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Abstract: Gradient boosting ensembles have been used in the cyber-security area for many years;
nonetheless, their efficacy and accuracy for intrusion detection systems (IDSs) remain questionable,
particularly when dealing with problems involving imbalanced data. This article fills the void in the
existing body of knowledge by evaluating the performance of gradient boosting-based ensembles,
including gradient boosting machine (GBM), extreme gradient boosting (XGBoost), LightGBM, and
CatBoost. This paper assesses the performance of various imbalanced data sets using the Matthew
correlation coefficient (MCC), area under the receiver operating characteristic curve (AUC), and F1
metrics. The article discusses an example of anomaly detection in an industrial control network and,
more specifically, threat detection in a cyber-physical smart power grid. The tests’ results indicate
that CatBoost surpassed its competitors, regardless of the imbalance ratio of the data sets. Moreover,
LightGBM showed a much lower performance value and had more variability across the data sets.

Keywords: imbalance learning; oversampling; anomaly detection; gradient boosting ensembles;
power grid; MWMOTE

1. Introduction

Power grid infrastructure has a significant positive impact on economic growth. It is
an effective tool for stimulating regional economies [1]. In its current form, a smart power
grid (SP) regulates both the supply of power and information across its intricate cyber-
physical network. Hence, SP is a critical infrastructure with a significant socio-economic
benefit. An SP is a sophisticated cyber-physical system that integrates the physical power
system with computing, sensor, and advanced communication technologies so that an
efficient and reliable process of transmission, distribution, monitoring, and control of
electricity can be considerably maintained [2]. The majority of countries consider SP to be a
vital infrastructure and have developed security procedures and policies to protect it [3,4].
As the design and implementation of SP become increasingly complex in nature, phasor
measurement units (PMUs) have been adopted to increase system performance. One of the
advantages of this approach is the process of making quick decisions based on the gathered
data. Nonetheless, attackers can launch attacks to wreak havoc on power grid networks
and induce blackouts [5].

Previous works have proposed IDSs to secure SP [6–9]. One of the IDSs domain
research issues is choosing a seamlessly and computationally efficient classifier in the wild.
It is not that straightforward since every intrusion data set has its own characteristics,
differing from network architecture and attack scenario distributions. Knowing that those
aforementioned problems are critical, this paper aims to establish a comparative analysis
of several ensemble learners, providing researchers in this field with a better insight into
finding the best-performing classifier ensembles. This study focuses on gradient boosting
ensembles for IDSs in power grids, an area of research that has received scant attention in
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the current literature. In addition, those ensemble algorithms are deemed to be the most ef-
fective approaches for classification tasks involving imbalanced data problem [10,11]. Four
implementations of gradient boosting ensembles are taken into account in our experiment,
namely GBM [12], XGBoost [13], LightGBM [14], and CatBoost [15]. To sum up, this article
has the following contributions:

• We benchmark several implementations of state-of-the-art gradient boosting ensem-
bles for anomaly detection on power grids;

• We assess the performance of each gradient boosting ensemble under different imbal-
anced ratios (Ir);

• We apply an oversampling strategy, namely the majority weighted minority oversam-
pling technique (MWMOTE) [16], to overcome the imbalanced data issue.

We structure the rest of this article as follows. Section 2 describes pertinent existing
works in the realm of machine learning-based IDSs in power grids, followed by Section 3,
which presents an overview of the oversampling method and gradient boosting ensembles.
The experimental settings and results are specified in Section 4, while, finally, we conclude
with some remarks in Section 5.

2. Related Work

This section presents the state-of-the-art machine learning techniques for IDSs in power
grids. We present the existing studies in chronological order. Hink et al. [17] investigated
the potential of several machine learning algorithms as an approach for discerning kinds
of power system disruptions, with an emphasis on identifying cyber-attacks. Pan et al. [6]
utilized a sequential pattern mining to identify patterns associated with power systems
outages and cyber-attacks effectively. In addition, the work also introduces the term
“common path”, which is a sequence of critical system states in the temporal order that
corresponds to distinct sorts of disruptions and cyber-attacks. Similarly, Pan et al. [7] built
a hybrid IDS that can learn the temporal states of power system circumstances such as
disruptions, regular control operations, and cyber-attacks. The proposed model is built
based on a data mining method called “common path mining” to discover patterns using a
power system audit log and other measurement data.

