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Abstract: Every year, biomedical data is increasing at an alarming rate and is being collected from
many different sources, such as hospitals (clinical Big Data), laboratories (genomic and proteomic
Big Data), and the internet (online Big Data). This article presents and evaluates a practical causal
discovery algorithm that uses modern statistical, machine learning, and informatics approaches
that have been used in the learning of causal relationships from biomedical Big Data, which in
turn integrates clinical, omics (genomic and proteomic), and environmental aspects. The learning
of causal relationships from data using graphical models does not address the hidden (unknown
or not measured) mechanisms that are inherent to most measurements and analyses. Also, many
algorithms lack a practical usage since they do not incorporate current mechanistic knowledge. This
paper proposes a practical causal discovery algorithm using causal Bayesian networks to gain a better
understanding of the underlying mechanistic process that generated the data. The algorithm utilizes
model averaging techniques such as searching through a relative order (e.g., if gene A is regulating
gene B, then we can say that gene A is of a higher order than gene B) and incorporates relevant
prior mechanistic knowledge to guide the Markov chain Monte Carlo search through the order. The
algorithm was evaluated by testing its performance on datasets generated from the ALARM causal
Bayesian network. Out of the 37 variables in the ALARM causal Bayesian network, two sets of
nine were chosen and the observations for those variables were provided to the algorithm. The
performance of the algorithm was evaluated by comparing its prediction with the generating causal
mechanism. The 28 variables that were not in use are referred to as hidden variables and they allowed
for the evaluation of the algorithm’s ability to predict hidden confounded causal relationships. The
algorithm’s predicted performance was also compared with other causal discovery algorithms. The
results show that incorporating order information provides a better mechanistic understanding even
when hidden confounded causes are present. The prior mechanistic knowledge incorporated in the
Markov chain Monte Carlo search led to the better discovery of causal relationships when hidden
variables were involved in generating the simulated data.

Keywords: mechanistic understanding; Bayesian analysis; machine learning; statistical data analysis;
big data; systems biology

1. Introduction

The size of biomedical data, as well as the rate at which it is being produced, is in-
creasing dramatically. The biomedical data is also being collected from many different
sources, such as hospitals (clinical Big Data), laboratories (genomic and proteomic Big
Data), and the internet (online Big Data). There is a growing need for statistically predic-
tive causal discovery algorithms that incorporate the biological knowledge gained from
modern statistical, machine learning, and informatics approaches used in the learning of
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causal relationships from biomedical Big Data comprised of clinical, omics (genomic and
proteomic), and environmental components.

While earlier available studies focus on statistical methods to infer causality [1–4],
recent statistical machine learning methods have been introduced which aim at analyzing
big datasets [5–18]. However, given many different types of clinical, genomic, and environ-
mental data, it is rather uncommon to see statistical machine learning methods that utilize
prior knowledge relevant to the mechanisms behind the phenomena which generates those
different data types. The statistical machine learning methods that recognize that there are
many variables which are not collected in the data, but are still related to the mechanisms
which produced the data (hidden variables), are also limited. Furthermore, there is a lack
of statistical methods that evaluate how well the methods perform at inferring causality
when hidden confounded variables are present.

There are many aspects of causality, from its representation (syntax) to its semantics
and many different related concepts to causality, e.g., theory of inferred causation, coun-
terfactual analyses, incomplete interventions, confounding effect, etc. [1,9]. However, in
learning mechanisms from a phenomenon with collected data, the goal is to infer cause
and effect relationships among complicated knitted random variables in the dataset with
reasonable confidence.

Thus, the focus in this study is on the learning of causal relationships among random
variables in the collected data, particularly when using causal Bayesian networks (CBNs).
CBNs are directed acyclic graphs in which each arc is interpreted as a direct causal influence
between a parent node and a child node relative to the other nodes in the network [19].
CBNs consist of a structure (such as an example in Figure 1) and a set of probabilities that
parameterize said structure (not shown). In general, for each variable there is a conditional
probability of that variable given the states of its direct causes. Thus, the probability
associated with Gliomas Grade is P (Gliomas Grade|PTNP1, LPL, EGFR). That is, we
provide the probability distribution over the values of the Gliomas Grade conditioned on
each of the possible expression levels of the genes PTNP1, LPL, and EGFR. For variables
that have no direct causes in the network, a prior probability is specified. The causal Markov
condition [9] specifies the conditional independence relationships which are represented
by a causal network: Let X and Y be variables. Suppose that Y is neither a direct nor an
indirect effect of X. Then X is independent of Y, conditioned on any state of the direct causes
of X. The causal Markov condition permits the joint distribution of the n variables in a CBN
to be factored as follows [19]:

P(x1, x2, . . . , xn|K) =
n

∏
i=1

P(xi|πi, K) (1)

where xi denotes a state of variable Xi, πi denotes a joint state of the parents of Xi, and K
denotes background knowledge (prior probability). Since the initial research for a general
Bayesian formulation for learning causal structure (including latent variables) and parame-
ters from observational data using CBN [20,21], Bayesian causal discovery has become an
active field of research in which numerous advances have been made [1,7,8,10,22,23].

CBNs have been suitable in analyzing Big Data sets consisting of different types of
large data including clinical, genomic, and environmental data [8,12,23–29]. Such causal
statistical models help to provide a more comprehensive understanding of human physi-
ology and disease. More importantly, CBNs have been used as a natural way to express
“causal” knowledge as a graph using nodes (representing random variables) and arcs
(representing “causal” relationships). Indeed, there are many causal models made from
existing causal knowledge—from simple and intuitive causal models (e.g., a model to
predict whether neighbor is out [30], a sprinkler model [1], etc.), to expert causal models
(e.g., a multiple diseases model [31], an ALARM monitoring system [32], etc.). The learning
of causal relationships from data has been discussed in different articles [1,9,33], and this
especially holds true for cases where researchers have used Bayesian Networks for learning
structures [29,34–37]. Also, other algorithms, such as PC [9], K2 [5], and more recently



Big Data Cogn. Comput. 2022, 6, 56 3 of 33

the Bayesian Inference for Directed Acyclic Graphs (BiDAG) [12], have been used to learn
causal relationships from data.
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Earlier structure learning methods concentrated on model selection, where we select a
model M* from

M∗ = argmaxiP(D|Mi) (2)

or
M∗ = argmaxiP(Mi|D) (3)

where we assume we have p number of mutually exclusive models, M1, M2, . . . , Mp [38].
Later methods incorporated model averaging [29], where we summarize how likely a
feature F that is found in a subset of the models and is defined by a set of indices,
f ⊆ {1, 2, . . . , p} where f includes those indices of the models where F is observed. Thus,
in model averaging, we calculate the probability of a feature F as the following:

∑ f P
(

D|M f

)
(4)

or
∑ f PP

(
M f

∣∣∣D) (5)

However, most of the structure learning methods do not address hidden variables.
Since we cannot observe all relevant variables in a natural phenomenon, to better learn
the underlying mechanistic process from Big Data, we need to address and evaluate the
learning of causal relationships with hidden variables.

In this paper, we show that searching through the order (we describe further about
what we mean by “order” in the method section) of variables in CBNs can help provide
a better understanding of the underlying mechanistic process that generated the data
even in the presence of hidden variables. In addition, we propose a novel algorithm in
searching through the order (we call it the PrePrior algorithm) which evidences a promising
performance when attempting to learn the underlying mechanistic process from data
containing hidden variables. The algorithm utilizes model averaging techniques such as
searching through a relative order (e.g., if gene A is regulating gene B, then we can say
that gene A is in a higher order than gene B) and incorporates relevant prior mechanistic
knowledge to guide the Markov chain Monte Carlo (MCMC) search through the order.

2. Methods

Given a CBN structure S and a dataset D, the Bayesian scoring method that assesses
how well the structure fits the given data can be calculated using a closed form [39]:

P(D|S) = ∏n
i=1 ∏qi

j=1

Γ
(

N′ ij
)

Γ
(

N′ ij + Nij
) ∏ri

k=1

Γ
(

N′ ijk + Nijk

)
Γ
(

N′ ijk
) (6)



Big Data Cogn. Comput. 2022, 6, 56 4 of 33

In the above scoring method, Dirichlet uniform parameter priors are used and param-
eter independence is assumed [40]; n represents the number of variables in the structure;
qi represents the number of configurations of the parents for a given variable Xi; and
ri represents the total amount of states for a variable Xi. For example, if Xi is a binary
random variable and it has two binary random variables as direct causes (parents), then
ri is equivalent to two and qi is equivalent to four. Nijk represents the counts for a given
variable Xi under a given parent configuration (indexed by j) and a given state (indexed by
k) for variable Xi. N’ijk represents the Dirichlet uniform prior, which in this case may be
calculated as the following:

N′ijk =
1

riqi
(7)

The number of possible structures increases exponentially with the number of vari-
ables, and so the above formula is sufficient for determining the best BN when the number
of variables in the CBN is small. However, when the number of variables is large, it be-
comes impossible to determine the best structure in this manner. The problem of finding
the best CBN is NP-hard [41], and thus it is not always possible to find the best CBN that
fits the data. This is the key limitation of model selection methods [38] when used as a
means of extending our current mechanistic understanding through the learning of causal
relationships from data.

The algorithm we introduce in this paper utilizes model averaging techniques, such
as searching through a relative order [29] (e.g., cause is in a higher order than effect) and
incorporating prior mechanistic knowledge to guide the MCMC (Markov Chain Monte
Carlo) search through the order. An order describes the relationships between variables
based on describing whether a variable can be a direct cause (parent) for another variable.

Definition 1. (Order �): Xi � Xj iff Xj /∈ PaXi.

With the above definition of the order, we are stating that Xi is considered to be of
a higher order than Xj if, and only if, Xj cannot be found in the group of direct causes
(parents) of Xi. A potential ordering for a list of three variables is <X1, X2, X3>. This order
implies that X1 can be a direct cause (parent) of X2 and/or X3, but X2 and X3 cannot be
direct causes (parents) of X1. Similarly, X2 can be a direct cause (parent) of X3, but X3
cannot be a direct cause (parent) of X2. Note that any given order of random variables can
better summarize mechanistic (causal) relationships than just one structure. For example,
an order <X1, X2, X3> includes the following three structures (Figure 2):
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Orders are useful because, in a manner similar to structures, they can be scored. Since
an order represents a set of structures, it may be scored by summing over all structures
consistent with the given order. This method for scoring an order is not efficient because
it would require that we have a score for all structures that meet a given order. With that
being the case, we consider an alternative method for scoring orders presented by Friedman
and Koller [29], which uses the direct cause (parent) sets of variables. The equation for this
scoring procedure is:

P(D|O) = ∏n
i=1 ∑U∈Ui,

∏qi,U
j=1

Γ
(

N′ ij
)

Γ
(

N′ ij + Nij
) ∏ri

k=1

Γ
(

N′ ijk + Nijk

)
Γ
(

N′ ijk
) (8)

The above equation is an expansion of Bayesian scoring presented by Heckerman [33].
Here, O represents an ordering, Ui,o represents the possible parent-sets for a given variable
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under a given ordering, and qi,U represents the possible configurations of the parents for a
variable i within a parent-set U. All other parameters in the equation are represented in the
same manner as in Equation (6).

The benefit in scoring orders over scoring structures is that in the case where one is deal-
ing with two or more variables, there are more structures than orders. For example, when
the number of variables equals four, there are 543 structures but only 24 different orders.

