graphical information, instead of numerical information,
is formally computed. This article is written based on this consideration. There is a
particular focus on decision-making aspects centering SDG 12 (responsible consumption
and production).
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The rest of this article is organized as follows. Section 2 presents a literature review
showing the interplay of big data and SDGs. Section 3 presents the proposed decision-
making framework, mathematical entities, and decision-making tool. Section 4 presents
two case studies showing the efficacy of the proposed decision-making method and tool.
The case studies are relevant to SDG 12 (responsible consumption and production). The
first case study is conducted to confirm whether or not the proposed decision-making
method and tool produce reliable results. The datasets regarding two eco-indicators (CO2
footprint and water usage) of two types of materials (wooden materials and polymers)
are used in this case study. For the other case study, three types of materials (mild steel,
aluminum alloys, and magnesium alloys) are ranked using six criteria (strength, modulus
of elasticity, cost, density, CO2 footprint, and water usage) and their relative weights.
Section 5 discusses the implication of the decision-scoring mechanism of the presented
decision-making approach. Finally, Section 6 provides the concluding remarks of this study.

2. Literature Review

This section presents a literature review to understand the interplay of big data and
SDGs as elaborately as possible.

For monitoring sustainability, Mihaly et al. [16] studied the interplay of (a) national
sustainability policy, (b) international partnerships, domestic activities, and achievements,
(c) status of professional education, (d) spatial databases and services to support implemen-
tation of the sustainable development, (e) a case study on the internationally recognized
soil geoinformation system, and (f) national earth observation information system and
perspectives of its applications. They found that big data regarding earth observations and
geospatial data must be enacted to decide the right set of policies for implementing SDGs
at a national level.

Li et al. [17] showed how to benefit from big data in satisfying SDG 16. In particular,
they used big data available in the social networks (six million tweets) on corruption
and identified that the bribery of law enforcing authority and corruption in the health-
care sector put obstacles in the way of achieving SDG Target 16.5. Furthermore, they
utilized unsupervised machine learning methods to make sense of tweets expressed in
natural language.

Ryan et al. [18] studied the ethical issues regarding artificial intelligence and big
data while meeting SDGs. They conducted six empirical case studies to see how smart
information systems can meet the challenges of six SDGs (2, 3, 7, 8, 11, and 12). They
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showed that smart information systems are insufficient and may exacerbate or create new
issues for community development.

Ryan and Anya [19] studied the ethical implications of artificial intelligence and big
data for implementing SDG in smart cities with a large population. They found that dealing
with privacy, ensuring accurate datasets, reducing costs, and building general stakeholders’
trust are the main concerns of implementing big data to achieve SDGs.

MacFeely [20] reported that out of 232 SDG indicators, only 93 are classified as Tier 1,
i.e., the indicators are clearly defined, and data are compiled by internationally accepted
standards from at least 50 percent of the countries. The remaining indicators are Tier 2
(72 indicators) or Tier 3 (62 indicators). Tier 2 indicators are clearly defined, but countries
do not regularly produce the data. Tier 3 indicators are conceptually clear, but no interna-
tionally accepted standards are yet available. Some data sources are used for estimating
multiple SDGs. For example, utility bills are used to estimate economic well-being, and
well-being is directly related to SDG 1, 8, 10, and 11. Mobile phone utilization datasets
are used to estimate public health and disaster, and public health and disaster are directly
related to SDG 2, 3, 8, 11, 15, and 16. Nevertheless, web scraping, scanners, mobile phones,
social media, satellite images, smart meters, credit cards, road sensors, health records, ship
identification, and criminal records are now SDG-related big data sources.

Global assessment of institutional readiness for using big data in official statistics is
presented in [21]. The following points have been raised: (a) from a strategic coordination
viewpoint, big data must be exchanged from all regions through the United Nations Global
Platform, where national statistics organizations must play a vital role. (b) Legal frame-
works must be revised to materialize data sharing between national statistics organizations,
private sector data owners, and other stakeholders without violating data privacy and
protection laws. (c) Human resource initiatives must be taken overarching competency
for big data skills development. Thus, partnerships with higher education institutes to
allow up-skilling of big data competency must take place. (d) Required IT infrastructure
(cloud storage facilities) in all countries with necessary pre-requisites must be maintained
to benefit from big data.

