
Citation: Khabour, S.M.; Al-

Radaideh, Q.A.; Mustafa, D. A New

Ontology-Based Method for Arabic

Sentiment Analysis. Big Data Cogn.

Comput. 2022, 6, 48. https://

doi.org/10.3390/bdcc6020048

Academic Editors: S. Ejaz Ahmed,

Shuangge Steven Ma and Peter

X.K. Song

Received: 1 April 2022

Accepted: 22 April 2022

Published: 29 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

A New Ontology-Based Method for Arabic Sentiment Analysis
Safaa M. Khabour 1 , Qasem A. Al-Radaideh 1 and Dheya Mustafa 2,*

1 Department of Information Systems, Faculty of Information Technology and Computer Sciences,
Yarmouk University, Irbid 21163, Jordan; safaa.khabour@ses.yu.edu.jo (S.M.K.); qasemr@yu.edu.jo (Q.A.A.-R.)

2 Department of Computer Engineering, Faculty of Engineering, The Hashemite University,
Zarqa 13133, Jordan

* Correspondence: dheya@hu.edu.jo

Abstract: Arabic sentiment analysis is a process that aims to extract the subjective opinions of
different users about different subjects since these opinions and sentiments are used to recognize their
perspectives and judgments in a particular domain. Few research studies addressed semantic-oriented
approaches for Arabic sentiment analysis based on domain ontologies and features’ importance. In
this paper, we built a semantic orientation approach for calculating overall polarity from the Arabic
subjective texts based on built domain ontology and the available sentiment lexicon. We used the
ontology concepts to extract and weight the semantic domain features by considering their levels
in the ontology tree and their frequencies in the dataset to compute the overall polarity of a given
textual review based on the importance of each domain feature. For evaluation, an Arabic dataset
from the hotels’ domain was selected to build the domain ontology and to test the proposed approach.
The overall accuracy and f-measure reach 79.20% and 78.75%, respectively. Results showed that the
approach outperformed the other semantic orientation approaches, and it is an appealing approach
to be used for Arabic sentiment analysis.

Keywords: sentiment analysis; arabic language; domain ontology; semantic orientation; feature level
sentiment analysis; features selection and weighting; domain features

1. Introduction

The Web offers a massive virtual space where users can express and publish their
opinions and experiences. People use social media daily as a primary place in a wide
range of applications in their lives, not only for social life purposes but also e-learning,
e-commerce, politics, and many other applications. In the Middle East (where Arabic
is the mother language), Facebook and Twitter were determined as the most prevalent
social media websites that affect youth [1,2]. While web content has witnessed an unprece-
dented increase in size, the process of extracting useful information is becoming more
challenging as well [3,4].

Sentiment analysis, or opinion mining, is a type of text mining research that depends
mainly on Machine Learning (ML) and Natural Language Processing (NLP) approaches for
mining subjective texts [4–9]. Sentiment analysis research scope in the field of computer
science is rising very quickly [10]. The semantic web is a logical expansion of the World
Wide Web, which is intended to make the web more machine-understandable [11]. The
ontology is an essential semantic technology used widely for data handling in the semantic
web [12,13]. Ontologies facilitate communication between humans and agents; they also
describe the domain theories for the explicit representation of the semantics of the data [14]
and web interoperability [15]. Ontology is a systematic account of existence [16], where
it can be used to formalize and model-specific domain knowledge to be represented
and applied in different fields, such as the semantic web, artificial intelligence, system
engineering, information architecture, enterprise bookmarking and biomedical informatics.
Furthermore, the ontology concept is valuable in text mining applications, such as in-text
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clustering and classification [9,17], and in-text summarization [18], which can be applied to
different domains.

Ontology is usually used for accomplishing two main tasks in sentiment analysis
research, either for lexicon creation or for aspect (feature) extraction [19–26]. Sentiment
analysis researchers are immediately directed toward ontology-based approaches to repre-
sent a common sense knowledge base [27,28]. Tartir and Abdul-Nabi [29] utilized ontology
for lexicon creation as they created Arabic Sentiment Ontology (ASO). SenticNet is another
example of a concept-based resource, which was created to comprise 5732 single and
multi-word concepts along with their polarity scores in the range of –1 to +1 [30]. The use
of ontology in such text mining applications has achieved considerable results [31].

Recently, few studies were conducted on sentiment analysis for the Arabic language
as compared with those for the English language; several researchers shifted towards
the analysis of the Arabic language [32]. Major challenges of Arabic sentiment analysis
(ASA) are related to the language nature [33]. The rich morphology of the Arabic language,
with which you can express the same meaning in different ways by combining different
stems, roots, prefixes, and suffixes. This increases the need to conduct a morphological
analysis, where each term is divided into morphemes, and each morpheme combines with
morphological information such as root, stem, POS, and affix [5]. This complex challenge
raises the need to improve convenient NLP tools to handle morphological analysis, tok-
enization, stemming, spell checking, lemmatization, part-of-speech tagging, and pattern
matching [34,35]. Furthermore, the existence of the various speaking dialects in real life and
on the web [8], the rich Arabic synonyms, and the low number of studies that are concen-
trated on ASA using domain-specific ontologies and features importance, are considered
motivations for this research.