An MCMC search is used to search through the orders. At any given MCMC search
process, we have a current order (denote it as o) and a proposed order (denote it as o′),
and we decide whether the proposed order will take the place of the current order with a
probability that is returned by a decision function f (o, o′). A proposed order is generated by
either applying a local perturbation (i.e., swapping two variables in an order: for example,
<X1, X2 . . . Xi . . . Xj . . . Xn> to <X1, X2 . . . Xj . . . Xi . . . Xn>), or a global perturbation (i.e.,
aka a cutting the deck, swapping groups of variables in an order: for example, <X1, X2 . . .
Xi, Xi+1 . . . Xn> to < Xi+1 . . . Xn, X1, X2 . . . Xi >). Initially, a random order is generated.

Friedman and Koller [29] propose the following two algorithms for MCMC search
with different f (o, o′):

o Random Algorithm

� Uses f (o, o′) = min
[
1, P(D|o′)

P(D|o)

]
o Prior Algorithm

� Uses f (o, o′) = min
[
1, P(D|o′)P(o′ |o)

P(D|o)P(o|o′ )

]
where o, o′, and D represent the current order that we are considering: a proposed order
and a dataset, respectively.

We further propose a new algorithm called the PrePrior Algorithm with the following
MCMC search with the same f (o, o′) as the Prior algorithm with an additional step:

o PrePrior Algorithm

� Uses P(o′|o) based on user defined prior to sample o′

� Uses f (o, o′) = min
[
1, P(D|o′)P(o′ |o)

p(D|o)P(o|o′ )

]
Note that PrePrior algorithm generates proposed orders based on the prior, P(o) and

P(o′) that the user provides.
User’s Prior of an Order. To specify a prior of mechanistic causal knowledge in terms

of an order o (if X is known to cause Y, we say X has a higher order than Y, i.e., X � Y) or
P(o), we assume the following:

i. If no prior is provided, a uniform prior of any given order is assumed. For example, for
a pairwise order of X and Y, if no prior is provided then P(X ≺ Y) = P(Y ≺ X) = 0.5.
In general, for n variables a uniform prior for any order o is P(o) = 1

n! .
ii. The prior of an order is specified as the probability of how likely it is compared to the

uniform prior. For example, if prior publications show gene Y is regulating gene X,
a user might specify P(X ≺ Y) = 0.9 and if there have been studies suggesting that
gene Z is regulating gene W, a user might specify P(W ≺ Z) = 0.6.

For mechanism discovery, the correct discovery of the generating structure is the
most important aspect of the algorithm. Datasets consisting of 50 and 1000 simulated
observational cases from the ALARM Bayesian network were generated [27]. To see how
well the algorithm correctly discovered the generating structure in the presence of hidden
variables, we have selected two sets of nine variables each selected from 37 variables in the
network. The first variable set is referred to as Close 9 variables (C9) and was created by
selecting variables that were closely situated in the network (Figure 3a, all the grayed-out
variables are hidden and not selected). The second variable set is referred to as Sparse
9 variables (S9) and was created by selecting variables that were relatively situated further
in the network (Figure 3b, all the grayed-out variables are hidden and not selected).
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Another reason we have selected these nine variables was to see how well the causal
discovery algorithms were predicting the four pairwise relationships shown in Figure 4.
Distinguishing these four pairwise relationships is the first step in better understanding
the mechanistic process involved in generating these datasets.

Different numbers of pairwise causal relationships are found in the Close 9 variables
(C9) and Sparse 9 variables (S9) (Table 1). For example, in C9, TPR and VentLung are not
confounded nor causally related (denoted as ØX Y in Figure 4a), and TPR and HR are not
confounded and causally related (denoted as ØX→Y in Figure 4b). In S9, ExpCO2 and
Catechol are confounded but not causally related (denoted as HX Y in Figure 4c, ArtCO2
being a variable as H), and ArtCO2 and VentAlv are confounded and causally related
(denoted as HX→Y in Figure 4d where VentLung takes the role of H).
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Figure 4. Four pairwise causal relationships. H represents a variable that is shaded, meaning that it is
present in the ALARM network but not introduced in the datasets using C9 and S9. Not confounded
and not causally related is denoted as ØX Y in (a). Not confounded and causally related is denoted
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causally related is denoted as HX→Y in (d).

Table 1. Number of pairwise causal relationships in Close 9 variables (C9) and Sparse 9 variables
(S9). H represents a variable that is shaded. (a) Close 9 variables (C9). (b) Sparse 9 variables (S9).

(a)

Pairwise
Relationship ØX Y ØX→Y HX Y HX→Y

Count 14 8 4 10

(b)

Pairwise
Relationship ØX Y ØX→Y HX Y HX→Y

Count 7 20 6 3

Two datasets were generated from each of the two sets of variables. Two of the datasets
had 50 observational cases each and were named D50C9 and D50S9 because they were
generated by the C9 and S9 sets of variables, respectively. The other two datasets had
1000 observational cases each and were named D1KC9 and D1KS9 because they were
generated by the C9 and S9 sets of variables, respectively. Many biological mechanistic
networks are not completely connected, i.e., each variable has limited (e.g., less than five)
causes. As a result, we have limited the number of possible parents to five and scored all
the possible orders using Equation (8). It took roughly one month to score all of the possible
orders for the four datasets. The dataset of results is referred to as Dataset Global BDe Best
Order. Dataset Global BDe Best Order contains information on all of the scores for all of the
possible orders, and therefore we know which is the best order (and the best Bayesian
networks structure) that will be identified if the BDe metric [5] (similar to Equation (8)) is
used given the dataset.

The Random, Prior, and PrePrior algorithms were independently ran three times on
D50C9 and D50S9 for 1 h, 2 h, and 4 h; and on D1KC9 and D1KS9 for 2 h, 4 h, and 16 h. We
have used five Linux machines to run in parallel of 522 total h (over 21 equivalent days)
of runs.

The predictive performance is calculated as a pairwise causal distance from either
generating the structure (denoted it as SG and shown in Figure 5) or the Dataset Global
BDe Order. For each variable pair of X and Y, let the underlying relationship between X
and Y be denoted as RX,Y where RX,Y ∈ {X → Y, X ← Y, X(none)Y}. Let the likelihood
score of RX,Y assessed from either the generating structure and Dataset Global BDe Order
as PG(RX,Y) and PG(D|RX,Y) respectively, where D ∈ {D50C9, D50S9, D1KC9, D1KS9}.
Note that we calculate.

PG(RX,Y) =

{
1 i f RX,Y ∈ SG
0 i f RX,Y /∈ SG

(9)
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and
PG(D|RX,Y) = ∑o∈O ∑So

δSo P(D|So)P(D|o) (10)

δSo =

{
1 i f RX,Y ∈ So
0 i f RX,Y /∈ So

(11)

where O is the set of orders that satisfy ∑O P(D|O)
∑ΦO

P(D|ΦO)
> 0.99 and So is the set of structures

that satisfy an order o ∈ O and ∑So P(D|So)

∑ΦSo
P(D|ΦSo )

> 0.99 for all possible orders (denote them as

ΦO) and all possible structures that satisfies an order o ∈ O (denote them as ΦSo ).
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Additionally, we calculate PS
G (D|RX,Y).

PS
G(D|RX,Y) = ∑S δSP(D|S) (12)

δS =

{
1 i f RX,Y ∈ S
0 i f RX,Y /∈ S

(13)

S is the set of structures that satisfies ∑S P(D|S)
∑ΦS

P(D|ΦS)
> 0.99 for all possible structures

(denote them as ΦS) from all possible orders.
We use PS

G(D|RX,Y) and PG(D|RX,Y) for all X and Y to generate a consensus causal
structure by drawing arcs between X and Y with the thickest arc when PS

G(D|RX,Y) or
PG(D|RX,Y) are above 0.9999, and with the thinnest arc when PS

G(D|RX,Y) or PG (D|RX,Y)
are close to 0.0001. If PS

G(D|X→Y) and PS
G(D|Y→X) both are less than 0.0001, then no

arcs are drawn between X and Y.
We first compare generating causal structure and Dataset Global BDe Best Order by

calculating the following:

∑RX,Y
(PG(RX,Y)− PG(D|RX,Y)) (14)

∑RX,Y

(
PG(RX,Y)− PS

G(D|RX,Y)
)

(15)

These results will show us how the BDe metric approximates the generated causal
structure given the generated datasets. In addition to comparing the predictive ability of
these algorithms, we compared the causal structure predictive ability of the algorithms that
use BDe metric with the Dataset Global BDe Best Order.
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We report each Dataset Global BDe Best Order prediction using a Markov blanket of a
variable (Catechol) appearing both from Close 9 variables (C9) and Sparse 9 variables (S9)
and compared that with the Markov blanket of the Catechol from the generating structure.

Denote the probability of RX,Y predicted from an algorithm as PA(D|RX,Y) and
PS

A(D|RX,Y). Note that PA(D|RX,Y) is calculated the same way we calculated PG(D|RX,Y)
described above. We report the distance from the generating structure as

∑RX,Y
(PG(RX,Y)− PA(D|RX,Y)) (16)

∑RX,Y

(
PG(RX,Y)− PS

A(D|RX,Y)
)

(17)

and the distance from the Dataset Global BDe Order as

∑RX,Y
(PG(D|RX,Y)− PA(D|RX,Y)) (18)

∑RX,Y

(
PS

G(D|RX,Y)− PS
A(D|RX,Y)

)
(19)

Note here we consider indirect causation to assess RX,Y, i.e., we check whether X ap-
pears as an ancestor of Y (i.e., repeatedly applying parent-of(Y) function–parent-of(parent-
of(Y)), parent-of(parent-of(parent-of (Y))) . . . ), or whether Y appears as an ancestor of X in
the overall network.

We report how well algorithms predict the Markov blanket of each variable in Close
9 variables (C9) and Sparse 9 variables (S9) (denote all Markov Blankets as AM) and compare
with the Markov blanket of the variable from the Dataset Global BDe Best Order (denote all
Markov Blankets as GM) by calculating the following distance:

∑gM∈GM ∑aM∈AM
d(gM, aM) (20)

d(gM, aM) =


|PG(D|gM)− PA(D|aM)| i f gM ≡ aM
PG(D|gM) i f gM /∈ AM
PA(D|aM) i f aM /∈ GM

0 othewise

(21)

∑gM∈GM ∑aM∈AM
dS(gM, aM) (22)

dS(gM, aM) =


∣∣PS

G(D|gM)− PS
A(D|aM)

∣∣ i f gM ≡ aM
PS

G(D|gM) i f gM /∈ AM
PS

A(D|aM) i f aM /∈ GM
0 othewise

(23)

Note that PG(D|gM) and PA(D|aM) can be calculated by incorporating the order weight
(as we calculated PG(D|RX,Y) or PA(D|RX,Y) by multiplying P(D|O)) and PS

G(D|gM) and
PS

A(D|aM) can be calculated by not incorporating the order weight (as we calculated
PS

G(D|RX,Y) or PS
A(D|RX,Y) by not multiplying P(D|O)).