Mwitondi et al. [22] performed data segmentation considering each SDG a node
of a big data source. In doing so they elucidated the complex overlap of the SDGs by
using data from different sources, as described in [23–25], regarding SDG indicators. The
complexity of the data (data randomness, variation in sample size, and socio-economic,
cultural, and geopolitical factors) necessitates new data handling algorithms. Big data
analytics help understand the interplay of the SDG indicators and open new paths to
interdisciplinary research.

Ferreira et al. [26] showed that big data consisting of satellite images of earth obser-
vation can be used to address SDG indicators. However, innovative methods and tools to
process ever-growing earth observation data are needed. In this respect, data analytics tech-
niques can help make sense of the enormous quantity of earth observation data available
in various formats and collected from numerous sources.

Kashyap and Verkroost [27] analyzed big data available in social networks (LinkedIn™)
to understand gender gaps using regression analysis. They found that the LinkedIn Gender
Gap Index (GGI) strongly correlates with International Labor Organization (ILO) ground
truth professional gender gaps. This study thus shows the efficacy of social networks being
a source of big data for sustainability analysis.

Hassani et al. [28] studied the up-to-date connections between the SDGs and big data
using global Google trends. They summarized the impact of big data on SDGs, showing
the current state and challenges to overcome in the foreseeable future. They reported that
SDG 1 attracted the most attention to big data projects among all SDGs. In this respect, data
silos collected from mobile phones and satellite images and geodata were identified as the
top two data sources by which poverty has been combated. For example, satellite image
big data processed by artificial intelligence can help evaluate building, car counts, road
density, pavement, road width, and roof materials. This information helps stakeholders to
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match skilled labor with suitable employment or local products with buyers worldwide.
As far as SDG 2 is concerned, big data generated from IoT-driven smart sensor networks
and geological surveys contribute to smart farming and precision agriculture. Big data
generated while monitoring infectious diseases and mental health can contribute to SDG 3.
SDG 4 needs prediction and estimation of early school dropouts, which can be performed
accurately using big data. In terms of SDG 9 and SDG 12, to the best of our knowledge, big
data has just started to earn a great deal of attention. The reason for this is that, without big
data, it is not possible to ensure a sustainable supply chain, product life cycle management
toward greenhouse gas reduction, consumer behavior assessment, or e-commerce.

Allen et al. [29] presented a comprehensive literature review showing which big data
sources estimate SDGs. They reported that datasets generated by satellite data acquisition
systems, surveys, tracking systems, sensors, administrative practices, and opinions are
big data sources for sustainability assessment. However, regarding SDG 12, there were no
reported data sources.

The above literature review reveals that the interplay of big data and SDGs is highly
complex. Big data’s utilization in assessing the degree of fulfillment of SDGs or making nec-
essary arrangements at the global or local level is still in its infancy. Therefore, more research
should be conducted to develop more pragmatic methods for mitigating the uncertainty
and computational complexity associated with big data associated with sustainability.

3. Decision-Making Method and Tool

This section presents a decision-making method where the decision-relevant informa-
tion comprises two-dimensional plots rather than numerical data. The relevant mathemati-
cal entities, as well as the computing tool, are also presented in this section. This method
and tool are collectively referred to as the decision-making approach.