This study used ontology to extract features based on ontology concepts, along with
concepts’ levels and concepts’ frequencies. Then, it determines the importance of each
feature based on its location in the ontology tree and its appearance in the review’s dataset.
The proposed semantic orientation approach benefits from domain ontologies and senti-
ment lexicons for accomplishing ASA to increase the accuracy of the analysis process of the
users’ subjective opinions. In this approach, we used ontology to explain some knowledge
about the domain features during the feature extraction and selection phases.

We intend to solve the limitations in the previous research on ASA focused on the
semantic orientation approaches, where the semantic features in the proposed approach
are treated with their different weights of importance in the subjective text. Overall, this
paper makes the following contributions:

1. Building a semantic orientation approach using ontology for mining the different
opinions to decrease the effort needed by ordinary users or organizations to make
more accurate sentiments classification. The approach is working at the level of
semantic features, which are extracted and weighted using the domain ontology.

2. Using the domain features’ levels to determine the polarity of the overall review.
Also, the important domain features from the users’ point of view are used to effi-
ciently calculate the overall semantic polarity of a subjective text. This approach is
different from the previous ontology-based approaches in using a weighting method
with two factors to identify the different weights of importance for each semantic
domain feature.

3. Evaluating the proposed approach with an Arabic dataset from the hotels’ domain,
which was selected to build the domain ontology.

The rest of the paper is organized as follows: The next section discusses related
work. Section 3 presents the research methodology and proposed sentiment analysis
approach. Evaluation and results are presented and discussed in Section 4, followed by
conclusions in Section 5.
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2. Related Work

Sentiment classification approaches can be categorized into three fields: Sentimental
SO, Machine Learning (ML), and hybrid approaches. Nithish et al. [36] proposed a feature-
based sentiment analysis model of the English language using product reviews. They
applied the feature level analysis to mobile product reviews and reached 70% accuracy.
Thakor and Sasi [19] presented a sentiment analysis approach to classifying negative
sentiments in social media content based on ontology. The proposed approach successfully
classified 253 negative tweets out of 494 tweets. In [21], the authors proposed a sentiment
analysis approach based on Latent Dirichlet Allocation (LDA) topic clusters, domain
ontology, and SentiWordNet for Nokia 6610 cellular phone reviews. The precision of the
extracted product features was 76.1%.

Alfonso and Sardinha [22] proposed an approach for holding the relationships between
aspects, associations of aspects, and their expressions of opinion for aspect-based sentiment
analysis using a fuzzy ontology. They tested their approach on the hotels’ domain, where
each aspect of the hotel got a score, and then they calculated the total score for the hotel by
accumulating the scores of each aspect.

Zehra et al. [23] proposed an approach to construct a recommendation system based
on sentiment analysis using ontology. The researchers focused on a Facebook closed group
that includes posts and comments about various schools collected randomly. Salas-Zárate
et al. [24] proposed an aspect-level opinion mining approach to the diabetes domain using
ontologies to identify the aspects related to diabetes in the tweets.

Lazhar and Yamina [37] examined the effectiveness of domain ontologies in ASA.
Mahyoub et al. [38] presented in their study a sentiment lexicon for the Arabic language
when the proposed system worked to specify the sentiment scores for each word in-
cluded in the Arabic WordNet. The accuracy of the classification reached 96%. Soliman
et al. [39] presented an approach to building a Slang Sentimental Words and Idioms Lexicon
(SSWIL) of opinion words. They also worked to categorize Arabic news comments on
Facebook separating the SVM classifier into two classes: satisfy and dissatisfy, with an
accuracy rate of 86.86%.

ML approaches use ML techniques such as Naive Bayes (NB), Support Vector Machines
(SVM), Bayesian Network (BN), Maximum Entropy (ME), and Neural Network (NN) for
building classifier models [12,40–46]. Several ML approaches were proposed for sentiment
analysis of standard or dialect Arabic tweets dataset based on classes of polarity [47–52]
or using the rough set-based concepts [53]. Tripathy et al. [54] presented an ML approach
for English language sentiment classification. Jagdale et al. [55] applied sentiment analysis
to the English language using ML techniques on a dataset collected from Amazon about
different products reviews. Other studies considered sentiment analysis for different
languages, such as Chinese [56], Turkish [57], and Lithuanian [58].

Hybrid approaches combine different semantic orientation approaches with different
machine learning approaches to improve the results of the sentiment analysis process [59–61].
Several studies proposed a hybrid approach for sentiment analysis of different Arabic
dialects tweets [62–64] and tweets of product reviews [65].

We benefit from these studies to build an enhanced approach for ASA using the
ontology model. Tartir and Abdul-Nabi [29] focused on the semantic relations between
sentiments and their instances to present a semantic orientation approach. In other semantic
orientation approaches such as the studies of Thakor and Sasi [19–24], they focused on
the use of ontology for feature identification and extraction without considering any other
information from the ontology tree such as the levels of features, while El-Halees and
Al-Asmar [25] used the levels of features to calculate the polarity, by multiplying each
feature level with its sentiment polarity, where the levels indicate the feature importance.
In this research, we used the ontology to identify and extract the domain features and their
levels, while at the same time the frequencies of these features in the review’s dataset are
also used to identify the importance of each feature.
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3. Method

This section presents and discusses the methodology followed in this study. The first
subsection describes the overall approach design. The Arabic resources used in this work
are described in Section 3.2, while the third subsection describes the main research phases
and the entire steps in each phase in more detail.