We also report all algorithms’ predicted performance, as how well they predict four
causal pairwise relationships–ØX Y, ØX→Y, HX Y, and HX→Y–introduced in Table 1 by
comparing the algorithm’s prediction of RX,Y ∈ { X→Y, X←Y, X(none)Y} with the true
underlying relationships TX,Y ∈ {ØX Y, ØX→Y, HX Y, HX→Y}. In addition to the predictive
performance, we also report the following for each RX,Y and for each TX,Y:

PA(RX,Y|TX,Y) =
∑X,Y δTX,Y PA(D|RX,Y)

∑X,Y δTX,Y

(24)

PS
A(RX,Y|TX,Y) =

∑X,Y δTX,Y PS
A(D|RX,Y)

∑X,Y δTX,Y

(25)
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δTX,Y =

{
1 i f true relationship is TX,Y
0 i f true relationship is not TX,Y

(26)

where ∑X,Y δTX,Y is the number of underlying true relationships (i.e., counts in Table 1).
Finally, we report the percentage of the algorithm’s most probable prediction of RX,Y given
the true underlying true relationships TX,Y by calculating the following:

CA(RX,Y|TX,Y) =
∑X,Y δRX,Y ,TX,Y

∑X,Y δTX,Y

(27)

δRX,Y ,TX,Y =

{
1 i f true relationship is TX,Y and RX,Y ≡ argmaxrX,Y PA(D|rX,Y)
0 otherwise

(28)

CS
A(RX,Y|TX,Y) =

∑X,Y δ′RX,Y ,TX,Y

∑X,Y δTX,Y

(29)

δ′RX,Y ,TX,Y
=

{
1 i f true relationship is TX,Y and RX,Y ≡ argmaxrX,Y PS

A(D|rX,Y)
0 otherwise

(30)

δTX,Y =

{
1 i f true relationship is TX,Y
0 i f true relationship is not TX,Y

(31)

We have also run other causal discovery algorithms, such as PC [9], K2 [5], and
BiDAG [12] on the same datasets, i.e., 50 and 1000 cases for Sparse 9 variables (in D50S9
and D1KS9); and 50 and 1000 cases for Close 9 variables (in D50C9 and D1KC9). Since
BiDAG could only incorporate binary random variables for learning, we converted all
the variables in the datasets as continuous variables. This was done by adding normal
noise with µ = 0, δ = 0.01 to each measurement of discrete data. The reason we have
used these parameters for noise was that they have given the most consistent conditional
independencies among the variables when we compared the original discrete data and
converted continuous data.

3. Results

Figure 6 reports the highest scored structure reported by BDe scores for each dataset.
It is interesting to note that even with a large number of samples and a significantly more
likely Global BDe Structure, i.e., for 1000 cases (D1KS9) and its BDe percentage structure
score of >99%, it predicts incorrect mechanisms, e.g., HRBP is predicted as a cause of CO
and CO is predicted as a cause of LVFailure (Figure 6c). However, the generating structure
shows that HRBP is not a cause of CO (they are confounded by Catechol), and LVFailure is
a cause of CO (Figure 5a). Another interesting result to notice is that even with many cases
(i.e., 1000 cases), the highest BDe scored structure may obtain a mere 4% of the total BDe
structure score.

Figure 7 shows consensus structures using PS
G(D|RX,Y) (without incorporating the

order weight) for D50S9, D50C9, D1KS9, and D1KC9. The arcs thicknesses are based
on PS

G(D|X→Y) or PS
G(D|Y→X). If PS

G(D|X→Y) is displayed as a percentage, then
PS

G(D|Y→X) is also displayed as a percentage in the parentheses. If PS
G(D|X→Y) and

PS
G(D|Y→X) both are less than 0.0001, then no arcs are drawn between X and Y. >99 or ~0

indicates where the pairwise causal relationship probability is greater than 0.9999 or less
than 0.0001, respectively. Similarly, Figure 8 shows consensus structures using PG(D|RX,Y)
(with incorporating the order weight) for D50S9, D50C9, D1KS9, and D1KC9.
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The Global BDe structure using D50S9 was marginally better (maximum likelihood of
0.1423) than other structures. All of the models incorrectly identified causal effects from
LVFailure to VentAlv; from Catechol to ExpCO2; and from HRBP to CO when compared
to the generating structure (Figure 5a). In D50S9, the consensus structures generated
with the order weight (Figure 8a) and without the order weight (Figure 7a) were different
than the Global BDe structure (Figure 6a). A significant difference between the consensus
structures generated with the order weight (Figure 8a), and without the order weight
(Figure 7a), was a causal relationship between Catechol to ExpCO2. The consensus structure
generated with the order weight predicted PG(D|ExpCO2 → Catechol) = 0.4803 as the
most probable relationship; however, the consensus structure generated without the order
weight predicted PG(D|Catechol→ ExpCO2) = 0.4409 as the most probable relationship,
as the generating structure (Figure 3a) showed that Catechol and ExpCO2 had no direct
causal influence between each other. It is also noteworthy that one of their common causes,
VentAlv, was correctly predicted to be a common cause in both consensus structures. This
showed that, to some extent, we can use the disagreement between the consensus structures
generated with and without the order weight to identify confounded relationships without
any direct causal relationship.
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Figure 7. Consensus structure without the order weight for (a) D50S9, (b) D50C9, (c) D1KS9, and
(d) D1KC9. Thicknesses of the arcs are based on the pairwise causal relationship probability that
is presented as a label in percentage (the reverse causal relationship probability is presented in the
parentheses). >99 and ~0 represent pairwise causal relationship probability greater than 0.9999 and
less than 0.0001, respectively.
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pared to the same 50 cases, D50S9, no significant differences were observed between the 
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Figure 8. Consensus structure with the order weight for (a) D50S9, (b) D50C9, (c) D1KS9, and
(d) D1KC9. Thicknesses of the arcs are based on the pairwise causal relationship probability that
is presented as a label in percentage (the reverse causal relationship probability is presented in the
parentheses). >99 and ~0 represent pairwise causal relationship probability greater than 0.9999 and
less than 0.0001 respectively.

The Global BDe structure using D50C9 was marginally better (maximum likelihood
of 0.1571) than other structures. In D50C9, the consensus structures generated with the
order weight (Figure 8b) or without the order weight (Figure 7b) were slightly different
than the Global BDe structure (Figure 6b). All models incorrectly identified causal effects
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from Anaphylaxis to ArtCO2; from InsuffAnesth to ArtCO2; and predicted a reversed causal
direction of ArtCO2 and ExpCO2 compared to the generating structure (Figure 5b). Com-
pared to the same 50 cases, D50S9, no significant differences were observed between the
consensus structures generated with the order weight (Figure 8b) and without the order
weight (Figure 7b).

Only in D1KS9, both consensus structures generated with (Figure 8c) or without the
order weight (Figure 7c) agreed with the Global BDe structure (Figure 6c). This is not
surprising because the Global BDe structure was significantly better (>0.9999) than any
other structures. However, all models incorrectly predicted the following three causal
relationships: between CO and LVFailure (reversed causal prediction); between Intubation
and ExpCO2 (missing causal prediction); and added between Catechol and BP (unnecessary
causal prediction) compared to the generating structure (Figure 5a).

The Global BDe structure using D1KC9 was marginally better (maximum likelihood
of 0.0403). Among the four datasets, it resulted in the lowest maximum likelihood, making
D1KC9 the most difficult dataset to learn causal relationships from. All models incorrectly
identified a causal effect from ArtCO2 to SaO2 (Figure 5b). In D1KC9, the consensus struc-
tures generated with the order weight (Figure 8d) and without the order weight (Figure 7d)
were different than the Global BDe structure (Figure 6d). A significant difference between
the consensus structures generated with the order weight (Figure 8d) and without the
order weight (Figure 7d) was the prediction of a causal relationship between VentLung and
ArtCO2. The consensus structure generated with the order weight predicted PG(D|ArtCO2
→ VentLung) = 0.5556 as being the most probable relationship; however, the consensus
structure generated without the order weight predicted PG(D|VentLung → ArtCO2) =
0.6154 as being the most probable relationship. As the generating structure (Figure 3b)
shows VentLung and ArtCO2 have a direct causal influence between each other and their
common cause, Intubation is hidden in the dataset. This shows how difficult it is to learn re-
liable causal relationships among the upstream variables in which most of the confounded
causes are hidden in the dataset.

We believe all these results are due to the omission of 28 variables and random
sampling effects. Also, as the later results will show, with 50 cases, it is more difficult to
learn the generating structure of C9, and with 1000 cases it is more difficult to learn the
generating structure of S9.

Table 2 shows all the orders (from the total of 9! = 362,880 orders) that received a
combined percentage score of >99%. Interestingly, the means were all 7.1429%. However,
depending on the dataset, the standard deviation of the scores were different. The data
sampled from S9 tended to show tighter percentage scores among the orders than the data
sampled from C9. This means that order scores from S9 had less impact than those from C9.

Table 2. Mean and Standard Deviation (S.D.) of the Dataset Global BDe Best Order percentage score.

Dataset D50S9 D50C9 D1KS9 D1KC9

Mean 7.1429% 7.1429% 7.1429% 7.1429%

S.D. 0.001470 0.00203 4.48 × 10−8 8.37 × 10−6

Table 3 summarizes our claim that incorporating the ordering results can help us
gain mechanistic knowledge. According to the distances, the BDe score had difficulties in
learning the true underlying mechanisms from the generating structure with 50 cases of C9.
However, by adding more samples, i.e., with 1000 cases of C9, we improved the ability to
learn the true underlying mechanisms from the generating structure.
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Table 3. Structure distances between the generating causal structure and the Dataset Global BDe
Best Order.

Dataset D50S9 D50C9 D1KS9 D1KC9

Without the order weight 18.2123 21.6760 18.0000 14.2517

With the order weight 17.2238 21.6370 18.0000 13.5725

Overall, the results shown in Table 3 illustrate that order weight improves in learning
the true underlying mechanisms from the generating structure. In the 1000 cases of S9
(D1KS9), as it was mentioned earlier (shown in Figure 6c), there was only one structure
that was significant in terms of BDe score (i.e., >99% of the total BDe structure score).
Because of this fact, all orders that were compliant with the dominating structure had a
very similar score with a very tight margin, resulting in almost all the same order score
(Table 2). Therefore, in this situation we can see why the order score will not improve in
learning the true underlying mechanisms from the generating structure.

Tables 4 and 5 compare the structure distances between (1) the algorithm’s predicted
structures and the generated structures (Generated δ), and (2) the algorithm’s predicted
structures and the best BDe structure scores (Global BDe δ). In some sense, Generated δ

measures how well the algorithm learns the underlying mechanism from a phenomenon,
and Global BDe δ measures how well the algorithm estimates the best BDe (or BGe) score
from the sample.

Table 4. Structure distances without the order weight. (a) 50 cases datasets. Dark shaded cells
represent the lowest distance or variance in each timed run for the dataset; Bright shaded cells
represent the second lowest distance or variance in each timed run for the dataset. (b) 1000 cases
datasets. Dark shaded cells represent the lowest distance or variance in each timed run for the dataset;
Bright shaded cells represent the second lowest distance or variance in each timed run for the dataset.