Figure 2 schematically illustrates the proposed decision-making method. It consists
of six modules. The first module is denoted as SDG-driven activities, where numerous
stakeholders perform activities to achieve SDGs. The second module is denoted as big data,
where a vast array of unstructured, semi-structured, and structured datasets collected from
the SDG-driven activities are stored for making informed decisions. The third module is
denoted as big data analytics. The analytics search big data and help visualize the relevant
datasets. The fourth module is denoted as decision formulation, where the decision-maker
sets the criteria and their importance. Each criterion is set either in the maximization or
minimization format. For example, if social security is a target or indicator of sustainability,
then its decision criterion can be “maximize social security”. If CO2 emission is a target
or indicator of sustainability, then its decision criterion can be “minimize CO2 emission”.
In addition to setting the criteria, the importance of the criteria is set either in numerical
form (setting relative weights of the criteria) or in linguistic form (e.g., criterion x is more
important than criterion y). The last module is denoted as decision computation. In this
module, decision-relevant information (in this case, two-dimensional plots) is computed
to see how well the alternatives comply with the decision criteria. The values of the
compliances are then further processed using the importance of the criteria, which results
in a ranking list of the alternatives. Finally, a decision is made using the ranking list. It is
worth mentioning that Ullah and Noor-E-Alam [30] provided a framework and tool for
making decisions using graphical information. The method shown in Figure 2 resembles
their work as far as data visualization is concerned.

In order to perform decision computation, the concept of compliance can be used. The
mathematical settings for calculating compliance of a numerical range with a given fuzzy
number are described in [31]. In this article, a simplified formulation of the compliance
analysis is considered based on the formulation shown in [31].
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Figure 2. Proposed decision-making framework.

For better understanding, consider an arbitrary two-dimensional plot, as shown in
Figure 3. Let X1 and X2 be two parameters associated with the decision-making process
and A, B, and C be the alternatives, as schematically illustrated in Figure 3. The relative
positions of the alternatives are shown by a two-dimensional plot where the abscissa is X1,
and the ordinate is X2. Each alternative can be represented by some intervals in the X1 and
X2 directions. Each interval complies with the maximization and minimization functions.
For example, let [a, b] ∈ < be the scale of X1, as shown in Figure 3. Here, x1 ∈ [a, b].
The corresponding minimization and maximization functions, denoted as Min(X1) and
Max(X1), are as follows.

Min(X1) = min
(

max
(

b− x1
b− a

, 0
)

, 1
)

(1)

Max(X1) = min
(

max
(

x1− a
b− a

, 0
)

, 1
)

(2)
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For example, consider the case shown in Figure 3, where one of the possible intervals
underlying A is given as [p, q]. In order to calculate the compliance, the following functions
for maximization and minimization can be defined:

Cmax =
(p + q)− 2a

2(b− a)
(3)

Cmin =
2b− (p + q)

2(b− a)
(4)

For example, consider that [a, b] = [0, 100] and [p, q] = [30, 70]. In this case,
Cmax = Cmin = 0.5. This means that the interval [30, 70] equally complies with maximization
and minimization functions defined in the universe of discourse [0, 100]. Consider that
[a, b] = [0, 100] and [p, q] = [20, 50]. In this case, Cmax = 0.35 and Cmin = 0.7. This means that
[20, 50] complies with minimization more than it complies with maximization in the uni-
verse of discourse [0, 100]. Out of Cmax and Cmin, one is considered for the decision-making
purpose. The explanation is as follows. For example, if X1 represents CO2 emission, then
it (CO2 emission) must be minimized. As a result, the criterion becomes “minimize CO2
emission”. As such, the value of Cmin, not Cmax is considered for the decision-making pur-
pose. Similarly, if X1 represents productivity, then it (productivity) must be minimized. As
such, the value of Cmax, not Cmin, is considered for the decision-making purpose. Thus, if a
given criterion refers to maximization, then its compliance C is equal to Cmax. Alternatively,
if a given criterion refers to minimization, then its compliance C is equal to Cmin. This way,
each alternative returns a set of compliances, C1, . . . , Cn ∈ [0, 1], because each alternative
entails multiple intervals. A set of compliances can induce a possibility distribution in the
form of a triangular fuzzy number. The mathematical procedure to induce fuzzy number
from a given set of numerical values is presented in [32]. For a lucid description of the
induction process, refer to Appendix A in [33].