A new privacy-preserving IDS based on the correlation coefficient and expectation-
maximization clustering algorithm is introduced in [18]. The proposed model is tested
on the multi-class attacks of the power system data sets. Next, Keshk et al. [8] proposed
another privacy-preserving technique for anomaly-based IDS. The proposed framework is
comprised of two modules, namely a data preprocessing module and an anomaly detection
module. The power system and the UNSW-NB15 data set are considered to evaluate
the performance of the proposed technique. A gradient boosting-based feature selection
technique for an IDS in smart grids is presented in [19]. The proposed model does not
only reduce execution time but also enhances the detection rate. Several machine learning
algorithms are applied to the selected feature subset.

Upadhyay et al. [9] combined a recursive feature elimination-XGBoost-based feature
selection and majority voting-based classifier ensemble models for IDS in power grids.
The ensemble framework blends nine heterogeneous individual learners to obtain an
accurate solution to the IDS task. It improves the performance accuracy while reducing
the false rate compared to other similar existing techniques. Lastly, this current work
is similar to Louk and Tama [20], and they compared and analyzed classifier ensembles
that are specifically designed for handling imbalanced data sets. The experiment results
show that EasyEnsemble outperforms other classifier ensemble models considered in the
study. Moreover, undersampling and oversampling techniques effectively improve the
performance of boosting but not of bagging. This work, however, differs significantly from
that presented in Louk and Tama [20] in terms of the classifier ensembles considered and
the oversampling strategy utilized.
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3. Methods

In this section, we first present an overview of the oversampling method considered
in this study, followed by the four classifiers in the gradient boosting family.

3.1. Oversampling Technique

The aim of oversampling methods is to generate a set of synthetic positive examples
based on the training ones. Note that the term ’examples’ refers to “samples” or “instances”
of a data set. Let ζ = {(x1, y1), ..., (xm, ym)} be the training data set, where yi ∈ {−1, 1}
is the data labels; let ζ+ = {(x, y) ∈ ζ : y = 1} be the positive or minority examples; and
let ζ− = {(x, y) ∈ ζ : y = −1} be the negative or majority examples. If |ζ+| > |ζ−|, the
performance of classification algorithms is significantly hampered, particularly when it
comes to the minority examples. Hence, it is necessary to have a method to improve such
performance. In this work, we utilize MWMOTE [16] to generate new examples by filling
up blank spaces among the minority examples. MWMOTE has a benefit over the classical
method, e.g., SMOTE, as it is able to detect noisy examples by assigning higher weights to
borderline examples. The following (Algorithm 1) is the procedure for generating synthetic
examples using MWMOTE.

Algorithm 1: General procedure of majority weighted minority oversampling
technique

Preparation:
Training samples, ζ; number of examples to generate, numEx; threshold, Tclust;
Procedure:
1. Calculate a set of filtered positive examples, ζ+f
2. Calculate positive boundary of ζ+f , U and negative boundary, V.
3. ∀x ∈ V, determine the likelihood of picking x by assigning:

P(x) = ∑y∈U Iα,C(x, y) and normalize those likelihoods.
4. Estimate L1, ..., LM clusters of ζ+ using agglomerative clustering algorithm and
threshold, Tclust

5. Generate numEx by iteratively picking x ∈ V w.r.t. the likelihood P(x), and
update ζ iteratively by performing E := E ∪ {x + r(y− x)}, where y ∈ Lk is
uniformly picked and Lk is the cluster containing x.

3.2. Gradient Boosting Ensembles

Gradient boosting tree (GBT) is an ensemble learning that combines several weak
classifiers into a strong one. It is typically an additive model (e.g., linear addition of weak
classifiers) and uses the CART regression tree algorithm as the base weak model. Let
D = {(xi, yi)|i ∈ {1, ..., l}, xi ∈ Rk, yi ∈ R} be the power system data set with k features
and l examples. It is a binary classification problem, where label y corresponds to each
example x. Hence, the aim of a classification algorithm is to identify a classifier that maps
the examples to either of the two classes (e.g., attack or normal).