(a)

D50S9 D50C9

Generated δ Global BDe δ Generated δ Global BDe δ

Mean Var Mean Var Mean Var Mean Var

1 h

Random 20.14 11.175 2.91 25.420 22.31 0.302 12.89 124.57

P

SC 24.71 9.612 11.40 44.969 24.25 7.271 20.32 6.456
WC 22.53 14.353 8.24 60.001 25.80 7.252 21.82 6.606
SI 22.50 0.898 8.67 16.204 25.85 7.491 21.69 6.102
WI 23.18 0.746 7.68 2.070 27.55 0.029 23.43 0.005

PP

SC 18.21 0.000 0.00 0.000 22.32 0.315 12.95 125.70
WC 18.21 0.000 0.00 0.000 22.65 0.001 19.17 0.077
SI 17.36 2.204 1.46 6.416 22.34 0.327 13.00 126.82
WI 18.21 0.000 0.00 0.000 22.34 0.327 13.00 126.82

2 h

Random 18.21 0.000 0.00 0.000 21.68 0.000 0.00 0.000

P

SC 18.13 0.019 0.15 0.071 22.67 0.000 19.51 0.000
WC 18.14 0.016 0.14 0.059 22.68 0.000 19.29 0.143
SI 18.14 0.016 0.14 0.059 22.67 0.000 19.51 0.000
WI 17.36 2.204 1.46 6.416 22.68 0.000 19.29 0.143

PP

SC 18.21 0.000 0.00 0.000 21.68 0.000 0.00 0.000
WC 18.21 0.000 0.00 0.000 21.68 0.000 0.00 0.000
SI 18.21 0.000 0.00 0.000 21.68 0.000 0.00 0.000
WI 18.21 0.000 0.00 0.000 21.68 0.000 0.00 0.000
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Table 4. Cont.

(a)

D50S9 D50C9

Generated δ Global BDe δ Generated δ Global BDe δ

Mean Var Mean Var Mean Var Mean Var

4 h

Random 18.21 0.000 0.00 0.000 21.68 0.000 0.00 0.000

P

SC 18.21 0.000 0.00 0.000 21.68 0.000 0.00 0.000
WC 18.21 0.000 0.00 0.000 22.32 0.315 12.95 125.70
SI 18.21 0.000 0.00 0.000 22.00 0.317 6.46 125.18
WI 18.21 0.000 0.01 0.001 21.68 0.000 0.00 0.000

PP

SC 18.21 0.000 0.00 0.000 21.68 0.000 0.00 0.000
WC 18.21 0.000 0.00 0.000 21.68 0.000 0.00 0.000
SI 18.21 0.000 0.00 0.000 21.68 0.000 0.00 0.000
WI 18.21 0.000 0.00 0.000 21.68 0.000 0.00 0.000

BiDAG 48.00 8.000 58.94 8.957 39.00 2.000 44.24 3.068
K2 28.00 - 14.46 - 44.00 - 46.16 -
PC 40.00 - 50.98 - 33.00 - 32.85 -

(b)
D1KS9 D1KC9

Generated δ Global BDe δ Generated δ Global BDe δ

Mean Variance Mean Variance Mean Variance Mean Variance

2 h

Random 39.68 58.607 42.37 71.345 25.83 201.870 26.68 200.887

P

SC 33.11 285.037 28.44 377.926 9.14 8.136 10.86 2.249
WC 33.81 78.699 42.54 26.088 25.20 243.398 25.39 223.036
SI 40.67 37.333 36.00 156.000 13.52 19.847 17.25 36.087
WI 36.67 65.333 46.00 12.000 25.34 253.669 25.40 278.016

PP

SC 37.56 37.926 36.44 17.926 20.24 103.441 24.50 70.396
WC 36.00 300.000 33.78 509.481 12.79 37.146 16.07 20.011
SI 35.33 341.333 35.33 645.333 27.45 271.048 29.21 236.507
WI 45.11 6.370 45.85 36.067 24.92 263.521 27.72 284.627

4 h

Random 41.83 14.083 40.17 116.083 13.33 35.665 14.84 92.436

P

SC 39.00 19.000 41.00 39.000 23.34 70.611 25.36 180.337
WC 44.00 4.000 44.67 17.333 25.01 276.117 25.79 303.470
SI 38.61 11.122 42.77 76.699 23.80 259.143 26.79 214.084
WI 39.39 5.106 39.33 105.333 20.45 95.313 21.83 79.829

PP

SC 38.00 16.000 42.67 57.333 19.59 400.968 24.97 301.929
WC 36.37 32.514 37.12 25.046 21.31 51.338 22.20 67.272
SI 38.00 16.000 41.11 18.370 26.79 179.473 27.00 205.282
WI 38.67 25.333 38.00 100.000 26.79 179.473 27.00 205.282

16 h

Random 37.44 17.926 37.72 48.898 11.11 3.567 9.43 9.872

P

SC 38.76 10.313 32.90 37.027 14.69 22.697 17.57 62.939
WC 44.67 1.333 48.57 10.122 13.95 16.385 18.71 13.462
SI 39.33 17.333 39.00 73.000 14.44 28.325 19.52 2.893
WI 29.67 140.333 29.67 364.333 15.46 43.441 17.66 9.317

PP

SC 43.00 3.000 49.67 16.333 14.39 15.414 14.43 17.557
WC 40.00 28.000 41.67 58.333 16.43 9.102 15.33 5.494
SI 32.37 174.601 29.03 651.995 23.44 225.689 25.63 158.151
WI 44.22 9.481 46.89 37.926 12.24 8.376 13.33 57.693

BiDAG 40.00 0.000 28.00 0.000 17.00 18.000 18.35 8.960
K2 18.00 - 0.00 - 66.00 - 60.37 -
PC 41.00 - 48.00 - 30.00 - 24.27 -

P: Prior, PP: PrePrior, SC: Strong Correct, WC: Weak Correct, SI: Strong Incorrect, WI: Weak Incorrect.
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Table 5. Structure distances with the order weight. (a) 50 cases datasets. Dark shaded cells represent
the lowest distance or variance in each timed run for the dataset; Bright shaded cells represent the
second lowest distance or variance in each timed run for the dataset. (b) 1000 cases datasets. Dark
shaded cells represent the lowest distance or variance in each timed run for the dataset; Bright shaded
cells represent the second lowest distance or variance in each timed run for the dataset.

(a)
D50S9 D50C9

Generated δ Global BDe δ Generated δ Global BDe δ

Mean Var Mean Var Mean Var Mean Var

1 h

Random 19.64 30.35 5.81 51.162 21.70 0.005 1.48 1.493

P

SC 30.14 60.89 19.72 120.601 23.77 11.813 8.08 33.905
WC 19.04 5.786 6.56 15.904 24.70 16.125 9.96 18.692
SI 21.06 6.438 8.61 7.391 24.38 5.997 12.28 10.007
WI 21.56 5.154 8.72 12.071 26.15 10.588 12.91 57.855

PP

SC 16.86 0.097 0.84 0.454 21.88 0.090 4.46 34.262
WC 16.95 0.073 0.63 0.342 21.80 0.011 3.73 7.171
SI 16.32 0.697 1.97 3.170 21.99 0.115 6.74 44.955
WI 16.86 0.027 0.82 0.107 21.90 0.084 5.20 31.125

2 h

Random 16.53 0.012 1.53 0.055 21.63 0.000 0.07 0.000

P

SC 16.20 0.079 2.12 0.341 21.94 0.001 5.67 0.502
WC 16.33 0.022 2.13 0.167 21.97 0.030 6.64 11.473
SI 16.29 0.003 2.05 0.014 21.96 0.015 6.15 4.471
WI 16.04 0.172 2.61 0.788 21.96 0.029 6.20 14.410

PP

SC 17.04 0.024 0.43 0.111 21.63 0.000 0.05 0.000
WC 17.04 0.025 0.43 0.105 21.62 0.000 0.07 0.000
SI 17.04 0.024 0.43 0.112 21.63 0.000 0.06 0.000
WI 17.03 0.101 0.43 0.453 21.64 0.001 0.09 0.002

4 h

Random 16.56 0.001 1.47 0.003 21.63 0.000 0.05 0.000

P

SC 16.56 0.001 1.47 0.003 21.65 0.000 0.08 0.000
WC 16.52 0.007 1.56 0.030 21.72 0.005 1.35 1.645
SI 16.54 0.014 1.52 0.057 21.67 0.002 0.49 0.498
WI 16.40 0.072 1.82 0.314 21.64 0.000 0.08 0.000

PP

SC 17.22 0.000 0.04 0.000 21.62 0.000 0.06 0.000
WC 17.22 0.000 0.04 0.000 21.63 0.000 0.05 0.000
SI 17.22 0.000 0.05 0.000 21.63 0.000 0.07 0.000
WI 17.22 0.000 0.04 0.000 21.64 0.000 0.06 0.000

BiDAG 48.00 8.000 58.94 8.957 39.00 2.000 44.24 3.068
K2 28.00 - 14.46 - 44.00 - 46.16 -
PC 40.00 - 50.98 - 33.00 - 32.85 -

(b)
D1KS9 D1KC9

Generated δ Global BDe δ Generated δ Global BDe δ

Mean Variance Mean Variance Mean Variance Mean Variance

2 h

Random 39.59 42.692 42.97 56.086 25.56 209.278 27.13 217.735

P

SC 33.11 285.037 28.44 377.927 8.41 4.901 10.99 0.078
WC 34.03 76.580 42.53 27.008 25.61 226.015 26.49 246.942
SI 40.22 46.815 35.33 185.334 13.08 25.578 17.13 56.053
WI 36.67 65.333 46.00 12.000 25.27 243.761 26.92 279.100

PP

SC 38.00 47.967 36.95 26.069 20.10 105.759 25.59 77.767
WC 35.10 273.648 33.43 489.516 12.76 37.207 15.97 35.531
SI 35.33 341.333 35.33 645.333 26.50 291.276 29.65 294.053
WI 43.87 17.647 45.25 52.435 25.21 252.008 28.56 306.454
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Table 5. Cont.

(b)
D1KS9 D1KC9

Generated δ Global BDe δ Generated δ Global BDe δ

Mean Variance Mean Variance Mean Variance Mean Variance

4 h

Random 42.10 13.594 40.57 120.587 12.87 39.938 15.80 100.781

P

SC 39.00 19.000 41.00 39.000 23.32 71.322 26.40 192.191
WC 44.00 4.000 44.67 17.333 25.14 271.993 26.98 289.026
SI 37.43 5.247 41.73 79.882 23.18 279.931 27.16 239.742
WI 39.42 5.003 39.33 105.333 18.50 12.703 21.95 40.858

PP

SC 38.00 16.000 42.67 57.333 21.03 80.477 22.92 77.419
WC 34.84 28.731 35.45 22.966 19.69 398.657 25.21 327.081
SI 38.67 17.333 42.00 16.000 21.20 48.632 23.62 67.978
WI 39.11 33.037 38.44 113.926 26.85 177.831 28.76 188.909

16 h

Random 37.10 21.481 37.85 50.113 10.50 9.386 10.13 19.393

P

SC 38.50 20.920 33.91 55.929 14.37 25.397 18.40 64.781
WC 44.93 0.657 48.80 12.263 14.04 15.646 19.26 14.133
SI 39.24 18.301 39.14 69.670 14.39 28.542 19.90 5.251
WI 29.27 157.213 29.27 390.813 16.17 39.229 18.72 11.306

PP

SC 43.00 3.000 49.67 16.333 14.50 16.538 15.93 15.372
WC 40.45 36.578 42.11 70.072 16.51 7.749 16.57 7.196
SI 32.20 173.354 28.87 647.190 24.20 244.548 26.97 221.240
WI 44.22 9.489 46.89 37.936 11.36 13.995 14.00 47.746

BiDAG 40.00 0.000 28.00 0.000 17.00 18.000 18.35 8.960
K2 18.00 - 0.00 - 66.00 - 60.37 -
PC 41.00 - 48.00 - 30.00 - 24.27 -

P: Prior, PP: PrePrior, SC: Strong Correct, WC: Weak Correct, SI: Strong Incorrect, WI: Weak Incorrect.