Let [t1, t3] be the support and t2 be the core of the induced fuzzy number denoted
as T. The compliance of T with the idealistic possibility distribution of compliances is the
compliance of an alternative with respect to the criterion. This aggregated compliance
is thus the decision score (denoted as D) of the alternative with respect to the criterion.
Now, the idealistic possibility distribution can be defined in numerous ways. One of the
obvious ways is to define it by a function that ensures the maximization of the possibility
of compliance in the universe of discourse of [0, 1] as marked by “Ideal” in Figure 4. As
such, the decision score is calculated as follows:

D =
rt3 − st1

t3 − t1
(5)

The parameters r and s in Equation (5) are defined as follows:

r =
t3

1 + (t3 − t2)
(6)

s =
t1

1− (t2 − t1)
(7)

For example, consider that t1 = 0.2, t2 = 0.4, t3 = 0.7. This results in r = 0.7/1.4 = 0.5,
s = 0.2/0.8 = 0.25, D = (0.35−0.05)/0.5 = 0.6. If t1 = 0, t2 = t3 = 1, then r = 1, s = 0, D = 1. This
means that when the induced possibility distribution (aggregated compliance) takes the
shape of the idealistic possibility distribution (Figure 3), the decision score becomes unit;
otherwise, it is less than unit.

The abovementioned decision computation needs a special computing tool. The
tool must be able to extract the intervals for an alternative from a given two-dimensional
plot [18]. The pseudocodes of the tool are represented by Algorithm 1 as follows:
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Algorithm 1: Decision-making computation.

Step 1: Start
Step 2: Upload a two-dimensional plot

Step 3:
Set the scales for the abscissa and ordinate of the uploaded plot (i.e., minimum and
maximum values defining the scales of the abscissa and ordinate of the plot)

Step 4: Select one of the directions (either abscissa or ordinate) for extracting intervals
Step 5: Select one of the alternatives for extracting intervals

Step 6:
Drag mouse in the selected direction and extract several intervals covering the region
of the selection alternative and direction

Step 7: Repeat Step 5 for all other alternatives
Step 8: Go to Step 3 and select the other direction
Step 9: Repeat Steps 4, . . . , 6

Step 10: Output all intervals extracted in the above steps
Step 11: End
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Figure 4. Calculating decision score.

Based on the above pseudocodes, a decision tool is developed that runs on Windows™
operating systems. Figures 5 and 6 show two of the user interfaces of the tool developed.
Accordingly, a decision-maker first uploads a two-dimensional plot. After that, the decision-
maker sets the scale of the abscissa and ordinate. The scale may not have to be the scale of
the plot. For example, the arbitrary case shown in Figure 4 shows that the decision-maker
uploaded a two-dimensional plot (stiffness versus cost) of engineering materials. This plot
shows the relative positions of five types of materials, namely, aluminum, cast iron, stainless
steel, and two types of composites (glass fiber reinforced polymers (GFRP) and carbon fiber
reinforced polymers (CFRP)). Thus, these five types of materials are the alternatives for this
particular case. Each alternative can be represented by some intervals in the abscissa and
ordinate directions. The instance shown in Figure 5 is a scenario when the decision-maker
extracts the intervals in the abscissa direction to represent the cost of cast iron.
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4. Case Studies

This section presents two case studies. The first case study is conducted to see whether
or not the proposed decision-making approach produces reliable results even though the
relevant datasets presented by two-dimensional plots exhibit a great deal of uncertainty.
The other is conducted to see whether or not the proposed decision-making approach can
be used for multiple-criteria decision-making even though the relevant datasets presented
by several two-dimensional plots exhibit a great deal of uncertainty. Both case studies focus
on SDG 12 (responsible production and consumption). For assessing the fulfillment of SDG
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12, big data relevant to engineering materials becomes an important issue. The description
is as follows.

Fulfilling SDG 12 means scanning the whole product life cycle to identify the harmful
factors (carbon emissions and resource depletion) and eliminate them. As such, SDG 12 is
highly correlated to the notion of material efficiency. It (material efficiency) deals with
yield improvement, downsizing and lightening, cost reduction, and reduction of CO2
footprint of primary material production [34–37]. Remarkably, material efficiency is more
effective than energy efficiency (energy efficiency deals with the direct energy consumption
while manufacturing products [34–37]). As a result, tacking all information regarding
the characteristics and properties of a vast array of engineering materials has become an
important factor for ensuring SDG 12 and beyond. For this, a new concept called materials
passport has been introduced. The explanation is as follows.