Given an ensemble of T trees, the prediction output y(x̂)T for an input x is the sum
of predictions from each tree, y(x̂)T = ∑T

i=1 fi(x), where fi is the output of the i-th re-
gression tree of the T−tree ensemble. To construct the (T + 1)-th tree, GBT minimizes
a regularized objective function Objt = Ωt + Θt, where Ωt is loss function and Θt is a
regularization function to control the over-fitting. In this study, we employ four different
GBT implementations, namely GBM [12], XGBoost [13], LightGBM [14], and CatBoost [15].

4. Experiment Settings and Results
4.1. Power Grid Data Set

To evaluate the classifier ensemble models, we utilize a benchmark data set that
is developed by the Oak Ridge National Laboratories [7]. The data set was generated
by setting up a power grid testbed that includes measurements related to the normal,
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disturbance, control, and cyber attack behaviors of the electric transmission system. The
data set is composed of 128 features that were recorded by PMUs, relay snort alarms, and
other control panel logs. A power system binary-class classification data set is considered
since we aim to perform an anomaly-based intrusion detection task, where a machine
learning algorithm usually classifies whether the traffic is natural or attack. The data set
contains 15 sets with different instance distributions of each class. The class distribution
in each set is measured by the imbalanced ratio (Ir), which is a proportion of #minority
examples to #majority examples. Therefore, a non-skewed data set has a value of 1, and
conversely, a skewed data set has a value less than 1. In summary, the characteristics of
each data set used in this study is provided in Table 1. In addition, the table provides
information concerning the total examples (ζT), number of examples labeled natural (ζ−),
and number of examples labeled attack (ζ+).

Table 1. The characteristics of power system data sets. Imbalance ratio (Ir) less than 0.4 indicates
highly imbalanced data sets.

Data Set ζT ζ− ζ+ Ir

Data 1 4966 3866 1100 0.285
Data 2 5069 3525 1544 0.438
Data 3 5415 3811 1604 0.421
Data 4 5202 3402 1800 0.529
Data 5 5161 3680 1481 0.402
Data 6 4967 3490 1477 0.423
Data 7 5236 3910 1326 0.339
Data 8 5315 3771 1544 0.409
Data 9 5340 3570 1770 0.496

Data 10 5569 3921 1648 0.420
Data 11 5251 3969 1282 0.323
Data 12 5224 3453 1771 0.513
Data 13 5271 4118 1153 0.280
Data 14 5115 3762 1353 0.360
Data 15 5276 3415 1861 0.545

4.2. Evaluation Metrics

In this experiment, we adopt 10-fold cross validation, where the final result is the
mean value of 10 elements. The performance of classifiers on the test set is measured under
three different metrics, i.e., Matthew correlation coefficient (MCC), area under the receiver
operating characteristic curve (AUC), and F1 scores. A performance value is usually

derived from a confusion matrix, H =

(
TP FN
FP TN

)
, which summarizes the outcome of

a binary classification [21,22]. Supposing that FN + TP = ζ+ and FP + TN = ζ−, a

classification algorithm has perfect score if H =

(
ζ+ 0
0 ζ−

)
, where TP is true positive, FN

is false negative, FP is false positive, and TN is true negative.
MCC provides more realistic estimates of the model performance and is calculated as

the Pearson product moment correlation coefficient between actual and predicted scores.
More specifically, it is obtained from the following formula:

MCC =
TP · TN − FP · FN√

(TP + FP) · ζ− · (TN + FN) · ζ+
(1)

where it ranges in the interval {−1,+1}, with −1 and +1 achieved in the case of perfect
misclassification and perfect classification, respectively.
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AUC is a popular metric to summarize the receiver operating characteristic curve,
which is a probability curve that plots the true positive rate (TPR) against false positive
rate (FPR) at various threshold values. Formally, it is calculated as follows:

AUC =
∫ 1

0
TPR(FPR)dFPR =

∫ 1

0
TPR(FPR−1(x))dx (2)

where it ranges in the interval {0, 1}. The higher its value, the more accurate the perfor-
mance of the algorithm is at differentiating between positive and negative classes.