In 50 cases spanning Tables 4a and 5a, it is clear that all the MCMC ordering algorithms
(Random, Prior, and PrePrior) outperformed constrained variant algorithms (BiDAG, K2,
and PC) in terms of Generated δ and Global BDe δ with datasets D50S9 and D50C9. Also,
in general, algorithms with the order weight predicted better in generating structures (i.e.,
lower Generated δ and Global BDe δ,) with a higher confidence (i.e., lower variance.)

With the maximum hours (4 h) run, Random and PrePrior converged on their predic-
tions; however, Prior showed some variance in performance. We note that with a lesser
number of hours (1 and 2 h), PrePrior showed better performances (better predictions with
confidence, i.e., less variance) than Random in D50S9 and comparable predictions in D50C9
(in 1 h run, Random Generated δ was 22.31 with variance of 0.302, and PrePrior Weak
Correct achieved Generated δ 22.65 with a very low variance, 0.001 (Table 4a)).

The structure distances of 1000 cases are shown in Tables 4b and 5b. K2 showed the
best Generated δ and Global BDe δ in D1KS9; however, its performance was the lowest
among all the algorithms in D1KC9. We believe this was because, in D1KS9, as it was
mentioned earlier (shown in Figure 6c), there was only one structure that was significant in
terms of its BDe score (>99% of the total BDe structure scores).

The BiDAG performance in Global BDe δ in D1KS9 was the second best (next to K2′s);
however, Generated δ in D1KS9 was either comparable or worse than the MCMC ordering
algorithms (Random, Prior, and PrePrior). It seems MCMC ordering algorithms need more
than 16 h to converge, although structure distances were generally decreasing in D1KC9,
however, that trend is questionable in D1KS9.

We could not find a general pattern as we saw in 50 cases that better predicted the
generating structures (lower Generated δ and Global BDe δ) with a higher confidence, i.e.,
a lower variance with order weight in 1000 cases. We believe this fact has to do with the
results that we mentioned earlier, i.e., that MCMC ordering algorithms needs more than
16 h to converge.

With the outstanding performance of K2 in D1KS9 reported earlier, however, we must
also mention the outstanding performance of the Prior algorithm with the Strong Correct
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prior, which achieved a better performance that was statistically significant in a mere 2h
run in D1KC9. In D1KC9, all algorithms showed larger than ten for Generated δ, except for
Prior. Prior achieved lower than ten for Generated δ with a high confidence (variance of
8.136; significantly lower than the second lowest variance of 18.0 from BiDAG).

Tables 6 and 7 compare the Markov blanket distances between the algorithm’s pre-
dicted Markov blanket of each variable in the structures (for short, we refer it to MB) and
MB in the generated structure (Generated δ), as well as the distance of the algorithm’s
predicted MB and the MB of the best BDe structure scores (Global BDe δ).

Table 6. Markov blanket distances without the order weight. (a) 50 cases datasets. Dark shaded
cells represent the lowest distance or variance in each timed run for the dataset; Bright shaded cells
represent the second lowest distance or variance in each timed run for the dataset. (b) 1000 cases
datasets. Dark shaded cells represent the lowest distance or variance in each timed run for the dataset;
Bright shaded cells represent the second lowest distance or variance in each timed run for the dataset.

(a)
D50S9 D50C9

Generated δ Global BDe δ Generated δ Global BDe δ

Mean Var Mean Var Mean Var Mean Var

1 h

Random 16.05 0.01 0.76 1.734 16.17 0.000 4.78 17.170

P

SC 16.14 0.01 3.14 4.233 16.28 0.048 7.68 1.059
WC 16.14 0.02 2.45 5.900 16.40 0.047 8.28 1.077
SI 16.04 0.00 2.57 2.746 16.40 0.045 8.26 1.048
WI 16.11 0.00 2.01 0.166 16.53 0.000 8.93 0.001

PP

SC 16.00 0.00 0.00 0.000 16.17 0.000 4.80 17.286
WC 16.00 0.00 0.00 0.000 16.16 0.000 7.15 0.003
SI 16.00 0.00 1.07 3.407 16.17 0.000 4.82 17.401
WI 16.00 0.00 0.00 0.000 16.17 0.000 4.82 17.401

2 h

Random 16.00 0.00 0.00 0.000 16.19 0.000 0.00 0.000

P

SC 16.00 0.00 0.17 0.083 16.16 0.000 7.23 0.000
WC 16.00 0.00 0.15 0.072 16.16 0.000 7.18 0.007
SI 16.00 0.00 0.15 0.072 16.16 0.000 7.23 0.000
WI 16.00 0.00 1.07 3.407 16.16 0.000 7.18 0.007

PP

SC 16.00 0.00 0.00 0.000 16.19 0.000 0.00 0.000
WC 16.00 0.00 0.00 0.000 16.19 0.000 0.00 0.000
SI 16.00 0.00 0.00 0.000 16.19 0.000 0.00 0.000
WI 16.00 0.00 0.00 0.000 16.19 0.000 0.00 0.000

4 h

Random 16.00 0.00 0.00 0.000 16.19 0.000 0.00 0.000

P

SC 16.00 0.00 0.00 0.000 16.19 0.000 0.00 0.000
WC 16.00 0.00 0.00 0.000 16.17 0.000 4.80 17.286
SI 16.00 0.00 0.00 0.000 16.18 0.000 2.39 17.170
WI 16.00 0.00 0.02 0.001 16.19 0.000 0.00 0.000

PP

SC 16.00 0.00 0.00 0.000 16.19 0.000 0.00 0.000
WC 16.00 0.00 0.00 0.000 16.19 0.000 0.00 0.000
SI 16.00 0.00 0.00 0.000 16.19 0.000 0.00 0.000
WI 16.00 0.00 0.00 0.000 16.19 0.000 0.00 0.000

BiDAG 18.00 0.000 18.00 0.000 16.00 0.000 18.00 0.000
K2 16.00 - 13.79 - 18.00 - 18.00 -
PC 18.00 - 18.00 - 18.00 - 18.00 -
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Table 6. Cont.

(b)
D1KS9 D1KC9

Generated δ Global BDe δ Generated δ Global BDe δ

Mean Variance Mean Variance Mean Variance Mean Variance

2 h

Random 18.00 0.00 13.03 1.003 11.50 8.502 10.95 13.371

P

SC 18.00 0.00 9.33 17.333 7.99 0.938 5.82 0.333
WC 17.41 1.03 13.83 0.090 12.76 10.277 12.30 15.951
SI 18.00 0.00 8.67 9.333 9.46 1.369 8.82 4.790
WI 17.33 1.33 13.67 0.333 11.79 14.828 10.85 30.014

PP

SC 18.00 0.00 11.11 2.370 12.39 7.741 12.13 14.534
WC 18.00 0.00 10.00 9.000 9.15 0.912 8.16 2.063
SI 18.00 0.00 11.78 25.481 12.32 8.611 11.61 17.310
WI 18.00 0.00 11.82 0.183 12.51 6.667 11.76 21.675

4 h

Random 18.00 0.00 9.83 11.083 10.31 10.219 8.07 30.555

P

SC 18.00 0.00 12.67 1.333 12.09 10.991 11.43 23.473
WC 18.00 0.00 11.33 9.333 11.80 5.340 10.90 16.552
SI 17.49 0.77 13.42 0.468 12.76 16.142 12.34 25.819
WI 18.00 0.00 11.67 16.333 11.13 6.473 10.48 12.860

PP

SC 18.00 0.00 12.67 1.333 10.27 13.426 9.97 15.665
WC 18.00 0.00 12.18 1.522 11.16 11.527 10.79 20.176
SI 18.00 0.00 12.22 0.148 12.40 2.221 11.58 10.344
WI 18.00 0.00 10.33 14.333 12.40 2.221 11.58 10.344

16 h

Random 18.00 0.00 11.89 1.454 8.38 0.250 4.66 0.750

P

SC 18.00 0.00 8.33 4.333 10.73 9.584 9.25 23.921
WC 18.00 0.00 12.90 3.313 9.69 0.677 8.66 4.616
SI 18.00 0.00 12.33 8.333 9.50 1.190 9.24 1.328
WI 18.00 0.00 10.50 9.250 11.60 11.056 10.38 17.422

PP

SC 16.00 12.00 12.33 0.333 9.61 0.634 8.24 4.689
WC 16.00 12.00 11.67 2.333 9.43 1.452 7.26 1.587
SI 16.33 8.33 8.67 57.333 12.52 6.552 11.65 19.964
WI 18.00 0.00 12.22 4.148 9.63 5.630 7.63 15.827

BiDAG 18.00 0.000 18.00 0.000 11.00 2.000 11.13 2.000
K2 18.00 - 0.00 - 18.00 - 17.86 -
PC 18.00 - 18.00 - 18.00 - 18.00 -

P: Prior, PP: PrePrior, SC: Strong Correct, WC: Weak Correct, SI: Strong Incorrect, WI: Weak Incorrect.

Table 7. Markov blanket distances with the order weight. (a) 50 cases datasets. Dark shaded cells
represent the lowest distance or variance in each timed run for the dataset; Bright shaded cells
represent the second lowest distance or variance in each timed run for the dataset. (b) 1000 cases
datasets. Dark shaded cells represent the lowest distance or variance in each timed run for the dataset;
Bright shaded cells represent the second lowest distance or variance in each timed run for the dataset.

(a)
D50S9 D50C9

Generated δ Global BDe δ Generated δ Global BDe δ

Mean Var Mean Var Mean Var Mean Var

1 h

Random 16.05 0.006 2.06 2.129 16.19 0.000 0.60 0.165

P

SC 16.16 0.013 5.03 7.234 16.33 0.068 3.09 4.954
WC 16.07 0.004 2.61 1.096 16.40 0.103 3.82 2.873
SI 16.03 0.000 2.77 0.561 16.35 0.036 4.67 1.479
WI 16.08 0.003 2.70 0.779 16.50 0.052 4.93 8.424

PP

SC 16.00 0.000 0.66 0.226 16.18 0.000 1.72 4.575
WC 16.00 0.000 0.49 0.173 16.18 0.000 1.41 0.999
SI 16.00 0.000 1.44 1.565 16.18 0.000 2.56 5.958
WI 16.00 0.000 0.62 0.042 16.18 0.000 1.97 4.155
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Table 7. Cont.