3.1. Overall Approach Design

The overall methodology to classify Arabic textual reviews based on sentiment analysis
using ontology is divided into five main phases, and each phase has several steps, as
illustrated in Figure 1.
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3.2. Description of the Arabic Resources

To illustrate the steps of the proposed method, it is beneficial to introduce the Ara-
bic resources that were used in the evaluation; this will help the reader to gain insight
into the proposed method. We used ElSahar and El-Beltagy [66] dataset to extract the
domain-specific ontology and to evaluate and test the model. The overall dataset com-
prises around 33 thousand automatically annotated reviews in various domains which are:
movies, restaurants, hotels, and products. Also, domain-specific lexicons contain about
two thousand entries semi-automatically generated from the reviews.

The hotel reviews dataset contains around 15 thousand Arabic user reviews, extracted
from the TripAdvisor website. The authors employed the open-source Scrapy framework,
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for establishing custom web crawlers. Table 1 describes the general statistics of the hotels’
datasets of ElSahar and El-Beltagy [66]. Table 2 holds a sample hotel review from the
dataset, where each row is considered as a user opinion on a particular hotel and the
identified polarity for that review. We added the review translation.

Table 1. Hotel reviews’ statistics of ElSahar and El-Beltagy dataset.

Total Positive Reviews Total Negative Reviews Total Neutral Reviews

10,775 2647 2150

Table 2. Sample hotel review from ElSahar and El-Beltagy dataset.

# Review Text Polarity

1
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Previous ASA studies suffered from the unavailability of adequate resources that
classify the opinion words (sentiment lexicons). Although there exist some efforts to build
lexicons in Arabic, they still have limitations such as unclear usability, small size, and
non-publicly shared lexicons. ArSenL is an Arabic SentiWordNet lexicon developed by
Badaro et al. [67] to solve the previously mentioned limitations. The developers created
the first large-scale publicly shared resource for opinion mining in standard Arabic. Their
lexicon was built based on three different available resources: English sentiWordNet, the
Standard Arabic Morphological Analyzer (SAMA), and Arabic WordNet.

Two values are attached with each existing lemma entry in the lexicon which indicates
the positive and negative polarity scores. It contains four types of Part of Speech (POS)
tags (adjective, noun, verb, and adverb). The lemmas are presented in Buckwalter’s (2004)
format to facilitate the NLP processes. ArSenL contains a total of around 28,760 lemmas
and 157,969 Synsets which is considered a large-scale Arabic sentiment lexicon. Table 3
provides a sample of the ArSenL lexicon content; we added a column that represents each
sentiment in an Arabic form and its translation in English as well.

Table 3. Sample of ArSenL lexicon.

Arabic Form Meaning Aramorph Lemma POS Positive Sentiment
Score

Negative Sentiment
Score

hQ 	̄ Happyness faraH_1 Noun 0.5 0.125
	à 	Qk Felt sad Hazin-a_1 Verb 0 0.5
	K
Qå�� Honorable $ariyf_2 Adjective 1 0

3.3. Main Phases of the Approach

This section aims to briefly describe and discuss the main phases depicted in Figure 1
by explaining the steps and processes which are used for each phase.

3.3.1. Ontology Building

For the proposed semantic orientation approach of sentiment analysis, we need to
build domain ontology. This ontology is used as a domain concept dictionary to extract
the domain features with their importance. In this phase, we built domain ontology

1 (Positive)Translation: Excellent-wonderful-I recommend it to everyone. In October 2013 I stayed 3 days in the hotel-it was more
than wonderful-suitable prices-excellent service-rooms are very clean and bathrooms are wonderful-hotel management
and staff are more than excellent-security guards are excellent-the restaurant, bar and nightclub are wonderful
Really-I’ve never seen a better hotel than that in Addis Ababa.

Previous ASA studies suffered from the unavailability of adequate resources that
classify the opinion words (sentiment lexicons). Although there exist some efforts to build
lexicons in Arabic, they still have limitations such as unclear usability, small size, and
non-publicly shared lexicons. ArSenL is an Arabic SentiWordNet lexicon developed by
Badaro et al. [67] to solve the previously mentioned limitations. The developers created
the first large-scale publicly shared resource for opinion mining in standard Arabic. Their
lexicon was built based on three different available resources: English sentiWordNet, the
Standard Arabic Morphological Analyzer (SAMA), and Arabic WordNet.

Two values are attached with each existing lemma entry in the lexicon which indicates
the positive and negative polarity scores. It contains four types of Part of Speech (POS)
tags (adjective, noun, verb, and adverb). The lemmas are presented in Buckwalter’s (2004)
format to facilitate the NLP processes. ArSenL contains a total of around 28,760 lemmas
and 157,969 Synsets which is considered a large-scale Arabic sentiment lexicon. Table 3
provides a sample of the ArSenL lexicon content; we added a column that represents each
sentiment in an Arabic form and its translation in English as well.

Table 3. Sample of ArSenL lexicon.

Arabic Form Meaning Aramorph Lemma POS Positive Sentiment
Score

Negative Sentiment
Score

hQ 	̄ Happyness faraH_1 Noun 0.5 0.125
	à 	Qk Felt sad Hazin-a_1 Verb 0 0.5
	K
Qå�� Honorable $ariyf_2 Adjective 1 0

3.3. Main Phases of the Approach

This section aims to briefly describe and discuss the main phases depicted in Figure 1
by explaining the steps and processes which are used for each phase.