Since a product includes metals (including precious and rare earths), ceramics, poly-
mers, and natural materials, myriad material processes are entailed in the fabrication of
the parts of a product. Furthermore, the reasons and requirements behind using specific
materials and their circularity must be known beforehand. Otherwise, the sustainability
assessment cannot be performed as expected. In order to deal with material efficiency in
a more global context (e.g., circular economy), a concept known as a material passport
has been introduced [38–45]. The material passport needs material-centric information
collected from upstream activities (mining, trade, smelting/refining) and downstream
activities (trade, component manufacturing, contract manufacturing and assembly, and
end-using). While improving the sustainability of a product, its constituent materials and
percentages, and the relevant manufacturing and assembly/service processes-relevant
datasets stored in its material passport can be used. Furthermore, the eco-indicators of
materials (CO2 emission of primary production of constituent materials, resource depletion)
and other governance issues (whether or not forced labor is used in the upstream and
downstream activities) populate material passports. Therefore, material-centric big data
extracted from the material passports of various products become essential information for
ensuring SDG 12 and other SDGs.

Nevertheless, in most cases, a relevant subset of big data is visualized using two-
dimensional (scatter) plots. These plots dominate the underlying decision-making processes
ensuring better fulfillment of SDG 12. In such cases, the decision-making method and tool
presented in the previous section become instrumental.

4.1. Case Study 1

This case study was conducted to confirm whether or not the proposed decision-
making method and tool produce reliable results. In particular, the datasets regarding two
eco-indicators (CO2 footprint and water usage) of two types of materials (wooden materials
and polymers) were considered.

From the big data of engineering materials, the datasets regarding CO2 footprint
and water usage of 447 wooden materials and 244 polymers are shown using two two-
dimensional plots in Figure 6. See [36] for more details. The datasets are presented in
Figure 7 using two scatter plots where the ordinates present water usages (cc of water/cc
of material) and the abscissas present CO2 emission (grams of CO2/cc of material) of
the primary production of the respective materials. To be more specific, consider the
following case where two families of materials, namely, polymers and wooden materials,
are ranked in terms of CO2 footprint and water usage. As shown in Figure 6, as far as
water usage (as a measure of resource depletion) is concerned, both materials can be ranked
equally. However, as far as CO2 footprint is concerned, wooden materials are far better
than polymers.
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Figure 7. Big data regarding the sustainability of two families of materials. (a) Wooden materials,
and (b) polymers [36].

Figure 8 shows the user interface of the decision tool (Figures 5 and 6) when the
decision-maker extracts the ranges representing uncertainty in water usage. Even though
the water usage is plotted using a logarithmic scale starting from 0.01 cc of water/cc of
material to 10000 cc of water/cc of material, the range extraction process rescales the plot
to [0, 100] (Here, “cc” means cubic centimeter). Therefore, each extracted range becomes
a segment of [0, 100]. If preferred, the decision-maker can use other scaling schemes. For
example, Figure 9 shows the extracted ranges representing the uncertainty in water usage
of wooden materials. Similarly, water usage and CO2 footprint ranges are also collected for
the rest of the cases.
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Tables 1 and 2 list the values of the decision-making parameters relevant to decision
computation. As seen in Tables 1 and 2, the decision score (D) values concerning the
criterion “minimize water usage” for both groups of materials are comparable (0.395 and
0.410). This means that both natural materials and polymers are equally unsustainable in
terms of water usage. This is consistent with the visual inspection of the big data (Figure 7).
On the other hand, the decision score (D) value concerning CO2 footprint is very high
(0.904) for the natural materials compared to that of polymers (0.449).

Table 1. Sustainability assessment of wooden materials.

Decision-Making Parameters

Sustainability Criteria t1 t2 t3 r s D

Minimize Water Usage 0.140 0.210 0.320 0.288 0.151 0.395

Minimize CO2 Footprint 0.570 0.680 0.880 0.733 0.640 0.904

Table 2. Sustainability assessment of polymers.