(a)
D50S9 D50C9

Generated δ Global BDe δ Generated δ Global BDe δ

Mean Var Mean Var Mean Var Mean Var

2 h

Random 16.00 0.000 1.14 0.029 16.19 0.000 0.11 0.000

P

SC 16.00 0.000 1.51 0.176 16.18 0.000 2.13 0.069
WC 16.00 0.000 1.52 0.086 16.18 0.000 2.49 1.568
SI 16.00 0.000 1.49 0.004 16.18 0.000 2.32 0.617
WI 16.00 0.000 1.89 0.393 16.18 0.000 2.34 1.980

PP

SC 16.00 0.000 0.34 0.051 16.19 0.000 0.11 0.000
WC 16.00 0.000 0.34 0.039 16.19 0.000 0.12 0.000
SI 16.00 0.000 0.34 0.053 16.19 0.000 0.11 0.000
WI 16.00 0.000 0.34 0.211 16.19 0.000 0.14 0.001

4 h

Random 16.00 0.000 1.09 0.002 16.19 0.000 0.11 0.000

P

SC 16.00 0.000 1.10 0.001 16.19 0.000 0.13 0.000
WC 16.00 0.000 1.16 0.012 16.18 0.000 0.56 0.199
SI 16.00 0.000 1.12 0.033 16.19 0.000 0.27 0.053
WI 16.00 0.000 1.35 0.137 16.19 0.000 0.13 0.000

PP

SC 16.00 0.000 0.08 0.000 16.19 0.000 0.10 0.000
WC 16.00 0.000 0.08 0.000 16.19 0.000 0.11 0.000
SI 16.00 0.000 0.08 0.000 16.19 0.000 0.11 0.000
WI 16.00 0.000 0.08 0.000 16.19 0.000 0.11 0.000

BiDAG 18.00 0.000 18.00 0.000 16.00 0.000 18.00 0.000
K2 16.00 - 13.79 - 18.00 - 18.00 -
PC 18.00 - 18.00 - 18.00 - 18.00 -

(b)
D1KS9 D1KC9

Generated δ Global BDe δ Generated δ Global BDe δ

Mean Variance Mean Variance Mean Variance Mean Variance

2 h

Random 18.00 0.000 13.07 1.014 11.33 10.106 11.20 13.067

P

SC 18.00 0.000 9.33 17.333 7.81 0.754 5.85 0.182
WC 17.44 0.947 13.75 0.187 12.85 10.937 12.26 19.666
SI 18.00 0.000 8.67 9.333 9.35 1.854 8.70 8.596
WI 17.33 1.333 13.67 0.333 11.79 14.794 11.32 26.604

PP

SC 18.00 0.000 11.14 2.212 12.33 8.413 12.35 13.923
WC 18.00 0.000 10.02 7.929 9.13 0.956 8.22 6.685
SI 18.00 0.000 11.78 25.481 12.06 11.445 11.45 24.335
WI 18.00 0.000 12.03 0.199 12.52 6.597 11.79 23.237

4 h

Random 18.00 0.000 9.71 10.526 10.24 10.616 8.23 30.807

P

SC 18.00 0.000 12.67 1.333 11.98 12.267 11.42 27.102
WC 18.00 0.000 11.33 9.333 11.80 5.289 11.02 16.626
SI 17.49 0.765 13.08 0.685 12.61 18.288 12.41 25.506
WI 18.00 0.000 11.67 16.333 10.92 7.615 10.64 13.564

PP

SC 18.00 0.000 12.67 1.333 11.42 4.975 10.74 12.474
WC 18.00 0.000 12.00 0.694 10.27 13.420 9.71 18.499
SI 18.00 0.000 12.33 0.333 11.16 11.522 10.91 18.678
WI 18.00 0.000 10.44 15.259 12.26 2.796 11.69 9.394

16 h

Random 18.00 0.000 12.03 0.481 8.25 0.529 4.80 1.709

P

SC 18.00 0.000 8.51 4.844 10.78 8.952 9.38 22.068
WC 18.00 0.000 12.93 4.398 9.53 1.103 8.76 4.205
SI 18.00 0.000 12.47 6.981 9.22 0.950 9.24 1.265
WI 18.00 0.000 10.30 11.470 12.01 9.357 10.63 16.177

PP

SC 18.00 0.000 12.33 0.333 9.72 0.400 8.30 3.678
WC 18.00 0.000 11.78 2.821 9.31 0.754 7.43 1.861
SI 18.00 0.000 8.67 57.333 12.58 6.028 11.64 23.386
WI 18.00 0.000 12.22 4.153 9.47 6.395 7.62 16.874

BiDAG 18.00 0.000 18.00 0.000 11.00 2.000 11.13 2.000
K2 18.00 - 0.00 - 18.00 - 17.86 -
PC 18.00 - 18.00 - 18.00 - 18.00 -

P: Prior, PP: PrePrior, SC: Strong Correct, WC: Weak Correct, SI: Strong Incorrect, WI: Weak Incorrect.
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In 50 cases from Tables 6a and 7a, it is clear that all the MCMC ordering algorithms
(Random, Prior, and PrePrior) outperformed the constrained variant algorithms (BiDAG,
K2, and PC) in Generated δ and Global BDe δ with datasets D50S9. In dataset D50C9,
BiDAG was slightly better (16.0 vs. 16.19) in Generated δ; however, it was significantly
worse in Global BDe δ. Also, in general, Generated δ and Global BDe δ of the algorithms
with the order weight did not change much because the MB distances were low to begin
with (Generated δ ranged from 16.00 to 16.53, and with the order weight it ranged from
16.00 to 16.50; Global BDe δ ranged from 0.00 to 8.93, and with the order weight it ranged
from 0.00 to 5.03). We note that with the order weight, the 1h runs in D50C9 showed lower
Global BDe δ with a higher confidence, i.e., a lower variance.

With the maximum hour (4 h) run, Random and PrePrior predictions converged;
however, Prior showed some variance in its performance. We note that with a smaller
number of hours (1 and 2 h) runs, PrePrior showed better performances (better predictions
with higher confidence (i.e., lower variance) than Random in D50S9, and comparable
performances in D50C9 (in 1 h run, Random Generated δ was 16.17 with variance of 0.0,
PrePrior Weak Correct achieved Generated δ 16.16 with a very low variance, 0.0 (Table 6a).

MB distances of 1000 cases are shown in Tables 6b and 7b. In D1KS9, PrePrior with
Strong and Weak Prior achieved the best Generated δ (16.00) with a variance of 12.0. K2
showed the best Global BDe δ (0.0) in D1KS9. Also, in general, Generated δ and Global BDe
δ of the algorithms with the order weight did not change much because the MB distances
were low to begin with (Generated δ ranged from 7.99 to 18.0, and with the order weight it
ranged from 7.81 to 18.0; Global BDe δ ranged from 4.66 (excluding 0.0 from K2) to 13.83
(excluding 18.0 from BiDAG), and with the order weight it ranged from 4.80 (excluding 0.0
from K2) to 13.75 (excluding 18.0 from BiDAG)).

In D1KC9, most of the MCMC ordering algorithms (Random, Prior, and PrePrior)
outperformed the constrained variant algorithms (BiDAG, K2, and PC) in Generated δ and
Global BDe δ. In 2 h runs, Prior with Weak Correct prior achieved the best Generated δ

(7.99; the runner-up was PrePrior Weak Correct prior with 9.15) and Global BDe δ (5.82;
the runner-up was PrePrior Weak Correct prior with 8.16); however, the most confident
prediction came from PrePrior Weak Correct prior in Generated δ (0.912; the runner-up
was Prior Weak Correct prior with 0.938).

Also, in D1KC9 with 4 h runs, PrePrior with Strong Correct prior achieved the best
Generated δ (10.27; the runner-up was Random with 10.31) and Random achieved the best
Global BDe δ (8.07; the runner-up was PrePrior Strong Correct prior with 9.97). In 16 h runs,
Random achieved the best Generated δ (8.38; the runner-up was PrePrior Weak Correct
prior with 9.43) and Global BDe δ (4.66; the runner-up was PrePrior Strong Correct prior
with 7.26).

Tables 8 and 9 show algorithm’s predicted probabilities of four causal pairwise re-
lationships shown in Figure 4. In all four datasets, all the MCMC ordering algorithms
(Random, Prior, and PrePrior) outperformed the constrained variant algorithms (BiDAG,
and K2) in the confounded relationships HX Y (no causal relationship) or HX→Y (causal
relationship). K2 and BiDAG incorrectly predicted (with probability of 0.0) the true un-
derlying confounded relationships: for example, with 1000 cases, using D1KS9, BiDAG
predicted all the three true HX→Y relationships with a probability of 0.0, and using D1KC9,
BiDAG, and K2 predicted all of the four true HX Y relationships with probability of 0.0.
Typically, algorithms with the order weight tended to perform better in correctly predicting
true causally independent relationships (ØX Y and HX Y) and performed worse in correctly
predicting true causal predictions (ØX→Y and HX→Y).

Tables 10 and 11 show the algorithm’s most probable prediction rates of four causal
pairwise relationships shown in Figure 4. As it was noticed earlier in Tables 8 and 9, in all
four datasets, all the MCMC ordering algorithms (Random, Prior, and PrePrior) outper-
formed the constrained variant algorithms (BiDAG, and K2) in confounded relationships
HX Y (no causal relationship) or HX→Y (causal relationship). Algorithms with the order
weight changed most the probable prediction rates of the confounded and causally in-
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dependent predictions (HX Y) of MCMC ordering algorithms except PrePrior with Weak
Correct prior in D50S9 (one relationship prediction of Y→X was changed to X→Y). Another
change by weighing order was noticed in D1KC9. There, algorithms with the order weight
changed most the probable prediction rates of the confounded and causally independent
predictions (HX Y), and the confounded causal predictions (HX→Y) of PrePrior with Weak
Correct prior. For HX Y, five relationships prediction of X→Y were correctly changed to the
true underlying relationship, X Y; and for HX→Y, one relationship prediction of Y→X was
correctly changed to the true underlying relationship, X→Y.

Table 8. Algorithms’ predicted probabilities of four causal pairwise relationships without the order
weight. (a) Dataset for Sparse 9 variable with 50 cases (D50S9). Dark shaded cells represent the best
prediction of the correct causal relationship; Bright shaded cells represent the second best prediction
of the correct causal relationship. (b) Dataset for Close 9 variable with 50 cases (D50C9). Dark shaded
cells represent the best prediction of the correct causal relationship; Bright shaded cells represent
the second best prediction of the correct causal relationship. (c) Dataset for Sparse 9 variable with
1000 cases (D1KS9). Dark shaded cells represent the best prediction of the correct causal relationship;
Bright shaded cells represent the second best prediction of the correct causal relationship. (d) Dataset
for Close 9 variable with 1000 cases (D1KC9). Dark shaded cells represent the best prediction of the
correct causal relationship; Bright shaded cells represent the second best prediction of the correct
causal relationship.