3.3.1. Ontology Building

For the proposed semantic orientation approach of sentiment analysis, we need to
build domain ontology. This ontology is used as a domain concept dictionary to extract
the domain features with their importance. In this phase, we built domain ontology
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by extracting the concepts that are relevant to the hotel domain using Latent Dirichlet
Allocation (LDA) with manual approaches. Two lists of domain concepts are generated;
one of them is extracted using the LDA algorithm, and the other list is extracted from the
dataset manually because LDA ignores the concepts with low frequencies [26].

Figure 2 provides a graphical representation of LDA topic modeling. The Latent
Dirichlet Allocation (LDA) model, proposed by Blei et al. [68], is an unsupervised method
that is well-known in text mining applications. It can recognize the latent topics from several
documents automatically [26]. LDA is used to arrange a document text into specified topics.
It generates topics per documents model and words per topic model, using Dirichlet
distributions [69]. Each topic is a collection of keywords, and each keyword participates in
a specific weightage to the topic [68]. Variables and parameters which appear in Figure 2 of
the LDA model are interpreted as: D is the number of documents in the corpus, N is the
number of words in a specified document, A is the Dirichlet prior parameter on the topic
distributions per document, B is the Dirichlet prior parameter on the word distribution per
topic, Θ is the topic distribution for a specified document, Φ is the word distribution for a
specified topic k, TP is the topic assignment for a word in the specified document, and W is
the specified word.
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In the proposed approach, at first, the LDA is used to generate topic clusters from the
dataset where each topic contains a group of keywords. To implement the LDA model using
Python, Algorithm 1 is used. The portion of the dataset which is assigned for building
ontology is imported in Python. Several preprocessing steps are utilized to normalize
reviews’ sentences, tokenize them into words, and remove unnecessary words. Two inputs
are required for running the LDA modeling which are the dictionary and the corpus that
report the distinct words and their repetitions in the training data. The Term Frequency-
Inverse Document Frequency (TF-IDF) transformation is applied to the entire corpus, and
then the LDA is run. The resulting topics contain keywords unlike to be domain concepts
such as sentiments [21], so human evaluation is used to filter these topics and to judge
each keyword to determine suitable domain concepts. Table 4 provides a sample of LDA-
generated topics from the dataset of ElSahar and El-Beltagy [66], where the keywords in
bold represent possible domain concepts.

For the manual list of concepts, human evaluators are contributed to extracting domain
concepts from a set of reviews manually, and then the extracted concepts are compared with
the list of concepts using LDA and combined the two lists. The evaluators read the final list
to identify the distinct concepts and their synonyms; also, they identify the relationships
between them to determine their positions from the top to the bottom of the ontology
tree. The final ontology is presented using the Protégé tool [70] to facilitate identifying
the level for each concept, where the classes and subclasses represent concepts and sub-
concepts for that domain [71]. We used the Protégé tool only to draw the ontology instead
of manual drawing.
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Algorithm 1 Building the LDA topic model

Input: Hotel Reviews Dataset
Output: Topics with Keywords

1- Load the hotel reviews dataset.
2- Preprocess the reviews dataset:

Normalization.
Tokenization.
Stopword Removal.

3- Apply Bag-of-Words (BoWs) on the dataset.
4- Apply TF-IDF transformation to the entire corpus.
5- Train the LDA topic model using the Gensim module.
6- Present the topics of the LDA model.

Table 4. Sample of the generated LDA topics and keywords.

Topics Keywords

Topic 1
Ñª¢Ó ,YJ
k. ,©K@P, 	 	£ñÓ ,Õ�̄ A£ , 	áºÖß
,Yg. ñ�K, 	J
¢Ë,PA¢ 	̄ @ ,ÈAJ. �®�J�@ ,P 	Y�̄,É 	� 	̄ @, . . . . . .
Restaurant, good, wonderful, employee, staff, can, there, nice, breakfast,
reception, dirty, better, . . . . . .

Topic 2

	PA�JÜØ,ÐAª£ ,ÉJ
Ôg. , ù£A �� , l�'
QÓ,QK
Qå� ,ÐAÔg ,Q�
J.», 	J
 	¢	�,©�̄ñÓ ,Q 	̄ñ�JK
,Zñ�@, . . . . . .
Excellent, food, beautiful, beach, comfortable, bed, bathroom, large, clean,
location, available, worst, . . . . . .

After identifying the concepts, the Arabic WordNet browser and Google translation
are used to search for more semantic Arabic synonyms for each concept. This phase aims
to extract all semantic domain features and all words that have the same meaning as the
domain features. Table 5 provides an example of semantic synonyms for extracted hotel
concepts from the dataset of ElSahar and El-Beltagy [66]. Table 6 shows the total number of
distinct domain concepts and the total number of levels in the constructed hotel ontology.

Table 5. Example of semantic synonyms for extracted hotel concepts.