Decision-Making Parameters

Sustainability Criteria t1 t2 t3 r s D

Minimize Water Usage 0.120 0.230 0.360 0.319 0.135 0.410

Minimize CO2 Footprint 0.140 0.260 0.390 0.345 0.159 0.449

The above results imply that the presented decision-making approach is reliable, and
it can successfully process the uncertainty underlying big data.
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4.2. Case Study 2

Upon confirming the presented decision-making approach’s reliability, it is time to
apply it in multiple-criteria decision-making, as described below.

In particular, this case study shows how to rank the three most frequently used
metallic materials: mild steel, aluminum alloys, and magnesium alloys, using graphical
information generated from big data associated with engineering materials. Six criteria
were considered: (1) strength, (2) Yang’s modulus, (3) destiny, (4) CO2 footprint, (5) water
usage, and (6) cost. As such, three two-dimensional plots—strength versus Yang’s modulus,
cost versus density, and water usage versus CO2 footprint—were used showing the relative
positions of the mild steel, aluminum alloys, and magnesium alloys on each plot. Figure 10
shows a scenario where all possible ranges of Yang’s modulus of magnesium alloys are
extracted. Figure 11 shows a scenario where all possible cost ranges of magnesium alloys
are extracted. Figure 12 shows a scenario where all possible ranges of the CO2 footprint
of magnesium alloys are extracted. The same is done for all combinations of criteria and
alternatives. In order to ensure sustainability, the strength and Yang’s modulus must be
maximized, whereas the density, cost, CO2 footprint, and water usage must be minimized.
The decision scores (Ds) of the alternatives respective to the respective criteria are listed
in Table 3. The alternatives can be ranked using values of the scores listed in Table 3. The
ranking process is described as follows.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 14 of 21 
 

 
Figure 10. Extracting decision-relevant information from the plot of strength versus Yang’s modu-
lus. 

 
Figure 11. Extracting decision-relevant information from the plot of cost versus density. 

Figure 10. Extracting decision-relevant information from the plot of strength versus Yang’s modulus.

Table 3. Decision scores (Ds) of the alternatives with respective to the respective criteria.
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Magnesium Alloys 0.37 0.139 0.355 0.919 0.205 0.074
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The ranking score denoted as Rj of the j-th alternative with respective to all criteria is
given as follows:

Rj =
∑n

i=1 Dijwi

∑n
i=1 wi

(8)

In Equation (6), Dij is the decision score of the j-th alternative with respect to the i-th
criterion, wi is the weight or importance of the i-th criterion, and n is the number of criteria.

In a multi-criteria decision-making process, the decision-makers can set the values of
wi as they prefer and see the corresponding rank of the alternatives. For example, if the



Big Data Cogn. Comput. 2022, 6, 64 15 of 20

environmental issues are prioritized over others, the values of the weights of CO2 emission
and water usage can be set much higher than that of the others. However, some of the
possible weight setting scenarios are presented below for better understanding.

As shown in Table 4, if the CO2 footprint, cost, and water usage are prioritized twice
as much as others, then mild steels become the best alternative. Aluminum alloys are the
second-best, whereas magnesium alloys remain the last choice.

Table 4. Ranking decision score when the CO2 footprint, cost, density and water usage are prioritized
twice as much as others.

Criteria

Strength Yang’s Modulus Cost Density Water Usage CO2 Footprint

Alternatives weights

1 1 2 2 2 2 Rj

Mild steel 0.684 0.909 1.622 0.086 1.666 1.65 0.662

Aluminum Alloys 0.465 0.376 0.896 1.38 0.516 0.718 0.435

Magnesium Alloys 0.37 0.139 0.71 1.838 0.41 0.148 0.362

A similar result is found in the case shown in Table 5, where the strength, Yang’s
modulus, and cost are prioritized twice as much as the others. In this case, mild steel
becomes the best alternative. Aluminum alloys are the second-best, whereas magnesium
alloys remain the last choice.