(a)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.168 0.342 0.152 1.000
Y→X 0.442 0.635 0.578 0.000
X Y 0.390 0.023 0.270 0.000

Prior SC
X→Y 0.168 0.342 0.152 1.000
Y→X 0.442 0.635 0.578 0.000
X Y 0.390 0.023 0.270 0.000

Prior WC
X→Y 0.168 0.342 0.152 1.000
Y→X 0.442 0.635 0.578 0.000
X Y 0.390 0.023 0.270 0.000

PrePrior SC
X→Y 0.168 0.342 0.152 1.000
Y→X 0.442 0.635 0.578 0.000
X Y 0.390 0.023 0.270 0.000

PrePrior WC
X→Y 0.168 0.342 0.152 1.000
Y→X 0.442 0.635 0.578 0.000
X Y 0.390 0.023 0.270 0.000

BiDAG
X→Y 0.143 0.350 0.000 0.000
Y→X 0.000 0.100 0.167 0.667
X Y 0.857 0.550 0.833 0.333

K2
X→Y 0.286 0.250 0.167 0.667
Y→X 0.429 0.700 0.833 0.000
X Y 0.286 0.050 0.000 0.333

(b)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.038 0.470 0.485 0.204
Y→X 0.156 0.253 0.244 0.601
X Y 0.805 0.277 0.271 0.195

Prior SC
X→Y 0.038 0.470 0.485 0.204
Y→X 0.156 0.253 0.244 0.601
X Y 0.805 0.277 0.271 0.195

Prior WC
X→Y 0.032 0.474 0.393 0.402
Y→X 0.189 0.253 0.246 0.409
X Y 0.779 0.274 0.361 0.189
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(b)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

PrePrior SC
X→Y 0.038 0.470 0.485 0.204
Y→X 0.156 0.253 0.244 0.601
X Y 0.805 0.277 0.271 0.195

PrePrior WC
X→Y 0.038 0.470 0.485 0.204
Y→X 0.156 0.253 0.244 0.601
X Y 0.805 0.277 0.271 0.195

BiDAG
X→Y 0.071 1.000 0.250 0.400
Y→X 0.500 0.000 0.750 0.300
X Y 0.429 0.000 0.000 0.300

K2
X→Y 0.429 0.500 0.750 0.700
Y→X 0.286 0.375 0.250 0.300
X Y 0.286 0.125 0.000 0.000

(c)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.139 0.371 0.269 0.935
Y→X 0.135 0.136 0.046 0.065
X Y 0.726 0.493 0.685 0.000

Prior SC
X→Y 0.248 0.390 0.107 1.000
Y→X 0.143 0.093 0.238 0.000
X Y 0.609 0.517 0.655 0.000

Prior WC
X→Y 0.109 0.411 0.468 0.730
Y→X 0.048 0.163 0.071 0.270
X Y 0.844 0.426 0.460 0.000

PrePrior SC
X→Y 0.024 0.367 0.472 0.944
Y→X 0.024 0.175 0.000 0.056
X Y 0.952 0.458 0.528 0.000

PrePrior WC
X→Y 0.156 0.340 0.139 1.000
Y→X 0.429 0.631 0.518 0.000
X Y 0.415 0.028 0.343 0.000

BiDAG
X→Y 0.571 0.400 0.500 0.000
Y→X 0.286 0.400 0.333 0.667
X Y 0.143 0.200 0.167 0.333

K2
X→Y 0.429 0.400 0.000 1.000
Y→X 0.286 0.550 0.333 0.000
X Y 0.286 0.050 0.667 0.000

(d)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.046 0.641 0.279 0.582
Y→X 0.046 0.287 0.205 0.374
X Y 0.908 0.072 0.517 0.044

Prior SC
X→Y 0.023 0.486 0.132 0.535
Y→X 0.036 0.344 0.272 0.287
X Y 0.941 0.170 0.595 0.178

Prior WC
X→Y 0.012 0.433 0.122 0.645
Y→X 0.016 0.358 0.268 0.252
X Y 0.972 0.209 0.610 0.103

PrePrior SC
X→Y 0.042 0.543 0.211 0.635
Y→X 0.037 0.324 0.241 0.257
X Y 0.920 0.133 0.548 0.109
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(d)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

PrePrior WC
X→Y 0.052 0.571 0.270 0.652
Y→X 0.061 0.320 0.329 0.237
X Y 0.887 0.109 0.401 0.111

BiDAG
X→Y 0.000 0.750 0.750 0.400
Y→X 0.143 0.250 0.250 0.600
X Y 0.857 0.000 0.000 0.000

K2
X→Y 0.429 0.375 0.750 0.500
Y→X 0.571 0.375 0.250 0.500
X Y 0.000 0.250 0.000 0.000

Table 9. Algorithms’ predicted probabilities of four causal pairwise relationships with the order
weight. (a) Dataset for Sparse 9 variable with 50 cases (D50S9). Dark shaded cells represent the best
prediction of the correct causal relationship; Bright shaded cells represent the second best prediction
of the correct causal relationship. (b) Dataset for Close 9 variable with 50 cases (D50C9). Dark shaded
cells represent the best prediction of the correct causal relationship; Bright shaded cells represent
the second best prediction of the correct causal relationship. (c) Dataset for Sparse 9 variable with
1000 cases (D1KS9). Dark shaded cells represent the best prediction of the correct causal relationship;
Bright shaded cells represent the second best prediction of the correct causal relationship. (d) Dataset
for Close 9 variable with 1000 cases (D1KC9). Dark shaded cells represent the best prediction of the
correct causal relationship; Bright shaded cells represent the second best prediction of the correct
causal relationship.

(a)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.157 0.338 0.140 1.000
Y→X 0.426 0.628 0.448 0.000
X Y 0.417 0.033 0.412 0.000

Prior SC
X→Y 0.157 0.338 0.140 1.000
Y→X 0.426 0.628 0.448 0.000
X Y 0.417 0.033 0.412 0.000

Prior WC
X→Y 0.157 0.338 0.140 1.000
Y→X 0.426 0.628 0.444 0.000
X Y 0.417 0.034 0.416 0.000

PrePrior SC
X→Y 0.156 0.340 0.139 1.000
Y→X 0.429 0.631 0.518 0.000
X Y 0.415 0.028 0.343 0.000

PrePrior WC
X→Y 0.156 0.340 0.139 1.000
Y→X 0.429 0.631 0.518 0.000
X Y 0.415 0.028 0.343 0.000

BiDAG
X→Y 0.143 0.350 0.000 0.000
Y→X 0.000 0.100 0.167 0.667
X Y 0.857 0.550 0.833 0.333

K2
X→Y 0.286 0.250 0.167 0.667
Y→X 0.429 0.700 0.833 0.000
X Y 0.286 0.050 0.000 0.333

(b)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.037 0.470 0.484 0.203
Y→X 0.156 0.252 0.242 0.600
X Y 0.807 0.278 0.275 0.197
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(b)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Prior SC
X→Y 0.037 0.470 0.483 0.202
Y→X 0.156 0.252 0.242 0.600
X Y 0.807 0.278 0.275 0.198

Prior WC
X→Y 0.037 0.470 0.473 0.223
Y→X 0.159 0.252 0.242 0.581
X Y 0.804 0.278 0.284 0.197

PrePrior SC
X→Y 0.037 0.470 0.484 0.203
Y→X 0.156 0.252 0.242 0.600
X Y 0.807 0.278 0.275 0.197

PrePrior WC
X→Y 0.037 0.470 0.484 0.203
Y→X 0.156 0.252 0.242 0.600
X Y 0.807 0.278 0.275 0.197

BiDAG
X→Y 0.071 1.000 0.250 0.400
Y→X 0.500 0.000 0.750 0.300
X Y 0.429 0.000 0.000 0.300

K2
X→Y 0.429 0.500 0.750 0.700
Y→X 0.286 0.375 0.250 0.300
X Y 0.286 0.125 0.000 0.000

(c)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.133 0.377 0.257 0.955
Y→X 0.125 0.114 0.032 0.045
X Y 0.743 0.509 0.712 0.000

Prior SC
X→Y 0.232 0.390 0.121 1.000
Y→X 0.145 0.094 0.230 0.000
X Y 0.622 0.517 0.649 0.000

Prior WC
X→Y 0.105 0.419 0.489 0.689
Y→X 0.032 0.161 0.067 0.311
X Y 0.863 0.420 0.444 0.000

PrePrior SC
X→Y 0.024 0.367 0.472 0.944
Y→X 0.024 0.175 0.000 0.056
X Y 0.952 0.458 0.528 0.000

PrePrior WC
X→Y 0.167 0.350 0.352 0.852
Y→X 0.024 0.136 0.056 0.148
X Y 0.809 0.514 0.593 0.000

BiDAG
X→Y 0.571 0.400 0.500 0.000
Y→X 0.286 0.400 0.333 0.667
X Y 0.143 0.200 0.167 0.333

K2
X→Y 0.429 0.400 0.000 1.000
Y→X 0.286 0.550 0.333 0.000
X Y 0.286 0.050 0.667 0.000

(d)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.045 0.640 0.260 0.586
Y→X 0.041 0.287 0.174 0.376
X Y 0.914 0.073 0.566 0.039

Prior SC
X→Y 0.020 0.473 0.140 0.534
Y→X 0.035 0.349 0.245 0.301
X Y 0.945 0.179 0.615 0.165

Prior WC
X→Y 0.011 0.449 0.115 0.649
Y→X 0.022 0.353 0.280 0.243
X Y 0.967 0.198 0.606 0.109
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(d)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

PrePrior SC
X→Y 0.036 0.524 0.199 0.637
Y→X 0.037 0.331 0.236 0.248
X Y 0.927 0.146 0.565 0.115

PrePrior WC
X→Y 0.046 0.580 0.288 0.667
Y→X 0.051 0.316 0.341 0.211
X Y 0.904 0.104 0.371 0.122

BiDAG
X→Y 0.000 0.750 0.750 0.400
Y→X 0.143 0.250 0.250 0.600
X Y 0.857 0.000 0.000 0.000

K2
X→Y 0.429 0.375 0.750 0.500
Y→X 0.571 0.375 0.250 0.500
X Y 0.000 0.250 0.000 0.000

Table 10. Algorithms’ most probable prediction rates by four causal pairwise relationships without
the order weight. (a) Dataset for Sparse 9 variable with 50 cases (D50S9). Dark shaded cells represent
the best prediction of the correct causal relationship; Bright shaded cells represent the second best
prediction of the correct causal relationship. (b) Dataset for Close 9 variable with 50 cases (D50C9).
Dark shaded cells represent the best prediction of the correct causal relationship; Bright shaded
cells represent the second best prediction of the correct causal relationship. (c) Dataset for Sparse
9 variable with 1000 cases (D1KS9). Dark shaded cells represent the best prediction of the correct
causal relationship; Bright shaded cells represent the second best prediction of the correct causal
relationship. (d) Dataset for Close 9 variable with 1000 cases (D1KC9). Dark shaded cells represent
the best prediction of the correct causal relationship; Bright shaded cells represent the second best
prediction of the correct causal relationship.

(a)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.14 0.35 0.00 1.00
Y→X 0.43 0.65 0.50 0.00
X Y 0.43 0.00 0.50 0.00

Prior SC
X→Y 0.14 0.35 0.00 1.00
Y→X 0.43 0.65 0.50 0.00
X Y 0.43 0.00 0.50 0.00

Prior WC
X→Y 0.14 0.35 0.00 1.00
Y→X 0.43 0.65 0.50 0.00
X Y 0.43 0.00 0.50 0.00

PrePrior SC
X→Y 0.14 0.35 0.00 1.00
Y→X 0.43 0.65 0.50 0.00
X Y 0.43 0.00 0.50 0.00

PrePrior WC
X→Y 0.14 0.35 0.17 1.00
Y→X 0.43 0.65 0.33 0.00
X Y 0.43 0.00 0.50 0.00

BiDAG
X→Y 0.14 0.35 0.00 0.00
Y→X 0.00 0.10 0.17 0.67
X Y 0.86 0.55 0.83 0.33

K2
X→Y 0.29 0.25 0.17 0.67
Y→X 0.43 0.70 0.83 0.00
X Y 0.29 0.05 0.00 0.33
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(b)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.00 0.50 0.50 0.20
Y→X 0.14 0.25 0.25 0.60
X Y 0.86 0.25 0.25 0.20

Prior SC
X→Y 0.00 0.50 0.50 0.20
Y→X 0.14 0.25 0.25 0.60
X Y 0.86 0.25 0.25 0.20

Prior WC
X→Y 0.00 0.50 0.50 0.20
Y→X 0.14 0.25 0.25 0.60
X Y 0.86 0.25 0.25 0.20

PrePrior SC
X→Y 0.00 0.50 0.50 0.20
Y→X 0.14 0.25 0.25 0.60
X Y 0.86 0.25 0.25 0.20

PrePrior WC
X→Y 0.00 0.50 0.50 0.20
Y→X 0.14 0.25 0.25 0.60
X Y 0.86 0.25 0.25 0.20