No Concept Meaning Semantic Synonyms

1 ��Y	J 	̄ Hotel È 	Q 	K 	àA 	g ÉJ
�Kð@ ÉJ
�Kñë 	àñJ
� 	�K.
2 Õ�̄ A£ Staff PXA¿ ��K
Q 	̄ 	¬A�J� Õæ


�K
3 ZA¢ 	« Blanket 	¬AmÌ �éJ
 	K A¢�. PA�KX �èZCÓ �éK
CÓ Ð@Qk 	 ��Qå��

Table 6. Characteristics of the constructed hotel ontology model.

Number of Distinct Concepts Number of Ontology Levels

203 6

For each concept, the level is identified using the Protégé structure, we assume that
the highest level (6) is at the ontology tree root and the lowest level (1) is at the last bottom
feature in the ontology tree. Furthermore, for each concept, we identify the total frequency
by calculating the sum of the concept’s frequency and its synonyms’ frequencies, and then
two important weights are calculated for each of them. All the needed information from
the ontology is stored in a separate file as a domain concepts dictionary. Each row in
the domain concepts dictionary consists of Domain_Concept, Concept_Level_Importance,
Concept_Frequency_Importance, and List_of_Synonyms.
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3.3.2. Text Preprocessing

The reviews dataset is unstructured and contains stopwords, so it needs to be prepro-
cessed. Text preprocessing is intended to make the reviews consistent and to represent them
in some standard form to facilitate conducting systematic processes. Some NLP processes
were used to preprocess the textual reviews. These processes include sentence tokenization,
normalization, stopword removal, word tokenization, POS tagging, and stemming. Table 7
provides an example for each of them. English translation of the Arabic input is added.

Table 7. Example of a user review after each of the preprocessing steps.
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3.3.3. Domain Features and Initial Polarity Identification

This phase aims to distinguish the domain features and sentiment words using the
POS, where the nouns are considered as candidate domain features for identification and
extraction using the domain dictionary. The noun tags using the Stanford POS tagger [72]
are NN, DTNN, NNP, DTNNP, NNS, DTNNS, NNPS, DTNNPS, NOUN, NOUN_QUANT.
The other words such as adjectives, verbs, and the residual nouns which were not found
in the domain dictionary are considered candidate sentiment words to match with the
lexicon [37].

To extract the sentiment words around each domain feature, the N-gram-around
method achieves considerable results in identifying the sentiment words related to each
domain feature [20,24]. The initial polarity for the domain feature is calculated based on
the sum of the positive scores and the sum of the negative scores for the sentiment words
which are extracted using the N-gram-around method.

To search and match each sentiment word with the lexicon, three methods are used:
the original word is matched with the lexicon; if not found, the word stem is matched with
the lexicon; and if not found, the word root is matched with the lexicon. If neither the
word nor its stem nor its root is found, its sentiment polarity is considered zero. For this
step, we used the Tashaphyne stemmer [73], which is supported in Python, to generate
both stems and roots.
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Negations and intensifiers are handled during identifying sentiment words’ polarities.
Negation in the Arabic language is expressed by adding ( ��Ó/B/ 	áË/ÐY«) “not” before a
verb, noun, or adjective. If any of the negation terms appears before a sentiment word, it
counters the meaning of that word; adding a negation particle before a positive word would

make it negative, and vice versa. For example, in the sentence ( �é 	K AÓ

@ ��Ó �èP@XB@), the word

( �é 	K AÓ

@) is positive and its positive and negative scores using the ArSenL lexicon are (0.083,

0.05), respectively. When the negation particle ( ��Ó) comes before it, its scores change to

(0.05, 0.083), which is negative. Intensifiers in the Arabic language, such as ( @Yg. @Q�
�J»/ AÓAÖ �ß)
are added after a sentiment word to emphasize the meaning and indicate the strength of
the meaning. So, we consider that when they appear after a sentimental word, the polarity
for that word is doubled. For example, (©K@P ��Y	J 	®Ë @) is a sentiment word with positive and

negative scores of (0.402, 0.069), respectively. After adding ( @Yg. ) to the sentence, its scores
changed to (0.804, 0.138). Table 8 provides an example of this phase.

Table 8. Example of domain features and initial polarity identification.

Original Review
Input

�èP 	Y�̄ �èXAm.�� Xñk. ð I. �. ��. ÑêËAÒëB ZAJ
���B AK. �HQª �� ú

	æ 	K @ B@ �é 	JK
YÖÏ @ 	Q»QÓ ú


	̄ ©K @P ©�̄ñÓ

Step Output

Extract Domain Features with Importance
(©�̄ñÓ, NN):(levelImportance= 5, freqImportance= 1)

( �èXAm.��, NN):(levelImportance= 2, freqImportance= 0.25)

Extract Around Sentiments
(©�̄ñÓ)[‘©K@P’, ‘ 	Q»QÓ’, ‘ �é 	JK
YÖÏ @’, ‘ �HQª ��’]

( �èXAm.��)[‘ �èP 	Y�̄’, ‘ �HQª ��’, ‘ZAJ
���B AK.’, ‘ÑêËAÒëB ’, ‘Xñk. ð’]

Initial Domain Feature Polarity Identification

Positive Score (©�̄ñÓ) = 0.4282/Negative Score (©�̄ñÓ) = 0.09063

- Initial Polarity(©�̄ñÓ) = 0.4282 − 0.09063 = 0.33757

Positive Score ( �èXAm.��) = 0.20594/Negative Score ( �èXAm.��) = 0.7226

- Initial Polarity( �èXAm.��) = 0.20594 − 0.7226 = −0.51666

3.3.4. Overall Semantic Review Polarity Calculation

Based on the extracted semantic domain features for each review, we need to calculate
a total semantic review polarity. The initial polarity of each domain feature is affected by
the importance of that feature. The Formula (1) is used to calculate overall semantic review
polarity based on semantic features’ importance:

Overall Semantic Review Polarity =

∑n
i=1 Initial Polarity (DFi) x (L (DFi)+F (DFi))

(1)

where n is the number of the extracted domain features from a review, DFi represents the
specific domain feature that has an initial polarity, L represents the level of importance of
the domain feature (DFi), which is identified based on its level in the ontology tree, and F
represents the frequency importance of the domain feature (DFi) which takes the following
values—0.1, 0.25, 0.50, 0.75, 1—to indicate its importance from domain users’ point of view.
Since features’ levels are not dependent on the dataset, we consider the domain feature
frequency to represent the importance of the domain features as they are repeated in the
dataset. High frequent domain features in the dataset means that users are more interested
in those features in that domain than the other ones. Domain features are divided into
five groups based on their frequencies; the most frequent features in the dataset get the
highest importance value as (1), and so on, whereas the lowest frequent features get the
lowest importance value as (0.1). We experiment with assigning different weights for this
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factor for each group of domain features. We noticed that these weights of importance have
improved the performance of the semantic orientation sentiment analysis.

The review label is determined as positive (+1) if the overall semantic review polarity
is greater than or equal to zero because the third class (neutral) is ignored in the proposed
approach and we noticed that the number of reviews where their total semantic polarity
exactly equals to zero are very few in the dataset, so we considered them as positive reviews.
Conversely, the review label is determined as negative (−1) if the overall semantic review
polarity is less than zero. Table 9 illustrates the phase of calculating the overall semantic
review polarity using the previous phase example.

Table 9. Example of calculating overall semantic review polarity.

Extracted Domain Features and Identified Importance

Input

-Initial Polarity (©�̄ñÓ) = 0.33757 (levelImportance = 5,
freqImportance = 1)
-Initial Polarity ( �èXAm.��) = −0.51666 (levelImportance = 2,
freqImportance = 0.25)

Step Output

Calculating Overall Semantic Polarity for the Review based on
Domain Features Importance

(©�̄ñÓ) = Initial Polarity * (L + F) = 0.33757 *(5 + 1) = 2.02542

( �èXAm.��) = Initial Polarity * (L + F) = −0.51666 *(2 + 0.25)
= −1.162485
Overall Semantic Review Polarity = 2.02542 + (−1.162485)
= 0.862935

Determine Review Label Positive (+1)

The overall review polarity is considered positive, although the review contains one
feature that is considered positive with an initial polarity of (+0.33757), and one feature that
is considered negative with an initial polarity of (−0.51666), where the negative feature
has the higher initial value. Since the positive feature has higher importance than the
negative feature; the total importance of the positive feature is (6) and for the negative
feature is (2.25).

3.3.5. Performance Evaluation

In this phase, some performance evaluation metrics are used to measure the perfor-
mance of the proposed approach, and to compare it with some other semantic orientation
approaches used by researchers in the literature. The performance evaluation measures
are accuracy, recall, precision, and f1-measure. Referring to [54], the precision and recall
measures can be computed for the positive class using the following equations:

Precision (Positive) =
TP

TP + FP
(2)

Recall (Positive) =
TP

TP + FN
(3)

where:

• TP (True Positive): represents the number of reviews that are classified as positive in
both original classifications and predicted classifications.

• TN (True Negative): represents the number of reviews that are classified as negative
in both original classifications and predicted classifications.

• FP (False Positive): represents the number of reviews that are classified as positive in
the predicted classifications, while classified as negative in the original classifications.

• FN (False Negative): represents the number of reviews that are classified as negative in
the predicted classifications, while classified as positive in the original classifications.
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4. Results and Discussion

This section describes and discusses the conducted experiments for performance
evaluation. We have implemented an automatic framework that combines several tools and
libraries. The software architecture is depicted in Figure 3. We used a Python version of
3.7 and worked on anaconda 3 with the following libraries and modules: Pandas, Gensim,
NLTK, CLTK, PyArabic, PyAramorph, Stanford POS Tagger, and Tashaphyne. Pandas
offer a Data Frame Object for quick and effective data handling along with integrated
indexing; tools capable of reading and writing data between in-memory data structures
and various formats such as text, Excel, and CSV files [74]. A python dictionary is a Python
data structure that consists of a set of (key: value) pairs, where the keys are unique within
one dictionary. The main functions of a dictionary are storing and extracting values using
their keys [75]. We used nested dictionaries, where a collection of dictionaries is inside one
single dictionary.
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4.1. Dataset Balancing

We examine the proposed approach using the hotel reviews dataset of ElSahar and
El-Beltagy [66] which was presented in Section 3.2. The dataset consists of unbalanced
classes because it contains different sizes of positive, negative, and neutral reviews. At first,
the neutral reviews were excluded based on the assumption that neutral texts are located
close to the boundary of the binary classifier. Moreover, neutral texts are supposed to be
less informative in comparison with clear positive or negative texts [76].