Table 5. Ranking decision score if the strength, Yang’s modulus, and cost are prioritized twice as
much as the others.

Criteria

Strength Yang’s Modulus Cost Density Water Usage CO2 Footprint

Alternatives weights

2 2 2 1 1 1 Rj

Mild Steel 1.368 1.818 1.622 0.043 0.833 0.825 0.723

Aluminum Alloys 0.93 0.752 0.896 0.69 0.258 0.359 0.432

Magnesium Alloys 0.74 0.278 0.71 0.919 0.205 0.074 0.325

However, if the density is about 3.5 times more important than others, all alternatives
become indifferent (see Table 6). This means that magnesium alloys are the best alternatives
when destiny receives very high importance compared to all other criteria.

Table 6. Ranking decision score if the density is given about 3.5 times importance than the others.

Criteria

Strength Yang’s Modulus Cost Density Water Usage CO2 Footprint

Alternatives weights

1 1 1 3.5 1 1 Rj

Mild Steel 0.684 0.909 0.811 0.1505 0.833 0.825 0.496

Aluminum Alloys 0.465 0.376 0.448 2.415 0.258 0.359 0.508

Magnesium Alloys 0.37 0.139 0.355 3.2165 0.205 0.074 0.513

The above examples show how an informed decision can easily be made using the
presented decision-making approach, even though the relevant datasets presented using
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two-dimensional plots exhibit uncertainty. Remarkably, the subjectivity or preference of
the decision-makers can be documented by reporting the weights, as shown in Tables 4–6.

5. Discussions

The presented decision-making approach can be studied further in different directions.
One of the directions is discussed in this section, as follows.

Calculating the decision score (D) is a critical issue in the proposed decision-making ap-
proach. As defined above (Section 3), the decision score is calculated using Equations (5)–(7).
Nevertheless, the central theme of the decision score is to see whether or not an induced
fuzzy number denoted as T matches the ideal one (denoted “Ideal” in Figure 4). Further,
the induced fuzzy number (T) captures the uncertainty in the compliances calculated using
the graphical information. To garner more insight into this issue, consider three arbitrary
alternatives, A, B, and C, and their induced fuzzy numbers denoted as T(A), T(B), and T(C),
as schematically illustrated in Figure 13.
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Figure 13. Comparing three alternatives using their induced fuzzy numbers.

Alternative A is very close to the maximum compliance (unit). On the other hand,
alternative C is very far from the maximum compliance (unit). The other alternative (B)
stays between A and C. Compared to A and C, B entails a large amount of uncertainty,
i.e., it is widely spread. Therefore, both distance of the induced fuzzy number from the
maximum compliance and its degree of uncertainty must be quantified simultaneously to
develop a more insightful decision score. Consequently, the following functions can be
used to calculate the components of decision score.

D1 = 1−
(

t1 + t2 + t3

3

)
(9)

D2 =
1
2 (t3 − t1)

1
2

(10)

Here, D1 ∈ [0, 1] quantifies the distance of the centroid of an induced triangular fuzzy
number from the maximum compliance (unit), whereas D2 ∈ [0, 1] quantifies the degree of
uncertainty of an induced fuzzy number, which is equal to its area divided by the largest
possible area. The less the value of D1, the better the alternative because the less the value
of D1, the closer the alternative to the maximum compliance. The less the value of D2, the
better the alternative because the less the value of D2, the less the degree of uncertainty. As
a result, a new decision score (E) can be calculated as follows.

E = 1−

√
(D1)2 + (D2)2

√
2

(11)
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Thus, the more the value of E, the better the alternative. Based on this new decision
scoring approach, the arbitrary alternative shown in Figure 13 can be shown in the D2
versus D1 plot as shown in Figure 14.
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The wooden and polymeric materials (case study 1) were reassessed using the new
decision score. The results are shown in Tables 7 and 8 for wooden and polymeric materials,
respectively. As seen in Tables 7 and 8, the new decision score (E) concerning the criterion
“minimize water usage” for both groups of materials are comparable (0.44 and 0.43). This
means that both natural materials and polymers are equally unsustainable in terms of
water usage. This is consistent with the visual inspection of the plot (Figure 7). On the
other hand, the new decision score (E) concerning CO2 footprint is very high (0.70) for the
natural materials compared to that of polymers (0.45). The above results are consistent
with results reported in case study 1. Thus, the decision scores given by D and E can serve
the purpose of making the right decision. It is worth mentioning that E is perhaps a better
decision score compared to D because it considers uncertainty as well as the compliances.