F1 is defined as the harmonic mean of precision and recall metrics. It has the
following form:

F1 =
2 · TP

2 · TP + FP + FN
(3)

where it ranges in the interval {0, 1}, with TP = 0 and FN = FP = 0 gained in case of
perfect misclassification and perfect classification, respectively.

4.3. Hyperparameters Search

Hyperparameters for each implementation were searched using random search [23].
For GBM implementation [12], the hyperparameters were used specify include tree size,
interaction depth, and shrinkage. XGBoost [13] has several hyperparameters to tune such
as maximum depth, η, subsample, column sample by tree, and tree size. There are several
hyperparameters to train LightGBM [14] such as maximum bin, maximum depth, minimum
data in leaf, learning rate, lambda l1, lambda l2, tree size, feature fraction, bagging fraction,
path smoothing, and minimum gain to split. Lastly, the hyperparameters of CatBoost [15]
for tuning include tree size, depth, learning rate, l2 leaf regularization, border count, and
boosting type.

For all implementations, we searched the number of trees from four possible values, i.e., 100,
200, 500, and 1000 trees. We determined the search space of other hyperparameters as follows.
GBM: interaction depth = {3, 4, ..., 12} and shrinkage = {0.005, 0.01, 0.05, 0.1, 0.3}. XGBoost:
maximum depth = {1, 2, ..., 12}, η = {0, 0.1, 0.2, ..., 1}, subsample = {0.1, 0.5, 0.8}, and column
sample by tree = {0.5, 0.6, ..., 0.9}. LightGBM: maximum depth = {1, 2, ..., 15}, maximum bin =
{100, 255}, minimum data in leaf = {100,200,...,1000}, learning rate = {0.01, 0.02, ..., 0.3}, lambda
l1 and l2 = {0, 10, 20, ..., 100}, feature fraction and bagging fraction = {0.5, 0.9}, path smoothing
= {1E− 8, 1E− 3}, and minimum gain to split = {0, 1, 2, ..., 15}. CatBoost: depth = {1, 2, ..., 10},
learning rate = {0.03, 0.001, 0.01, 0.1, 0.2, 0.3}, l2 leaf regularization = {1, 3, 5, 10, 100}, border
count = {5, 10, 20, 30, 50, 100, 200}, and boosting type = {’ordered’,’plain’}.

4.4. Result Discussion

All experiments were run on a machine with a Linux operating system, an Intel Xeon
processor, and 32GB of memory. All data sets used in this study are publicly available (https:
//sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets, accessed on 8 March
2022), while the code was implemented in R using the mlr3 package [24]. This section aims
to provide a performance validation of the gradient boosting ensembles (i.e., GBM, XGBoost,
LightGBM, and CatBoost) in two different scenarios. First, the performance behavior of all
benchmarked algorithms is assessed on the original (e.g., imbalanced) power system data
sets. Second, we analyze the algorithms’ performance on the synthetically oversampled
data sets (e.g., balanced). Here, the MWMOTE technique is used to oversample the minority
class of each data set instances.

Figure 1 depicts the average performance of all algorithms across two distinct scenarios
and data sets with respect to MCC, AUC, and F1 metrics. While LightGBM performs worse
on average than the other three algorithms, all algorithms have appeared to be outstanding
(score > 0.8) and maintain a constant AUC and F1 metric regardless of the Ir of the data set.
More precisely, two metrics, AUC and F1, produce over-optimistic and elevated results;
thus, they do not notify us of ongoing prediction problems. However, a somewhat different
picture emerges when MCC is considered as a performance metric. There is a slight

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
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difference in the algorithms’ performance, particularly when dealing with an imbalanced
data problem. For instance, LightGBM reports relatively low MCC scores for the data set #1,
#11, and #13, despite the fact that those data sets are highly imbalanced (Ir < 0.4). However,
an outlier pattern was discovered in our analysis, in which data set #6 has a lower MCC
score despite having Ir > 0.4. Additionally, unlike AUC and F1, we can argue that MCC is
a consistent and effective statistical metric in any data set without producing misleading
results [21].