After that, we balanced the remaining positive and negative reviews using the under-
sampling method. The objective of using under-sampling to balance the reviews is to
gain a high performance of classification and to prevent the classifier from acting biased
toward the majority group examples [77]. The random under-sampling is a non-heuristic
method that is used to balance class sizes through the random elimination of majority class
examples to make them equivalent to the smallest class size [78].

Table 10 shows the size of each class before and after class balancing. The balanced
reviews dataset consists of 5294 hotel reviews (2647 positive reviews and 2647 negative
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reviews). 3294 hotel reviews are used for domain ontology extraction using LDA and
the manual approach. The main goal is to extract the domain ontology based on the
available review’s dataset. The remaining 2000 hotel reviews (1000 positive reviews and
1000 negative reviews) are used for ASA experiments, to evaluate the effectiveness of the
proposed approach. The authors of [20] divided the reviews dataset into a similar approach
for the same purposes.

Table 10. Dataset statistics before and after class balancing.

Total Positive Reviews Total Negative Reviews Total Reviews

Unbalanced Reviews 10,775 2647 13,422
Balanced Reviews 2647 2647 5294
Portion1: Used for Ontology
Extraction 1647 1647 3294

Portion2: Used for Sentiment
Analysis Experiments 1000 1000 2000

4.2. Lexicon Baseline Evaluation

The lexicon baseline approach is selected for the comparison since the lexicon baseline
approach does not consider the domain concepts to identify review polarity; it simply
used a sentiment lexicon to extract all the words from the review with their polarities. The
ArSenL lexicon of Badaro et al. [67] is used in this experiment. Tables 11 and 12 present the
confusion matrix and performance measures of the lexicon baseline approach.

Table 11. Confusion matrix for lexicon baseline approach.

Predicted

Positive Negative

Original
Positive 898 102

Negative 404 596

Table 12. Performance evaluation of lexicon baseline approach.

Precision Recall F1-Measure

Positive 68.97% 89.80% 78.01%

Negative 85.38% 59.60% 70.19%

Average 77.17% 74.70% 74.10%

The confusion matrix of the lexicon baseline approach shows that the number of
correctly classified positive reviews is 898, and the number of correctly classified negative
reviews is 596. The number of incorrectly classified positive reviews is 404, and the number
of incorrectly classified negative reviews is 102. The overall precision of the lexicon baseline
approach is 77.17% with a higher precision value for the negative reviews; the opposite is
the case with the recall since the higher recall value is for the positive class with an overall
recall of 74.70%. The overall f-measure value is 74.10%.

4.3. Ontology Baseline Evaluation

The hotel ontology, built of 203 concepts and 6 levels, is used in this experiment as a
domain concepts dictionary for features selection. The domain features are considered the
best semantic features to represent each review. The hotel concepts, along with the noun
POS tags, are used to identify the domain features and calculate their polarities using the N-
gram around method with N = 4. 4 words before and 4 words after each domain feature are
extracted and searched in the ArSenL lexicon to identify its polarity. The confusion matrix
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of this approach is shown in Table 13. The number of true-positive reviews is 929, and the
number of true-negative reviews is 638. The number of false-positive reviews is 362, and
the number of false-negative reviews is 71. Table 14 presents performance measures of the
ontology baseline approach. The overall precision is 80.96% with a higher precision value
for the negative reviews. The overall recall is 78.35%, where the positive class obtained a
higher recall value. The overall f-measure is 77.87% with the higher f-measure value for the
positive class.

Table 13. Confusion matrix for ontology baseline approach.

Predicted

Positive Negative

Original
Positive 929 71

Negative 362 638

Table 14. Performance evaluation of ontology baseline approach.

Precision Recall F1-Measure

Positive 71.95% 92.90% 81.09%
Negative 89.98% 63.80% 74.66%
Average 80.96% 78.35% 77.87%

4.4. Ontology with Level Importance Evaluation

The ontology with level importance approach is utilizing the ontology for both domain
features extraction and domain feature importance identification based on their levels in
the ontology tree. The hotel dictionary which was built based on the extracted ontology is
used to determine the hotel features and their levels. The confusion matrix of this approach
is depicted in Table 15. This approach predicted 938 and 644 reviews truly from the original
one thousand positive reviews and one thousand negative reviews, respectively. The
number of falsely predicted reviews from the original negative reviews is 356, and the
number of falsely predicted reviews from the original positive reviews is 62.

Table 15. Confusion matrix for ontology with level importance approach.

Predicted

Positive Negative

Original Positive 938 62
Negative 356 644

Performance measures of ontology with the level importance approach are shown in
Table 16. The negative class precision is 91.21% which is higher than the precision of the
positive class, and the average precision of this approach is 81.84%. The positive class recall
is 93.80% which is higher than the negative class recall, and the average recall for both
classes is 79.1%. The average f-measure is 78.63% with a higher value for positive reviews.

Table 16. Performance evaluation of ontology with level importance approach.

Precision Recall F1-Measure

Positive 72.48% 93.80% 81.77%
Negative 91.21% 64.40% 75.49%
Average 81.84% 79.10% 78.63%
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4.5. Ontology with Level and Frequency Importance Evaluation

In this experiment, we extracted the hotel features by matching the ontology concepts
with the identification of their levels and their frequency importance, so the hotel concepts
dictionary is used in this experiment to identify the three elements. Tables 17 and 18 present
the confusion matrix and performance measures of ontology with the level and frequency
importance approach.