Table 7. Sustainability reassessment of wooden materials.

Decision-Making Parameters

Sustainability Criteria t1 t2 t3 D1 D2 E

Minimize water usage 0.14 0.21 0.32 0.78 0.18 0.44

Minimize CO2 footprint 0.57 0.68 0.88 0.29 0.31 0.70

Table 8. Sustainability reassessment of wooden materials.

Decision-Making Parameters

Sustainability Criteria t1 t2 t3 D1 D2 E

Minimize water usage 0.12 0.23 0.36 0.76 0.24 0.43

Minimize CO2 footprint 0.14 0.26 0.39 0.74 0.25 0.45
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6. Concluding Remarks

The information regarding indicators of SDGs and product life-cycle-based arrange-
ments (e.g., material passport) create a vast information silo of big data. Therefore, making
the right decisions using such big data will play a pivotal role in achieving sustainability.
Since big data is “big”, the relevant datasets, presented in a visual form (a set of two-
dimensional plots), become the decision-relevant information. This necessitates novel
decision-making methods and tools capable of handling two-dimensional plots rather
than numerical data. Furthermore, the methods and tools must accommodate the decision
maker’s preferences. Accordingly, this article presents a decision-making method and a tool
to formally compute the two-dimensional plots of numerical data. The proposed method
and tool can directly extract the decision-relevant information from two-dimensional plots
(generated from big data) and compute the decision scores based on the maximization or
minimization principle (e.g., minimize CO2 emission).

The efficacy of the presented method and tool are shown using two case studies. The
first case study shows that the proposed decision-making method and tool produce reliable
results even though the relevant datasets presented using two-dimensional plots exhibit
uncertainty. In this case study, the datasets regarding two eco-indicators (CO2 footprint and
water usage) of two types of materials (wooden materials and polymers) were plotted using
two scatter plots. The datasets regarding CO2 footprint and water usage of 447 wooden
materials and 244 polymers are presented. As the plots show, both wooden materials and
polymers can be ranked equally regarding water usage. However, as far as CO2 footprint is
concerned, wooden materials are far better than polymers. The parameter of the proposed
decision-making approach, denoted as the decision score, arrives at the same decision
(wooden materials and polymers are indifferent in terms of water usage, but wooden
materials are better than polymers in terms of CO2 emission).

The other case study applies the method and tool for multiple-criteria decision-making.
In particular, this case ranks the three most frequently used metallic materials—mild steel,
aluminum alloys, and magnesium alloys—using graphical information generated from
big data on engineering materials. Six criteria were considered: (1) strength, (2) Yang’s
modulus, (3) destiny, (4) CO2 footprint, (5) water usage, and (6) cost. In this case study,
a parameter denoted as the raking parameter is introduced that aggregates the decision
scores of all criteria for an alternative by considering each criterion’s importance or weight.
It is shown that weight is instrumental in exercising the decision makers’ preferences.

Numerous policymakers, practitioners, and researchers have been acting in a coor-
dinated manner, while remaining independent, to achieve SDGs. SDG-centric activities,
particularly 93 Tier 1, 72 Tier 2, and 62 Tier 3—indicator-centric activities all around the
globe, manifest big data. Making sense of such a huge data silo is essential for ensuring the
degree of fulfillment of SDGs or putting forward the right set of solutions if the fulfillment
is not satisfactory. In such cases, it is most likely that decisions are made from the visualized
big data rather than numerical datasets. Therefore, the presented decision-making method
and tool can contribute to the advancement of big data-related research for achieving SDGs.

In the next phase of this study, a decision support system can be developed to automate
the decision-making approach presented in the previous sections.
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