Figure 1. Average performance of all algorithms across various power system data sets.

It can also be noted that the performance of CatBoost, XGBoost, and GBM is much more
consistent than the performance of LightGBM, which varies slightly across the data sets
(see Figure 2). There are striking similarities and differences between the four performance
distributions. In particular, the performance distributions of CatBoost, XGBoost, and GBM
have roughly the same median, whereas LightGBM has a much lower median over all
performance metrics. The performance values of LightGBM have much larger variability
than the performance values of the other three algorithms.

Figure 2. The skewness and spread of algorithms’ performance over two distinct scenarios.

Moreover, we apply hierarchical clustering to group the algorithms and data sets using
the Ward.D dissimilarities measure [25]. We chose k = 3 as the number of clusters to be built.
Figures 3 and 4 show the hierarchical clusters of vertical observations (e.g., classification
algorithms) and horizontal observations (e.g., data sets) in imbalanced and balanced data
sets, respectively. The clustering method categorizes the classification algorithms into two
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main groups, where LightGBM has a considerable dissimilarity with GBM, CatBoost, and
XGBoost, irrespective of the performance metrics and data set issues. In imbalanced data
sets (see Figure 3), considering the MCC metric as an example, there are clearly two distinct
groups: The red color group seems to consist of three more distinct groups, whereas the
majority of blue and green color observations (i.e., data set #13, #1, #6, and #11) are clustered
together at approximately the same height. This result confirms that the observations in
blue and green are highly imbalanced data sets (Ir < 0.4), similarly to what we obtained
in the previous section. In contrast, regarding balanced data sets (see Figure 4), there are
obviously two unique groups in which three separate groups seem to be part of each group.

Figure 3. Hierarchical clusters (shown in three distinct colors) of algorithms and imbalanced data sets
in terms of (a) MCC, (b) AUC, and (c) F1 metrics. The color in each cell represents the corresponding
performance value (light yellow: low; dark red: high).

Figure 4. Hierarchical clusters (shown in three distinct colors) of algorithms and balanced data sets
in terms of (a) MCC, (b) AUC, and (c) F1 metrics. The color in each cell represents the corresponding
performance value (light yellow: low; dark red: high).

Lastly, we further benchmarked the algorithms’ performance based on the Friedman
rank test [26,27]. Each algorithm was scored independently for each data set, ascending
from the best-performing algorithm to the worst-performing one based on the performance
metrics [28,29]. Using MCC as an example, the performance of LightGBM is consistent
across two different settings, while CatBoost and GBM performed significantly better in
the balanced data set setting than in the imbalanced data set setting. On the contrary,
XGBoost performs worse when the data sets are balanced than when they are imbalanced
(see Table 2).
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Table 2. Average Friedman rank of all algorithms across different performance metrics.

Scenario Performance
Metric CatBoost GBM LightGBM XGBoost

Imbalanced
MCC 1.47 2.93 4.00 1.60
AUC 1.27 3.00 4.00 1.73

F1 1.40 2.87 4.00 1.73

Balanced
MCC 1.40 2.67 4.00 1.93
AUC 1.53 3.00 4.00 1.47

F1 1.40 2.67 4.00 1.93

5. Conclusions

This paper benchmarked four implementations of gradient boosting ensembles, namely
GBM, XGBoost, LightGBM, and CatBoost, on various imbalanced data sets. We considered
anomaly detection in power grids as a case study, whereas the performance of ensembles
was examined under three performance measures, namely MCC, AUC, and F1 scores. Our
study revealed that CatBoost was the best-performing algorithm in two different experi-
mental settings, while LightGBM had a substantially lower performance value and a lot
more variation in how it worked with different data sets. CatBoost slightly outperformed
XGBoost with respect to all performance metrics when the Friedman rank test was used.
The limitation of this study lies in the evaluation, which was only restricted to the fifteen
power grid data sets. Future work should incorporate more diverse and relevant IDSs data
sets to produce more generalizable findings. Finally, it is critical to introduce a novel public
benchmark data set that can significantly impact the evaluation bechmark of machine
learning algorithms.
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