Table 17. Confusion matrix for ontology with level and frequency importance approach.

Predicted

Positive Negative

Original Positive 937 63
Negative 353 647

Table 18. Performance evaluation of ontology with level and frequency importance approach.

Precision Recall F1-Measure

Positive 72.63% 93.70% 81.83%
Negative 91.12% 64.70% 75.67%
Average 81.87% 79.20% 78.75%

The number of correctly classified positive reviews using this approach is 937, and the
number of correctly classified negative reviews is 647. The number of incorrectly classified
positive reviews is 353, and the number of incorrectly classified negative reviews is 63.
The performance measures that are presented in Table 18 demonstrated that the proposed
approach achieved an overall precision of 81.87% with a higher precision value for the
negative reviews, and it achieved an overall recall of 79.20% with a higher recall value for
the positive class. The f-measure value is 78.75%.

4.6. Results Summary and Discussion

Using ontology with domain features‘ importance in the two approaches, we observed
the following: the ontology with level importance and the ontology with level and fre-
quency importance have the best results through all the semantic orientation approaches
with a minor difference between them. Figure 4 summarizes results for the four schemes
described earlier on average of positive and negative.
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A comparison between different state of the art approaches for ASA is depicted
in Figure 5. It reveals that the first approach yields 79.10% as accuracy. The second
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approach yields 79.20% as accuracy. This may indicate that the way we utilized the
concepts’ frequencies in the formula needs improvement to increase the enhancement of
the proposed approach. Although the difference between their performances is small, the
suggested method that incorporates two factors to represent semantic domain features
importance still has comparable results to other approaches.
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Figure 5. Accuracy of different state of the art approaches for ASA.

Combining domain ontology with the lexicon baseline approach showed an improve-
ment up to 3.65% on accuracy value. The lexicon baseline approach did not apply any
feature selection method; it just extracted all review words. Combining domain features’
importance using two factors with the ontology baseline approach presents an improve-
ment reached 0.85% for the accuracy value. Finally, the proposed approach improved the
lexicon baseline approach by 4.5% for accuracy.

A comparison between the proposed approach with some state-of-the-art deep learn-
ing, machine learning, and aspect-based classifiers used for ASA is provided in Table 19.
We have selected approaches that have used in common the same sentiment lexicon in [67],
or the same hotels domain dataset in [66] for aspect-level-based methods.

Table 19. A comparison with some state-of-the-art approaches for ASA.

Reference Method Sentiment Lexicon Dataset Accuracy

Al-Sallab et al. [79] Deep Learning using Recursive
Auto Encoder (RAE). ArSenL ATB, QALB, Tweets

86.5%,
79.2%,
76.9%

Baly et al. [80] Deep Learning using Recursive
Neural Tensor Networks (RNTN). ArSenL, ArSenTB QALB 80%

Mataoui et al. [81] Syntax-based Aspect Detection. Mataoui et al. [82] Hotels, Products 74.39%,
72.28%

Mohammad et al. [83] Aspect-based using Support Vector
Machine (SVM). —— Hotels 76.42e%

Proposed approach Ontology-based for Domain
Features Extraction and Weighting. ArSenL Hotels 79.20%

Al-Sallab et al. [79] presented A Recursive Deep Learning Model for Opinion Mining
in Arabic (AROMA). AROMA was tested on three Arabic datasets that were varied in
writing styles and genres. Their method on the second dataset obtains an accuracy that
is similar to our approach accuracy, which was (79.2%). Baly et al. [80] presented another
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deep learning approach for opinion mining using Recursive Neural Tensor Networks
(RNTN). Their method obtains a slightly higher accuracy rate than our approach, where
the best value of accuracy was 80%. Mataoui et al. [81] and Mohammad et al. [83] methods
were based on aspects of detection and extraction of hotel datasets. In comparison with
their experimentation results, which were 74.39% and 76.42% accuracy, respectively, our
proposed approach of sentiment analysis based on domain aspects detection, outperformed
the first method accuracy by 4.81%, and the second method by 2.78%.

5. Conclusions

In this paper, we propose a semantic orientation approach for ASA using ontology.
It incorporates a semantic domain features importance weighting method. The approach
works at the feature level using an ontology of the domain concepts to extract the semantic
features. It combines different factors which are: features’ levels in the ontology tree, and
features’ frequencies in the dataset to generate overall semantic review polarity based
on domain features’ importance. The conducted experiment for the ontology with the
level and frequency importance approach and the obtained results from this experiment
demonstrated that using the frequency importance factor along with the level importance
factor as an indication for the domain feature importance can increase the performance of
the lexicon baseline and ontology baseline approaches with overall accuracy and f-measure
values reach to 79.20% and 78.75%, respectively. The proposed approach can be comparable
with the state-of-the-art methods for sentiment analysis in the Arabic language.

During this work, many limitations were faced, including the unavailability of suitable
Arabic ontology for the selected domain and the unavailability of adequate lexicons for
the different Arabic dialects. Future work can be derived based on these limitations: (1)
Using a fully automatic approach to extract the domain ontology from the dataset available;
(2) Building and using sentiment lexicon for different dialects in the Arabic language, as well
as the lexicon that is used for the standard Arabic; (3) Building and using domain-specific
sentiment lexicon for different domains.
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