BiDAG
X→Y 0.07 1.00 0.25 0.40
Y→X 0.50 0.00 0.75 0.30
X Y 0.43 0.00 0.00 0.30

K2
X→Y 0.43 0.50 0.75 0.70
Y→X 0.29 0.38 0.25 0.30
X Y 0.29 0.13 0.00 0.00

(c)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.14 0.40 0.17 1.00
Y→X 0.14 0.05 0.00 0.00
X Y 0.71 0.55 0.83 0.00

Prior SC
X→Y 0.29 0.40 0.00 1.00
Y→X 0.14 0.05 0.33 0.00
X Y 0.57 0.55 0.67 0.00

Prior WC
X→Y 0.14 0.30 0.33 1.00
Y→X 0.00 0.15 0.00 0.00
X Y 0.86 0.55 0.67 0.00

PrePrior SC
X→Y 0.00 0.35 0.50 1.00
Y→X 0.00 0.20 0.00 0.00
X Y 1.00 0.45 0.50 0.00

PrePrior WC
X→Y 0.14 0.30 0.33 1.00
Y→X 0.00 0.10 0.00 0.00
X Y 0.86 0.60 0.67 0.00

BiDAG
X→Y 0.57 0.40 0.50 0.00
Y→X 0.29 0.40 0.33 0.67
X Y 0.14 0.20 0.17 0.33

K2
X→Y 0.43 0.40 0.00 1.00
Y→X 0.29 0.55 0.33 0.00
X Y 0.29 0.05 0.67 0.00

(d)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.00 0.75 0.25 0.60
Y→X 0.00 0.25 0.00 0.40
X Y 1.00 0.00 0.75 0.00

Prior SC
X→Y 0.00 0.38 0.25 0.60
Y→X 0.00 0.38 0.25 0.40
X Y 1.00 0.25 0.50 0.00
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(d)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Prior WC
X→Y 0.00 0.38 0.00 0.70
Y→X 0.00 0.38 0.50 0.10
X Y 1.00 0.25 0.50 0.20

PrePrior SC
X→Y 0.00 0.38 0.25 0.70
Y→X 0.00 0.38 0.00 0.10
X Y 1.00 0.25 0.75 0.20

PrePrior WC
X→Y 0.00 0.63 0.75 0.60
Y→X 0.00 0.38 0.25 0.40
X Y 1.00 0.00 0.00 0.00

BiDAG
X→Y 0.00 0.75 0.75 0.40
Y→X 0.14 0.25 0.25 0.60
X Y 0.86 0.00 0.00 0.00

K2
X→Y 0.43 0.38 0.75 0.50
Y→X 0.57 0.38 0.25 0.50
X Y 0.00 0.25 0.00 0.00

Table 11. Algorithms’ most probable prediction rates by four causal pairwise relationships with the
order weight. (a) Dataset for Sparse 9 variable with 50 cases (D50S9). Dark shaded cells represent
the best prediction of the correct causal relationship; Bright shaded cells represent the second best
prediction of the correct causal relationship. (b) Dataset for Close 9 variable with 50 cases (D50C9).
Dark shaded cells represent the best prediction of the correct causal relationship; Bright shaded
cells represent the second best prediction of the correct causal relationship. (c) Dataset for Sparse
9 variable with 1000 cases (D1KS9). Dark shaded cells represent the best prediction of the correct
causal relationship; Bright shaded cells represent the second best prediction of the correct causal
relationship. (d) Dataset for Close 9 variable with 1000 cases (D1KC9). Dark shaded cells represent
the best prediction of the correct causal relationship; Bright shaded cells represent the second best
prediction of the correct causal relationship.

(a)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.14 0.35 0.17 1.00
Y→X 0.43 0.65 0.33 0.00
X Y 0.43 0.00 0.50 0.00

Prior SC
X→Y 0.14 0.35 0.17 1.00
Y→X 0.43 0.65 0.33 0.00
X Y 0.43 0.00 0.50 0.00

Prior WC
X→Y 0.14 0.35 0.17 1.00
Y→X 0.43 0.65 0.33 0.00
X Y 0.43 0.00 0.50 0.00

PrePrior SC
X→Y 0.14 0.35 0.17 1.00
Y→X 0.43 0.65 0.33 0.00
X Y 0.43 0.00 0.50 0.00

PrePrior WC
X→Y 0.14 0.35 0.17 1.00
Y→X 0.43 0.65 0.33 0.00
X Y 0.43 0.00 0.50 0.00

BiDAG
X→Y 0.14 0.35 0.00 0.00
Y→X 0.00 0.10 0.17 0.67
X Y 0.86 0.55 0.83 0.33

K2
X→Y 0.29 0.25 0.17 0.67
Y→X 0.43 0.70 0.83 0.00
X Y 0.29 0.05 0.00 0.33
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Table 11. Cont.

(b)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.00 0.50 0.50 0.20
Y→X 0.14 0.25 0.25 0.60
X Y 0.86 0.25 0.25 0.20

Prior SC
X→Y 0.00 0.50 0.50 0.20
Y→X 0.14 0.25 0.25 0.60
X Y 0.86 0.25 0.25 0.20

Prior WC
X→Y 0.00 0.50 0.50 0.20
Y→X 0.14 0.25 0.25 0.60
X Y 0.86 0.25 0.25 0.20

PrePrior SC
X→Y 0.00 0.50 0.50 0.20
Y→X 0.14 0.25 0.25 0.60
X Y 0.86 0.25 0.25 0.20

PrePrior WC
X→Y 0.00 0.50 0.50 0.20
Y→X 0.14 0.25 0.25 0.60
X Y 0.86 0.25 0.25 0.20

BiDAG
X→Y 0.07 1.00 0.25 0.40
Y→X 0.50 0.00 0.75 0.30
X Y 0.43 0.00 0.00 0.30

K2
X→Y 0.43 0.50 0.75 0.70
Y→X 0.29 0.38 0.25 0.30
X Y 0.29 0.13 0.00 0.00

(c)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.14 0.40 0.17 1.00
Y→X 0.14 0.05 0.00 0.00
X Y 0.71 0.55 0.83 0.00

Prior SC
X→Y 0.29 0.40 0.00 1.00
Y→X 0.14 0.05 0.33 0.00
X Y 0.57 0.55 0.67 0.00

Prior WC
X→Y 0.14 0.30 0.33 1.00
Y→X 0.00 0.15 0.00 0.00
X Y 0.86 0.55 0.67 0.00

PrePrior SC
X→Y 0.00 0.35 0.50 1.00
Y→X 0.00 0.20 0.00 0.00
X Y 1.00 0.45 0.50 0.00

PrePrior WC
X→Y 0.14 0.30 0.33 1.00
Y→X 0.00 0.10 0.00 0.00
X Y 0.86 0.60 0.67 0.00

BiDAG
X→Y 0.57 0.40 0.50 0.00
Y→X 0.29 0.40 0.33 0.67
X Y 0.14 0.20 0.17 0.33

K2
X→Y 0.43 0.40 0.00 1.00
Y→X 0.29 0.55 0.33 0.00
X Y 0.29 0.05 0.67 0.00

(d)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Random
X→Y 0.00 0.75 0.25 0.60
Y→X 0.00 0.25 0.00 0.40
X Y 1.00 0.00 0.75 0.00

Prior SC
X→Y 0.00 0.38 0.25 0.60
Y→X 0.00 0.38 0.25 0.20
X Y 1.00 0.25 0.50 0.20
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Table 11. Cont.

(d)

Algorithm
Prediction

True ØX Y ØX→Y HX Y HX→Y

Prior WC
X→Y 0.00 0.38 0.00 0.70
Y→X 0.00 0.38 0.50 0.10
X Y 1.00 0.25 0.50 0.20

PrePrior SC
X→Y 0.00 0.38 0.25 0.70
Y→X 0.00 0.38 0.00 0.10
X Y 1.00 0.25 0.75 0.20

PrePrior WC
X→Y 0.00 0.63 0.25 0.70
Y→X 0.00 0.38 0.25 0.10
X Y 1.00 0.00 0.50 0.20

BiDAG
X→Y 0.00 0.75 0.75 0.40
Y→X 0.14 0.25 0.25 0.60
X Y 0.86 0.00 0.00 0.00

K2
X→Y 0.43 0.38 0.75 0.50
Y→X 0.57 0.38 0.25 0.50
X Y 0.00 0.25 0.00 0.00

4. Discussion and Future Work

The results from this study show that learning causal relationships from data is
difficult, especially because many variables are hidden to us whether we are aware of that
or not. Many Big Data analytic methods have been dealing with Big Data characteristics,
such as its large volume, its fast growth in size, or its variety of data types. However, as
we have shown in this study, it is important to incorporate and develop causal discovery
frameworks to discover underlying mechanistic processes from Big Data.

Searching through order of variables in CBN and incorporating likelihood of the order
helped us better search through plausible underlying mechanistic processes even when
hidden variables were present. Further incorporating the prior of the order in the search
process (PrePrior algorithm) showed an increase in performance, especially when there
were a limited number of cases available, than other published methods that did not
incorporate the prior of the order. We believe combining different types of data, e.g.,
environmental, genomics, neurological, social media, etc., will further strengthen our
capabilities of discovering underlying mechanistic processes from Big Data.

Our study was focused in discovering underlying mechanistic processes using a small
number of variables, i.e., <30. It was practical to use a small number of variables because
we were focused on understanding the effect of hidden variables when learning causal
relationships from data. Thus, the results reported here should be interpreted under this
premise. As it was pointed out earlier, our study is limited in telling what the effects of the
other characteristics of Big Data can contribute to the discovery of underlying mechanistic
processes. Moreover, understanding those characteristics effects and combination effects
of them will lead us to develop novel methods that will revolutionize the future Big
Data analytics.

PrePrior algorithm can be extended in many different directions. As it was shown,
with 1000 cases, all MCMC ordering algorithm could not converge in their predictions.
This aspect can be overcome by incorporating constraint-based methods in conjunction
with the Bayesian MCMC sampling methods using BDe (or BGe) scores. This will enable
us to analyze not only larger samples, but also larger number of variables, one of the hall
mark characteristics of Big Data. Also, it will extend the causal discovery ability when we
model hidden variables explicitly or implicitly into the PrePrior algorithm.

5. Conclusions

We have shown searching through order of variables in CBN and incorporating the
likelihood of the order helped us better understand the underlying mechanistic process that
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generated the data even when hidden variables were introduced in the experimental design.
Also, a novel algorithm in searching through the order we proposed (PrePrior algorithm)
showed promising performance in better learning the underlying mechanistic process that
generated the data, especially confounded causal relationships with a reasonable number
of samples (≈50).
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Abbreviations
The following abbreviations were used in this manuscript:

BiDAG Bayesian Inference for Directed Acyclic Graphs, a CBN search algorithm
BDe Bayesian Dirichlet prior
C9 Nine variables that were connected closely in ALARM Bayesian network
CBN Causal Bayesian Network
D1KC9 1000 observational cases generated from C9
D1KC9 1000 observational cases generated from S9
D50C9 50 observational cases generated from C9
D50S9 50 observational cases generated from S9
K2 A constraint based CBN search algorithm
MCMC Markov Chain Monte Carlo
NP-hard At least hard as nondeterministic polynomial time problem
PC A constraint based CBN search algorithm
PrePrior A new order searching algorithm that uses prior of order to search CBN
S9 Nine variables that were connected sparsely in ALARM Bayesian network
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